

GE Power Management

Technical Notes

Cool Time Constant Calculations

GE Power Management No. GET-8420

Copyright © 2002 GE Power Management

DESCRIPTION	The Cool Time Constant may be calculated from the actual cool time. The actual cool time (<i>t</i>) decays exponentially at the rate dependent on the time constant (τ). A larger value for τ gives longer cool time. The Thermal Capacity Used after time <i>t</i> is given by:		
	$TC_{used} = (TC_{used_start} - TC_{used_end})e^{-t/\tau} + TC_{used_end}$	(EQ 1)	
	where: $TC_{used_start} = TC$ at the start of the cooling period $TC_{used_end} =$ minimum running TC dictated by the hot/color stopped motor.	d ratio or 0 for a	
EXAMPLE	Calculate the stopped cool time constant for a motor that requires 3 hours cooling after being stopped just after a second start. The motor data allows two cold starts.		
	ermission of only two cold (0% TC) starts indicate that the motor the C) is reached after two starts.	sion of only two cold (0% TC) starts indicate that the motor thermal limit (100% eached after two starts.	
	It implies that one start requires 50% TC. To allow another start the relay must gran mission when TC falls below 50% and the programmed time constant ensures the happens after 3 hours has lapsed		
	ubstituting this information into Equation 1, we have:		
	$TC_{used} = (TC_{used_start} - TC_{used_end})e^{-t/\tau} + TC_{used_end}$ $\Rightarrow 50\% = (100\% - 0\%)e^{-180 \text{ min.}/\tau} + 0\%$ $\Rightarrow \tau = 260 \text{ minutes}$	(EQ 2)	
	Therefore, the required Cool Time Constant is 260 minutes (or 15600 seconds).		