
Practical Considerations in Application
of UCA GOOSE

GER-3987

Practical Considerations

In

 Application of UCA GOOSE

Mark Adamiak Drew Baigent
GE Power Management

King of Prussia, PA Markham, Ontario

Scott Evans
GE Corporate Research and Development

Schenectady, NY

Presented at :

Georgia Tech Relay Conference

May 3-5, 2000

1

Practical Considerations in Application of UCA
GOOSE

Mark Adamiak Drew Baigent
GE Power Management

King of Prussia, PA Markham, Ontario

Scott Evans
GE Corporate Research and Development

Schenectady, NY

Introduction
The power and functionality of next generation
microprocessors has led the way to next
generation digital relays. One particular
characteristic of these new processors is the tight
integration of the processor with a high-
performance communication controller. Given
this new communication capability, an
international effort has ensued to create a single
communication protocol that advantages the
capabilities of these new processors. That effort
has centered around the Electric Power Research
Institute’s Utility Communication Architecture
or UCA including a definition for the relay to
relay communication of binary state data known
as the GOOSE.

Development of UCA
The Utility Communication Architecture or
UCA had its origins in 1990 as the framework
for the ensemble of communication requirements

that exist in the utility enterprise. It was at this
time that utility managers were looking to
consolidate communications among their
planning, SCADA, metering, protection, and
control departments. In attempting this
consolidation, the cost of integration of diverse
communication protocols was realized and a
drive towards communication commonality was
begun.

Since 1993, there has been a focus on the
application of UCA in the substation. The
process started with the creation of a
requirements document that defined the
communication requirements for the various
functions inside a substation. The functional
requirements document was followed by an
implementation and evaluation phase that
defined the “profile” of a communication
structure for the substation. The profile that has
been defined is shown generically in figure 1.

General Model for Substation and Field
Equipment – including GOOSE

Manufacturing Messaging Specification

TCP/IP
International Standards

Organization (ISO)

Ethernet

Application

Network

Physical

Figure 1
UCA Substation Profile

Model Layer:

User Data

2

The goal in defining the “next generation”
substation profile was to implement a high
speed, networkable, peer to peer architecture
using as many “existing” communications
protocols as possible. In addition, the goal of
user data interoperability required the definition
of standard names for commonly used data
objects.

The profile developed uses Ethernet for the
Physical and Data Link layers. Although
Ethernet is “non-deterministic” when operated in
a “shared access” mode of operation (due to
collisions), Ethernet technology has advanced to
provide “switched” access which minimizes
collisions. In addition, Ethernet provides a
growth path to higher-speed Ethernet networks
such as 100 MB and 1GB with 10 GB already
defined.

For the “networking” layers, although the
original goal was to stay within the realms of the
International Standards Organization (ISO)
standards, the popularity of the Internet dictated
the inclusion of the TCP/IP networking layers.
In November of 1999, the International
Electrotechnical Committee (IEC) selected
TCP/IP as the “mandatory” networking protocol
for intra and inter substation communications
and the ISO networking layers as optional. The
inclusion of these networking layers makes data
from the substation available over a utility
intranet, WAN, or even the Internet.

For the Application or service layer, the
Manufacturing Messaging Specification (MMS)
was chosen. MMS provides a rich set of services
to read, write, define, and create data objects. It
is MMS and its ability to manipulate logical
objects that differentiates this profile from all
other existing profiles.

Lastly, the UCA substation profile defines
standard “object models” for commonly used
data elements. These standard models are
defined in the document entitled: General Object
Models for Substation and Field Equipment
(GOMSFE). This standardization facilitates
interoperability as any manufacturer who, for
example, allows “Phase A - Gnd Voltage” to be
externally visible, does so in a common manner.

Evolution of the GOOSE
One of the unique functional requirements
identified for UCA was high-speed (goal of 4ms)
device to multi-device communications of

simple binary state information. Inasmuch as
sending multiple messages to multiple devices
would incur an unacceptable time delay, an
implementation was chosen that could send the
same message to multiple devices
simultaneously in a communication mode known
as “multicast” (see Figure 2). The
implementation of this function was done
through the MMS information report service.
The information report was used to deliver a
binary object model (a collection of binary states
of the device), known as the Generic Object
Oriented Substation Event or GOOSE.

GOOSE works in a model type known as
“Publisher / Subscriber”. In this model, the
sending device “publishes” the user-selected
state bits in the device. Any device interested in
any of the states of the publishing relay is
programmed to “subscribe” to the publishing
device’s GOOSE message.

The GOOSE message is launched under one of
two scenarios. The first scenario launches a
GOOSE on a change of state of any of the binary
variables in the message. The second scenario
launches a GOOSE message on a user-selectable
periodic basis. The reason for the latter scenario
is that in absence of a state change, there is no
way for the subscribing device to determine that
the publisher is alive. When the subscribing
device fails to receive an expected GOOSE
message, it can declare the publisher as “dead”
and set default states on the binary variables
expected from the publisher.

�

�

�

RECEIVING
IED
(c)

SENDING
IED
(a)

RECEIVING
IED
(b)

RECEIVING
IED
(n)

Substation
LAN

GOOSE

Figure 2
GOOSE Multicast Concept

3

One risk in the multi-cast GOOSE is the
potential lack of assured and timely message
arrival and processing due to “Best Effort”
protocol quality of service (QOS) and the
variable communications latency associated with
a shared medium network. Coexistence of
mission critical control signals with non-mission
critical data causes variation in the QOS for the
mission critical data that must be managed
carefully. UCA GOOSE achieves reliability
through the use of repeated unacknowledged
messages. This paradigm produces specific
challenges in that repeated messages add to the
network load and device processing. Network
collision problems can be met to some degree
with switched routers. Message filters as low as
possible in a device network stack can address
device overload concerns by giving priority to
mission critical messages related to a specific
device and discarding others. Still, care must be
taken to ensure that oscillography and other non-
time critical data sent on the network are
correctly managed at the application layer to
prevent overloading the network or device
buffers and delaying the control messages. In
order for UCA GOOSE to be effective as a
method to send mission critical data throughout
the network, all of the above concerns must be
addressed and enforced by all devices on the
network.

The content of the GOOSE message can be
broken down into three areas: a header, Dynamic
Network Announcement (DNA) state
information, and User State information.

The header contains operational information
about the GOOSE message such as the name of
the sending device, the time that the GOOSE
message was constructed, and the maximum
time until the next GOOSE message. The Max
Time until next GOOSE is used to detect failure
either in the sending device or in the network
itself.

The Dynamic Network Announcement or
standard bit pairs were designed to facilitate
connection between devices. For example, if a
line relay issues a “Trip” signal, any device
subscribing to the line relay and that is interested
in that particular signal can take action
accordingly. There are 32 pre-defined bit pairs
which can be seen in Appendix I. The concept is
similar for the “User State” information except
that the definition of the data is totally user
defined. Data states are sent in pairs with (0,1)

and (1,0) being the primary logical states, (0,0)
being defined as a “transition” state, and (1,1)
being undefined.

The delivery of the GOOSE object is through the
connectionless ISO stack, which means that there
is no specific destination address. As such, some
address must be entered for the Ethernet receiver
to resolve. One option is to require the user to
create and enter a 48 bit address to define who
the publisher is. This same 48 bit address would
have to be programmed into each subscriber that
wanted to receive a GOOSE message from that
publisher.

A second option is to work with a Self
Mentoring And Re-Training or SMART
GOOSE. Self Mentoring is the process of
automatically defining and determining an
address of the publisher and subscriber(s) based
on a logical name. During set-up, the engineer
programs every device in the station with a
unique name and programs the receiving devices
with a list of device names from which it should
expect to receive data. On start-up of the
network, the SMART GOOSE reads the Media
Access Control (MAC) address of the Ethernet
controller and uses this unique address as its
source and destination address for GOOSE
messages. Next, the Ethernet receiver in the
receiving devices goes into “promiscuous” mode
whereby all multi-cast messages are read and
decoded. The name of the device sending the
message is compared with the programmed list
of “devices to listen to”. If the names match, the
receiving device stores the MAC address of the
sending device in a high-speed hardware address
comparator. Once all address / name matches
have been made, promiscuous mode is turned off
and all multi-cast messages are now captured
based on a hardware address comparison.

The “Re-Training” part of the SMART GOOSE
comes into play when a relay is taken out of
service or a CPU module is exchanged or
upgraded. When the CPU card is changed, the
corresponding MAC address for the Ethernet
card changes as each Ethernet controller in the
world has a unique 48 bit address. SMART
GOOSE (on the receiving side) recognizes that
the GOOSE message it was expecting is missing.
In this scenario, the receiving relay goes back
into promiscuous mode – again searching for a
message with the name of a desired device
inside. Once found again, the new MAC address
for the new CPU / Ethernet controller is stored in

4

the high-speed look-up table and the receiving
relay once again turns off promiscuous mode and
returns to normal operation.

As mentioned earlier, the goal for “max time on
the wire” was less than 4ms. Achieving this time
involves defining a number of system factors
including internal GOOSE processing,
communication speed, number of devices on the
LAN, and LAN loading. Figure 3 shows an
oscilloscope timing of a digital input on one
relay and the closure of the output contact on a
second relay. This time (7.8ms) includes
processing of the digital input (including
debounce), processing of relay logic,
transmission through the communication stack,
time on the wire, communication processing on
the receiving relay and output contact execution
time. Time on the wire for this application was
in the microsecond time frame.

Generalized Relay Architecture
Given this new construct of device to device
communications, there is now a need to be able
to logically integrate data not only from one
device but also from other logical devices in the
network. As such, one can now look at a
generalized device logical architecture to
perform this integration function. This
generalized architecture is shown in figure 4.

The architecture can be divided into three areas:
inputs, combinatorial logic, and outputs. In the
GOOSE enabled device, there are four sources of
inputs. The first are the outputs from the various

protection functions. The second is from the
traditional “hard wired” digital inputs. Third, we
can speak of “remote inputs” that come from
other devices in the network. Lastly, there are
“virtual inputs”. These inputs are memory
locations that can be set from external sources
such as a Human Machine Interface. A good
example of a virtual input is user flag that is set
to block operation of a device or function.

Given the various input signals present in this
next generation device, some sort of
programmable logic is now needed to combine
these signals into the functionality required by
the user. In general, any given device may have
multiple logic functions internally programmed –
each with its own resultant output.

This leads to the third area of the generalized
functional architecture which is the output
structure. Each logic equation implemented will
have an internal result or “virtual” output. It is
desirable from a user’s perspective to be able to
time tag the virtual outputs in order to evaluate
the proper operation and performance of the
programmed logic. Virtual outputs can then be
mapped to one of three places: First of all, virtual
outputs can be mapped to a physical output
contacts. Secondly, virtual outputs can be
mapped to “remote” GOOSE outputs and sent to
multiple other devices. Lastly, if the
programmable logic permits, a virtual output can
be fed back as an input to the programmable
logic. This capability allows one to create a state
machine in the device.

Figure 3
Oscilloscope Timing of Relay to Relay GOOSE Message

5

GOOSE Applications
Given GOOSE messaging in conjunction with a
programmable logic architecture, there are now a
limitless number of applications that can be
implemented. This section looks at four of these
possible applications:

Voting:
In the art and science of protection, part of the
“art” is creating a balance between the security

and dependability of a protection scheme. One
technique that is used in mission critical
application is the concept of voting (see figure
5). Voting says to issue a trip only if 2 out of 3
relays say trip. To implement this function, relay
1 needs to get trip information from relays 2 and
3, relay 2 needs to get trip information from
relays 1 and 3, etc. Each relay is required to
implement the voting logic internally and each
relay has to subscribe to the others trip message.

Analog
Inputs

Protection

LOGIC
T M Virtual

Outputs

Virtual
Inputs

Remote
Inputs

(GOOSE)

Digital
Inputs

Digital
Inputs

All Comm.
Links/
Protocols

All Comm.
Links/
Protocols

841705AC.CDR

Breaker

Relay 2

Transformer

Relay 3

High-Speed Peer-to-Peer LAN (UCA2/Ethernet)

CTs

VTs

Analog

52

Physical
Outputs

Mechanical

Solid State

Auxiliary
Outputs

48-250VDC
Power
Supply

Breaker

HARDWARE

FIRMWARE

PROGAMMABLE

ARCHITECTURE
General IED

A/D C
P
U

25

50

87

Control

Relay 1

Feeder

Ethernet LAN

Remote
Outputs
(GOOSE)

Figure 4
Generalized Device Logical Architecture

AND

AND

AND

Relay 1 Trip

Relay 2 Trip
Enable

Relay 2 Trip

Relay 3 Trip
Enable

Relay 1 Trip

Relay 3 Trip
Enable

Delay Timer
(Optional)OR

Protection
Elements

Outputs

High-Speed Peer-to-Peer LAN

Relay 1
"Trip"

LAN
"Trip"

"Trip"
Relays 2 & 3

Voting Logic

RELAY 1

Relay

2

Relay

3

Figure 5
Relay Voting Scheme using GOOSE Messaging

6

 Ethernet LAN

 “Block” message

Fault

Figure 6
Bus Breaker Blocking

Relay

Relay

Since each relay has the voting logic internal to
itself, failure of a single relay does not fail the
voting scheme.

What is interesting to note is the performance of
the scheme under a “dead GOOSE” scenario –
that is – when a particular relay fails to send a
GOOSE message in the allotted time frame.
When this happens, a default state is assigned to
the expected data. Depending on how the default
is set by the engineer, the voting scheme will
default to be more secure or more dependable.
For example, if relay 2 fails and the trip input to
relay 1 is defaulted to “no trip”, for a trip to
occur, both relays 1 and 3 must issue a trip thus
defaulting to a secure state. On the other hand, if
the failed input from relay 2 is set to “trip”, the
system defaults to a dependable state in that if
either relay 1 or relay 3 say trip, the system will
trip.

Bus Blocking
In many distribution station applications, an
incoming feeder has a breaker feeding a bus with
multiple feeders exiting from the bus (see figure
6). Typical protection calls for an instantaneous
overcurrent function that is coordinated with the
overcurrents on the underlying feeders.
Coordination typically can be translated as “time
delay”. Application of GOOSE messaging
between the underlying feeders and the incoming
feeder breaker can optimize this situation.

When any of the feeders detects an overcurrent,
it is to send a “block” message to the incoming
feeder telling it not to trip. Such communication
can speed up protection for bus faults and add
security for feeder faults.

Load Shedding
Typical load shedding applications in a
substation require the addition of a separate
under frequency relay followed by wiring from
the load shed relay to any breakers to be tripped
under an under-frequency condition. Reality is
that most breakers in a substation are connected
to the tripping output of at least one relay in a
substation. Connecting these relays via an

U F L o a d S h e d
E n a b le

U F S e t P o in t # 1

U F S e t P o in t # 2

U F S e t P o in t # 6

U F S e t P o in t # 3

U F S e t P o in t # 4

U F S e t P o in t # 5

P U
 D O

S h e d G r o u p # 1

P U
 D O

S h e d G r o u p # 2

P U
 D O

S h e d G r o u p # 3

P U
 D O

S h e d G r o u p # 4

P U
 D O

S h e d G r o u p # 5

P U
 D O

S h e d G r o u p # 6

O p t io n a l
T im e D e la y

Figure 7
Distributed Load Shed

7

Ethernet network, load shed becomes a GOOSE
message to trip the appropriate breaker (figure
7). With some additional logic, the engineer
could actually create a rotating schedule of loads
to shed. Clearly, a restoration scheme could be
created in similar manner. Since this scheme
could be loaded into any relay, redundancy is
also easy to implement.

Wide Area GOOSE (WAG)
Although the GOOSE message is not routable, a
number of SONET multiplexors are capable of
“bridging” GOOSE messages between
substations over Ethernet. With this
configuration, one is able to perform functions
such as transfer tripping, pilot based protection,
high speed data transfer, and in general, have a
foundation for next generation power system
control. Caution need be taken when
implementing such a scheme as too many
GOOSE messages can clog the network.

Conclusions
Next generation microprocessors in next
generation digital relays have provided the
foundation for next generation communication
protocols and applications. The Utility
Communication Architecture has provided the
relay engineer with a new high-speed binary tool
in the form of the Generic Object Oriented
Substation Event or GOOSE. With this tool,
relay engineers will be able to create advanced
protection schemes more easily with no
additional wiring.

Bibliography

1. General Object Model for Substation
and Feeder Equipment (GOMSFE).
Version .9, January 14, 1999
ftp.sisconet.com/EPRI/UCA2.0/
gomsfe9.zip

Figure 8
Wide Area GOOSE (WAG)

ftp://ftp.sisconet.com/EPRI/UCA2.0/

8

Appendix I
Dynamic Network Announcement

 Bit Pair Definitions
From GOMSFE .9, January 14, 1999

DNA is a single message that conveys all genetically required protection scheme information
regarding an individual IED. This message uniquely reports the status of the devices in the
IED to it’s peers per the enrollment list. The table below defines the use of DNA for
protection messages

Bit Order 00 01 10 11
Bit # Bit Value 0 1 2 3

Pair Definition State State State State
0,1 1 OperDev Normal Trip Close Invalid
2,3 2 Lock Out Invalid Normal LO Invalid
4,5 3 Initiate Reclosing Normal Cancel Auto

Reclosing
Invalid

6,7 4 Block Reclosing Normal Cancel Block Invalid
8,9 5 Breaker Failure

Initiate
Normal Cancel Initiate Invalid

10,11 6 Send Transfer Trip Normal Cancel Set Invalid
12,13 7 Receive Transfer

Trip
Normal Cancel Set Invalid

14,15 8 Send Perm Normal Cancel Send Perm Invalid
16,17 9 Receive Perm Normal Cancel Receive

Perm
Invalid

18,19 10 Stop Perm Normal Cancel Stop Perm Invalid
20,21 11 Send Block Normal Cancel Send Block Invalid
22,23 12 Receive Block Normal Cancel Receive

Block
Invalid

24,25 13 Stop Block Normal Cancel Stop Block Invalid
26,27 14 BkrDS Between Open Closed Invalid
28,29 15 BkrPhsADS Between Open Closed Invalid
30,31 16 BkrPhsBDS Between Open Closed Invalid
32,33 17 BkrPhsCDS Between Open Closed Invalid
34,35 18 DiscSwDS Between Open Closed Invalid
36,37 19 Interlock DS Invalid Non

Interlock
Interlock Invalid

38,39 20 LineEndOpen Between Open Closed Invalid
40,41 21 Mode Test Offline Available Unhealthy
42,43 22 Event Invalid Normal Event Invalid
44,45 23 Fault Present Invalid Clear Present Invalid
46,47 24 Sustained Arc Invalid Normal Present Invalid
48,49 25 Downed Conductor Invalid Normal Downed Invalid
50,51 26 Sync Closing Normal Cancel Initiate Invalid
52, 53 27 Reserved
54, 55 28 Reserved
56, 57 29 Reserved
58, 59 30 Reserved
60, 61 31 Reserved
62, 63 32 Reserved

	goose.pdf
	Practical Considerations
	In
	Application of UCA GOOSE
	Introduction
	
	
	
	Conclusions
	Bibliography

