ALPS Series Compensation Calculations for NonStandard PTs

GE Power Management No. GET-8412

Copyright © 2002 GE Power Management

For ALPS and LPS-D relays with series-compensation, the manual shows the protective levels of series capacitors as determined by the following formula:

$$
\begin{equation*}
P L_{t}=\frac{1}{95} \sum_{1}^{n} P L_{n} \tag{EQ1}
\end{equation*}
$$

The value for $P L_{n}$ is the gap flashing/MOV protective level in peak phase-to-neutral volts for each compensation capacitor. The value for $P L_{t}$ equals the sum of the protection level of all capacitors in series to the fault, divided by the maximum peak line-to-neutral voltage $P T_{m}$, which is

$$
\begin{equation*}
\frac{115 \mathrm{~V}}{\sqrt{3}} \times \sqrt{2} \mathrm{~V}=95 \mathrm{pu} \mathrm{~V} \tag{EQ2}
\end{equation*}
$$

for a standard 115 V PT.
The $P L_{t}$ should thus be calculated as follows:

$$
\begin{equation*}
P L_{t}=\frac{1}{P T_{m}} \sum_{1}^{n} P L_{n} \tag{EQ3}
\end{equation*}
$$

where

$$
\begin{equation*}
P T_{m}=\frac{P T_{\mathrm{L}-\mathrm{L} \text { sec. volts }}}{\sqrt{3}} \times \sqrt{2} \tag{EQ4}
\end{equation*}
$$

The values for Z1PLEVDET and Z1GLEVDET, are, like $P L_{t}$, in pu as follows:

$$
\begin{equation*}
\text { Z1PLEVDET }=\sqrt{0.15+1.3 P L_{t}^{2}} \text { and } \quad \text { Z1GLEVDET }=\sqrt{0.15+P L_{t}^{2}} \tag{EQ5}
\end{equation*}
$$

EXAMPLE

Consider a system with the following series capacitor and CVT values:

- series capacitor impedance: 29.92Ω
- series capacitor rating current: 2360 A
- protective level of MOV and gaps: 230 kV peak value
- CVT ratio: 500000 / 100 V

In this case, since there is only one capacitor, only one protective level $P L_{1}$ need be considered. We have:

$$
\begin{equation*}
P T_{m}=\frac{P T_{\mathrm{L}-\mathrm{L} \text { sec. volts }}}{\sqrt{3}} \times \sqrt{2}=\frac{100 \mathrm{~V}}{\sqrt{3}} \times \sqrt{2} \approx 82 \mathrm{~V} \tag{EQ6}
\end{equation*}
$$

and

$$
\begin{equation*}
P L_{1}=\frac{\text { MOV Protective Level }}{\text { PT Ratio }}=\frac{230 \mathrm{kV}}{500000 / 100}=46 \mathrm{~V} \tag{EQ7}
\end{equation*}
$$

and, since there is only one protective level $P L_{1}$:

$$
\begin{equation*}
P L_{t}=\frac{1}{P T_{m}} \sum_{1}^{n} P L_{n}=\frac{1}{46 \mathrm{~V}} \times 82 \mathrm{~V}=0.56 \mathrm{pu} \tag{EQ8}
\end{equation*}
$$

Therefore, the phase and ground level detector settings are:

$$
\begin{gather*}
\text { Z1PLEVDET }=\sqrt{0.15+1.3 P L_{t}^{2}}=\sqrt{0.15+1.3 \times(0.56)^{2}}=0.75 \tag{EQ9}\\
\text { Z1GLEVDET }=\sqrt{0.15+P L_{t}^{2}}=\sqrt{0.15+(0.56)^{2}}=0.68 \tag{EQ10}
\end{gather*}
$$

