469 Va / Vc Angle Difference GE Power Management No. GET-8414A

Copyright © 2003 GE Multilin

ABC ROTATION

ACB ROTATION

For the 469 Motor Management Relay, the Va and Vc angle difference is 60°, not 120°, because of the open delta connection and the way the 469 measures voltage. The angle is also affected by the system rotation.

The open delta PT connection provides the Va (Terminal G2-G1) and Vc (Terminal H2G 1) inputs with Vab and Vcb respectively.

For ABC rotation, we have: $\mathrm{Vab}=\mathrm{V} \angle 0^{\circ}, \mathrm{Vbc}=\mathrm{V} \angle-120^{\circ}$, and $\mathrm{Vca}=\mathrm{V} \angle 120^{\circ}$
This gives: $\quad \mathrm{Va}=\mathrm{Vab}=\mathrm{V} \angle 0^{\circ}$

$$
\begin{aligned}
& \mathrm{Vb}=0(\text { short between Terminals } \mathrm{H} 1 \text { and } \mathrm{G} 1) \\
& \mathrm{Vc}=\mathrm{Vcb}=-\mathrm{Vcb}=\mathrm{V} \angle-120^{\circ}-180^{\circ}=\mathrm{V} \angle-300^{\circ}
\end{aligned}
$$

Thus, Vc lags Va by 300° or leads Va by 60°.

For ACB rotation, we have: $\mathrm{Vab}=\mathrm{V} \angle 0^{\circ}, \mathrm{Vbc}=\mathrm{V} \angle 120^{\circ}, \mathrm{Vca}=\mathrm{V} \angle-120^{\circ}$
This gives: $\quad \mathrm{Va}=\mathrm{Vab}=\mathrm{V} \angle 0^{\circ}$
$\mathrm{Vb}=0$ (short between Terminals H 1 and G 1)
$\mathrm{Vc}=\mathrm{Vcb}=-\mathrm{Vcb}=\mathrm{V} \angle 120^{\circ}-180^{\circ}=\mathrm{V} \angle-60^{\circ}$
Thus, Vc lags Va by 60°.

