

## 469 Va / Vc Angle Difference

GE Power Management No. GET-8414A

Copyright © 2003 GE Multilin

| DESCRIPTION  | because of the                                                                                                     | otor Management Relay, the Va and Vc angle difference is 60°, not 120°, open delta connection and the way the 469 measures voltage. The angle by the system rotation. |
|--------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                    | PT connection provides the Va (Terminal G2–G1) and Vc (Terminal H2–<br>Vab and Vcb respectively.                                                                      |
| ABC ROTATION | For ABC rotation, we have: Vab = V $\angle 0^\circ$ , Vbc = V $\angle -120^\circ$ , and Vca = V $\angle 120^\circ$ |                                                                                                                                                                       |
|              | This gives:                                                                                                        | Va = Vab = $V \angle 0^{\circ}$<br>Vb = 0 (short between Terminals H1 and G1)<br>Vc = Vcb = $-Vcb = V \angle -120^{\circ} -180^{\circ} = V \angle -300^{\circ}$       |
|              | Thus, Vc lags \                                                                                                    | /a by 300° or leads Va by 60°.                                                                                                                                        |
| ACB ROTATION | For ACB rotation, we have: Vab = V $\angle$ 0°, Vbc = V $\angle$ 120°, Vca = V $\angle$ -120°                      |                                                                                                                                                                       |
|              | This gives:                                                                                                        | Va = Vab = $V \angle 0^{\circ}$<br>Vb = 0 (short between Terminals H1 and G1)<br>Vc = Vcb = $-Vcb = V \angle 120^{\circ} - 180^{\circ} = V \angle -60^{\circ}$        |
|              | Thus. Vc lags \                                                                                                    | /a by 60°.                                                                                                                                                            |