
Developing a Common Language for
IED Communication in the Substation

GER-3991

Developing a Common Language
 for

Intelligent Electronic Device Communication
in the Substation

Dr. W. Premerlani, R. Mitchell, Dr. I. Ali, Dr. T. Saulnier
GE Corporate Research & Development

Schenectady, NY

M. Adamiak
GE Protection & Control

Malvern, PA

J. Melcher
EPRI

Palo Alto, CA

Introduction
From the introduction of the Intelligent Electronic Device
(IED), we have had the ability to communicate with and
extract information from these devices. The ability to
intelligently communicate gives added value to the IED
and as such, has hastened their implementation. As time
has gone on, we have watched communities of these
devices sprout up in the substation - typically with no
concerted attempt to inter-communicate much less
interoperate. As a result, a veritable “Tower of Babble”
has arisen inside the substation. Attempts to date to
achieve some semblance of common communication have
focused around “Rosetta Stone” solutions whereby a
translation module of software is located between the IED
and host computer. Although this technique achieves
today’s goals, translation hardware is usually required and
creation of the translation module can be costly and time
consuming. Another aspect is that revisions and
generations of new IED’s have become a frequent
occurrence demanding constant “stone cutting” and
“chipping” of translation communication software. Newer
IED designs implement faster communication rates, have
more data to communicate, and are capable of performing
some programmable logic functions.

In view of future capabilities and a continuing
proliferation of IED’s in the substation, a cry has come
from the utility community to create a framework for not
only common communication but an architecture that will
provide for interoperation. Interoperation implies the
ability to “plug and play” and also to be able to “share” data

and functions. As an example, a protective relay may be
required to provide a “check synchronism” function which
requires the magnitude and phase angle comparison of two
voltages. The relay performing the function may have
intrinsic access to only one voltage. The other voltage may
be available from another device in the substation . An
interoperable system could then negotiate for access to the
other voltage and as such, avoid all the overhead involved
in direct wiring.

Integration Benefits
As substation integration becomes a reality, there are
numerous benefits that can be realized. With data sharing,
wiring between devices can now be minimized.
Distributed data acquisition now becomes the foundation
of substation integration. Traditional hardware devices
such as the Remote Terminal Unit and the Digital Fault
Recorder now become primarily functional entities that
draw on other IED’s for their data. Interoperation permits
distributed functionality, that is, the data and/or the
decisions needed for a particular function may reside
among multiple IEDs.

Such changes in the substation design paradigm can be
measured both quantitatively as well as qualitatively.
Quantitatively speaking, substation integration has the
potential for the following savings [1]:
• Elimination of the station fault recorder & wiring
• Elimination of the station Sequence of Events recorder

& wiring
• Minimization of RTU wiring

• Minimization of Breaker Wiring

 Qualitatively, the integrated system brings with it:
• Reduced O&M through “Real Time” condition

monitoring
• 100% redundancy in fault recording
• Rapid fault location
• Integrated Protection & Control

 and many others.

 Requirements Document Creation
 Through the funding of EPRI and in conjunction with
numerous IEEE Working Groups and the MMS Forum,
work has begun on a top down design to define the
requirements for an integrated Protection, Control, and
Data Acquisition communication system. The
requirements document (open to the public for review and
comment) is intended to be the foundation of an open
protocol definition that will focus on peer to peer
communication in the substation and is expected to have
extensions to other areas of power system communication.

 The software architecture is based on the International
Standards Organization (ISO) seven layer Open System
Interconnect (OSI) model for communication protocols
[2]. This model breaks a protocol down into 7 independent
functional entities that can be linked together (depending
on the functional requirements) to create a protocol
definition. Some of the layers of interest are as follows.

 The bottom layer is know as the “Physical” layer and
defines how one connects into the system. For example, do
I connect a fiber optic cable or a pair of copper wires. The
second layer is the Data Link Layer which defines how the
data is packaged. The third layer in known as the network
layer which defines, in a multi-path environment, how a
piece of data gets from device A to device Z.

 The top or seventh layer, and the focus of of this paper, is
known as the Application layer. It is at this level at which
the user or user’s program interfaces with the
communication protocol and ultimately other IED’s. It is
also at this level where the greatest challenge lies as the
development of a common language is required here in
order to interoperate among the various IED’s. The
challenge here can be equated to communication through
the spoken language. As a simple model, the basic
building blocks of most languages are nouns and verbs.
Combinations of these nouns and verbs express requests,
issue commands, and exchange information. The reason
we can communicate together is because we have all
learned the same nouns and verbs in the same language
and can turn to a dictionary to describe the words we do
not understand.

 The requirements definition process mandated some
technique whereby the various information items and
functions of the IED’s could be described and where that
description could be shared by all. A software design
technique known as Object Oriented Methodology (OOM)
has been adopted as the fundamental tool to be used in the
overall design process. This paper presents a basic
description of the concept of Object Modeling and details
aspect of existing protocols that make use of various
aspects ot this tool.

 II What is an Object-Oriented Methodology? (OOM)

 An object-oriented methodology is a software system
development process that organizes software as a
collection of discrete objects that incorporate both data
structure and behavior. The term object-oriented is used to
describe both the process and its output. A software system
that combines data structure with behavior, that is what the
object does, is said to be object-oriented. Object-oriented
methodologies improve the quality of software systems,
and have been used commercially to produce several types
of object-oriented products, including languages, libraries,
database management systems, graphical interfaces, and
simulators, for example, as well as a large number of
applications in a wide range of problem domains. An
object-oriented methodology is also well suited to
communications in general, and communications between
intelligent electrical devices (IED's), in particular.
Experience has shown that there are several benefits to an
object-oriented methodology:

• Reduced life cycle cost. Clear documentation,

improved system design, and software reuse reduce
the overall system life cycle costs.

• Traceability. Software development is a seamless

process. The models derived from analysis of
customer requirements are carried forward and
permeate subsequent development steps.

• Better design. The system is clearly represented in

terms of real-world entities and behavior. Application
experts and system developers have a common basis
for discussion.

• Better selection. Models are even useful for purchased

software. Models can aid understanding of vendor
software and enrich the basis for selecting the best
product.

• Coherence. Careful modeling improves the quality of

the thought processes that are embodied in a design.

• Communication. Models promote communication

between developers and customers. Models bring
important names and application concepts to the fore
so that they can be defined and understood by all
parties.

• Extensibility. Software organized about an object-

oriented theme parallels the real world and is flexible
with respect to changes in requirements. This is in
contrast with a procedural approach.

• One uniform paradigm. The notion of an object

uniformly applies to programming code and database
code, analysis and design.

• Improved quality of data. Rigorous modeling

improves the quality of the data. Many constraints can
be woven into the fabric of a model.

 An object is a concept, abstraction, or thing with crisp
boundaries and meanings for the problem at hand [1].
Important characteristics of objects include identity,
classification, polymorphism, and inheritance. Identity
means that objects can be distinguished from one another.
Switches, relays, and transformers are examples of objects.
Two identical switches can be distinguished from each
other, for example, so that a request to open one of them is
not intended to open the other one. Objects have attribute
values and may be related to other objects. For example, a
switch could be in the open position and be controllable by
a certain relay. Objects also have behavior,
 specified by the operations that may be applied to them.
For example, the "close" operation may be applied to a
switch. By classification we mean that objects that have
common attributes and behavior are grouped together into
 a class. Thus all switches from the same manufacturer with
the same model number are in the same class.
Polymorphism is a term used in object-oriented
methodologies that means the same operation can be
applied to different classes of objects with appropriate
results. For example, the "close" operation is polymorphic
on the classes switch, recloser, and breaker because each
can respond to a request to "close" in a perfectly
appropriate way. Inheritance is the sharing of attributes and
behavior based on a hierarchy. A class can be broadly
defined and then refined into superclasses. Inheritance is
used to describe a taxonomy of classes. For example, there
are many kinds of relays, and we could use inheritance
relationships to describe their taxonomy.

 Other important object-oriented concepts include
abstraction, encapsulation, combining data and behavior,
and reuse through inheritance. By abstraction we mean
focusing on the essential aspects of objects. Abstraction is

one of the most powerful features of object-
orientedmethodologies. Through abstraction it is possible
to focus on concepts rather than implementation. The trap
that is easy to fall into is losing sight of the essentials by
confusing design with implementation. By rushing
intoimplementation it is easy to become overwhelmed by
details before understanding essential concepts. The
abstraction process in object-oriented methodologies
avoids this trap by focusing on concepts before
implementation via a concise, implementation independent
representation of system structure and behavior.

 Encapsulation, which is also called information hiding,
means that the internal details of an object are hidden from
the external interface to the object. Only those details that
are needed to interact with an object are published.
Operations on an object provide a clean separation between
internal and external views of the object. The external view
of an object is what services the operations perform. The
internal view of an object is how the services are
implemented. The behavior of the "close" operation is
visible in the external view of a switch object. The details
of how this is accomplished is hidden from the external
view.

 Object-oriented software also combines data and behavior
into a single hierarchy. In nonobject-oriented approaches
there is a separate hierarchy of data structure and
procedures. By combining data with behavior, the
responsibility for the details of an operation is shifted from
the procedure to the object. For example, in an object-
oriented application it is not necessary for a print
procedure to deal with the details of each object that can be
printed. Instead, each object knows how to print itself. This
simplifies maintenance, because it is not necessary to
update procedural code for printing when a new class is
added. Instead, if the new class needs to support the print
operation, then the print operation is implemented for it.

 This leads to the concept of reuse through inheritance. It is
often possible to define a new class as a specialization of
an existing class, and share the implementation of common
operations. For example, if we find that there is a
taxonomy of switches, it may be possible to implement the
"close" operation on the superclass.

 The abstraction power of object-oriented models provides
a neutral representation that could be implemented in a
variety of ways, including programs, databases, grammars,
and communications protocols, for example. We have also
found it useful to construct object-oriented models of
concepts as an aid to understanding.

 The concepts used in constructing object oriented models
have natural interpretations in a number of domains of
discourse. Yet, a model itself is simpler and more

fundamental than its realization in a particular
implementation, because implementations often require
extra detail. There is usually more than one way to
implement a particular concept. For example, the concept
of inheritance is implemented in different ways in object-
oriented programming languages, relational database
management systems, and communications. In object-
oriented languages there is direct support for inheritance by
declaring a class to be a subclass of another class. In
relational database systems, there is no direct support for
inheritance, and there are several ways for mapping an
inheritance hierarchy onto database tables. An object model
can also be interpreted as representing a grammar. In that
case, inheritance can be interpreted as alternate production
rules. However, in most communications protocols, there
is no direct support for inheritance. In some protocols,
such as MMS, there are constructs that can be used to
implement inheritance.

 In addition to an object model, some object-oriented
methodologies also include a dynamic model and a
functional model. The object model describes the static
structure of the objects in a system. The dynamic model
specifies the control aspects of a system. Finally, the
functional model describes the structure of computations.
Of the three models, the object model is most relevant to
system communications, and has a natural interpretation in
that context. Important constructs in an object model
include objects, classes, attributes, methods, associations,
and generalizations. In this paper, we will use the OMT
notation, one of the more popular notations for object
models [3]. Another notation that is also being used to
model IED's is Coad's notation [4].

 An object is a concept, abstraction, or thing with crisp
boundaries and meaning for applications. Each object
exists and can be distinguished from other objects. A
particular circuit breaker is an example of an object.
Another example of an object is a particular real time data
point. Objects can be real objects or software objects. In
some cases there is a correspondence between the two. For
example, a circuit breaker is a real object controlled by
 an IED. Inside of an object-oriented IED there would
probably be a software object that implements the control
logic for the circuit breaker and which communicates with
other IED's. Both kinds of objects are valid elements in an
object model, depending on the purpose of the object
model. Objects can also be classified as passive objects or
active objects. An active object can perform a service. A
circuit breaker is an example of an active object. A passive
object, such as a measurement, conveys information.

 A class is an abstraction of a group of objects with similar
properties, common behavior, similar relationships to
other objects, and common semantics. We say that an
object is an instance of a class. As we shall see, an object

can be an instance of more than one class through an
inheritance relationship between classes. Thus, all
measurements are instances of the class, Measurement.

 Classes may have attributes and methods. An attribute is a
named property of a class that describes a value held by
each object of the class. For example, the class Tag could
have the attributes date, type, and description. A method is
a service provided by objects in a class. For example, trip is
a service provided by the class CircuitBreaker.

 One notation [3] for representing classes in object models
is shown in Figure 1. A class is drawn as a rectangle

 Switch
 normalState
 operationTime
 pulseTime
 operationCounter
 lastCommandSent
 state
 operateSwitch

 Figure 1 Example of a class

 with three sections. The name of the class is placed in the
top section, the attributes in the middle section, and the
methods in the lower section.

 Another object-oriented concept is that of a link, which is a
physical or conceptual connection between objects. In a
programming language, links are sometimes implemented
with pointers, but links should not be confused with
pointers. Links are a logical abstraction of pointers, and
may be implemented in a variety of ways, particularly when
you consider that they can be interpreted in the context of
databases and communications as well as programming
language. A link between objects indicates that those
objects are related in a meaningful way.

 An association is an abstraction of a group of links with
common semantics, just like a class is an abstraction of a
group of objects. One representation of an association
between the classes Company and Person is shown in
Figure 2.

 The association in Figure 2 shows several features of
associations using the OMT notation, including
association names, role names, and an indication of
multiplicity. In the example, the association name,
indicated by a name by the middle of the association, is
"Works-for". This indicates that a link between a particular

company and person indicates that the person works for the
company. A role name is a name on an end of an
association, indicating the role that the class on that end
plays with respect to the association. A role is an end of an
association. In the example, Company plays the role of
employer, and Person plays the role of employee.
Association names and/or role names are needed when the
semantics of an association is not absolutely clear from the
associated classes. We show both an association name and
role names in the example for illustration. It is not
necessary to use both.

 Company
 name
 address

 employer
 works-for

 employee

 Person
 name
 socialSecurityNumber
 address

 Figure 2 Example of an association

 In this example, the association is between two classes,
which we call a binary association, and which is commonly
found in practice. Associations between more than two
classes may also occur, but are less commonly found.

 Also shown in Figure 2 is one representation for indicating
multiplicity. By multiplicity, we mean the permissible
number of objects on one end of an association that can be
linked to a single instance of an object on the other end. In
this example we are assuming that every person has exactly
one employer and that a company can have any number of
employees. The straight line at the employer role of the
association indicates exactly one. The solid ball at the
employee role of the association indicates any number of
employees. Not shown in this example, a hollow ball
Indicates an optional link.

 Aggregation is a special form of an association which
indicates a assembly-part relationship in which an instance
of the assembly contains an instance or instances of the
part. We use a diamond on the assembly end of the

association [1]. Thus, in Figure 3, a tap changer is an
optional part of a transformer.

 Generalization is a relationship between a class, called the
superclass, and one or more variations of the class, called
the subclasses. The superclass holds common attributes,
operations, and associations. Each subclass adds its own
unique attributes, operations, and associations. A subclass
inherits the attributes, operations, and associations of its
superclass. An example is shown in Figure 4, using the
OMT notation. Generalization is indicated with a triangle
with the peak pointing towards the superclass. A number
of phases are usually carried out in an iterative, seamless
fashion in applying an object-oriented methodology. The
phases in OMT are conceptualization, analysis, design, and
implementation [1]. During conceptualization, models are
prepared of the problem domain. These models can be
shared among several applications. Analysis refines the
model to represent the application requirements. During
design, strategies are developed for mapping the models to
an implementation.

 III How is OOM Applied to Communicating IED's?

 An object-oriented methodology can be applied to the
entire software development process to foster
interoperability. The result is not just a communications
standard, but a system architecture as well. The first step
in the process is to simply apply an object-oriented
methodology to construct standard object models of IED's,
without focusing on the details of communications. These
models standardize the external interfaces and behavior of
IED's and will need to be validated by a standardization
process. Because of their abstract nature, these models are
easy to grasp at a glance, and provide a unified
representation to serve both programming and
communications. A portion of an object model at this level
of abstraction is shown in Figure 5.

 The next steps add layers of detail, with different kinds of
detail added for programs, databases, and communications.
In the case of communications, we recommend an abstract
communications model for an intermediate level of
abstraction that could still span a variety of
communications protocols. The model should support
object definitions, including attributes as well as methods.
For example, an abstract syntax notation could be used to
indicate communications design decisions. A mapping of
the object model in Figure 5 to this intermediate level is
shown in Figure 6. Finally, at the lowest level of
representation, the abstract syntax notation is mapped to a
particular communications protocol, such as MMS, for
example.

 An object-oriented methodology can be applied in an
integrated software development process which

simultaneously addresses programming, databases, and
communications. A single, high level representation helps
the developer conquer complexity. Encapsulation reduces
complexity by hiding design and implementation details.
Layers of detail are added through a unified strategy for
mapping between models at different levels of abstraction.
We will now look at the interpretation of the constructs of
an object model in the context of communications.

 There are several interpretations for objects and classes.
The usual interpretation is that an object is a software
object inside an IED. An IED may contain many objects.
Each object is an instance of a class in the object model for
that type of IED. The attributes of the software object are
the same as those of the class. Each software object
provides the services corresponding to the methods of its
class. A message with arguments may be sent to an object
requesting a particular service. In addition, messages can
be used for direct access to an attribute, depending on
whether or not the attribute is private. A private attribute
can be accessed only through its services.

 Another interpretation for some objects and classes is that
they are real. Both real and software classes can appear in
a single object model. Real classes are often added to a
model to provide a context for understanding the model.
For example, classes representing real objects such as
physical transformers or circuit breakers may appear in an
object model, and may participate in associations to
software classes. In many cases there is both a real class
and a corresponding software class. Thus, there could be
both a class for a physical circuit breakers as well as for the
software objects for controlling them.

 We also distinguish between passive and active classes. An
active class is one with methods for providing services. A
passive class as attributes only. Passive objects may be
required in some cases as the arguments passed with a
service request or may be returned by a service. In the
context of communications, polymorphism is interpreted
as an abstraction of services. Thus, although the details of
opening a disconnect switch are different from that of
tripping a circuit breaker, at a high level of abstraction we
can view the two services as being similar. Inheritance
relationships are interpreted as meaning each subclass
inherits the attributes, methods, and associations of all of
its ancestors in the inheritance hierarchy.

 In the context of communications, an association between
two classes indicates that it is possible to create, delete,
and traverse links between objects in the associated classes.
For example, in Figure 7 the class Controller is associated
with the class VirtualDevice in a one-to-many association.
This means it should be possible to provide the following
services:

• Given a controller object, find all associated virtual
devices.

• Given a virtual device, find its associated controller.

• Link a virtual device to a controller.

• Unlink a virtual device from a controller.

 We will say a few words about implementation of
associations, because implementations are often confused
with associations. The problem is that there are many ways
to implement a given association, too many to explain
here. For example, in addition to the commonly used
approach of mapping an association as an embedded
pointer, embedded object, collection of pointers, or
collection of objects, in one or both ends of the
association, it is also possible to map an association to an
object itself, with appropriate services. Association
implementation strategies should be selected in mapping
from an object model to an intermediate level of
abstraction. Avoid placing implementation decisions in the
object model because it introduces unnecessary detail,
defeating the goal of abstraction.

 Aggregation is another construct in an object model that
has meaning in the context of communications. In addition
to the properties an services of an association relationship,
aggregation indicates a part-assembly relationship. In the
case of passive objects, aggregation is commonly
implemented by including part objects in an assembly
object whenever the assembly object is passes as an
argument or returned from a service. The difference
between associations and aggregations is that, properly
used, aggregations form a directed graph with no cycles,
while there are no restrictions on the use of associations.
For communications, the multiplicity of aggregation is
never many-to-many.

 In addition to classes that are directly in the application
problem domain, two other types of classes may appear in
an object model: generic classes and metaclasses. A generic
class is one that can contain more than one kind of data. A
metaclass is one that describes another class. For example,
in Figure 8 the classes RealTimeDataPoint, Real, State,
and Discrete are generic classes. These classes could hold
just about any kind of data. Although generic classes are
quite useful, we should point out that, by themselves,
generic classes do not specify a standard, and must be
accompanied by a companion standard to achieve
interoperability. For example, in order for an application to
interact with RealTimeDataPoint in a meaningful way, it
must have access to an enumeration of the valid values for
the attribute PointName, and must know what to do about
each different value. Metaclasses, which are classes that

describe other classes, are useful in constructing systems
that are self descriptive. For example, instances of
metaclasses could be used describe the object model of an
IED, and make it available in electronic form as an online
service. Object models containing metaclasses are called
metamodels. A portion of a metamodel for describing
object models is shown in Figure 9.

 So far, our discussion has been focused on new IED's.
Legacy systems and devices must also be considered,
because it may be desired to install a new IED in a legacy
system or legacy IED in a new system. It is not likely that
legacy devices will comply with the new standards. Many
legacy devices treat all objects as passive and do not
provide object-oriented services. We expect that in either
case a gateway will be needed for protocol translation. A
related problem is that of reusing existing IED designs. We
do not expect manufacturers to port all of their designs to a
new standard in an overnight process. Mapping existing
designs to object models is a reverse engineering process.
We expect that it will be applied gradually over time to
convert existing designs to work in an object-oriented
architecture.

 “VERB” IMPLEMENTATIONS

 1. BACnet Application Layer

 The application layer specification for BACnet (Building
Automation and Control network) contains specifications
for modelling the communication aspects of devices and
also application functions for transmitting and
manipulating this information over the communication
channel. Though BACnet attempts to use an object-
oriented methodology for specifying the application layer,
the specification for the attributed of the data elements
found in a device - device model- and the specification of
the methods - application services - which can be applied
on these data elements are specified independently.

 BACnet has attempted to insulate the specification of the
device model and application service from its
implementation in terms of the bits and byte
representation on the network. It uses the ASN.1 abstract
syntax notation and BER for encoding messages. The
encoding scheme is not purely ASN.1. Explicit encoding
is described for encoding the header information for the
application layer.

 We will briefly describe the description for the Device
Model and then of the application layer services in
BACnet. Even though BACnet specification is not object-
oriented, we have used OMTool notation to organize the
BACnet application layer specification in an object-
oriented manner. OMTool provides a good graphical

representation of the information organized using object-
oriented methodology.

 2. Device Modelling Approach

 The approach taken by BACnet towards modelling devices
is to represent devices as a collection of objects. BACnet
uses an object oriented methodology for the application
layer. BACnet provides specifications of classes and
mechanisms for capturing the relationships (or
associations) between these classes. The objects in a
device is an instance of a class. This enables one to model
the communication specific features of most physical
devices like fan, air-conditioners etc found in the building
automation environment.

 We now consider the object-classes specified in BACnet
for the example presented in the previous section. For
greater clarity and ease of understanding, for the objects
we have only included here the required attributes
(properties) of the classes. Optional parameters have only
been included when necessary. The reader should refer to
the protocol document to obtain the exhaustive list of
attributes of the class. In most cases the names of
attributes provides a very good idea of its definition.

 BACnet provides 18 different object-types or object-
classes to represent the communication specific
information at devices. There is no organization of the
classes specified in BACnet. Even though it is obvious that
there is inherent interconnection and a hierarchical
organization to the classes this has not been used, as the
class design methodology is not truly object-oriented.
Some of these object-classes have a large number of
properties common to them. For example, BACnet's
BinaryInput, BinaryOutput and BinaryValue objects share
a large number of common attributes and in fact should be
subclass of a super-class called Binary.

 All objects in BACnet have a key attribute uniquely
identifies the object Object_Identifier. The
Object_Identifier is encoded by 3 bytes which carry
information about the class and the instance number for the
object. There are two other attributes which are common
to all the classes : Object_Name and Object_Type.

 In order to better explain the philosophy used by BACnet,
we have introduced new classes and a hierarchical
structure to organizing the classes. There are three levels
at which the classes defined by BACnet can be organized.
These levels also correspond to the level of detail or
information which one can obtain about the device.

 At the highest level, one obtains boiler-plate information
about the device's communication organization. This is
shown in Figure ___ . At this level one can obtain

information about the vendor manufacturer, protocol
information and names of the other objects contained in
the device. The class which captures this information in
BACnet is called the Device class.

 At the second level are defined classes to categorize all the
data elements in the device, as shown in Figure __ . The
different classes are:

 1. Variable : All objects which are variables belong
to this class. This class further has three subclasses called
analog, binary and multi-state based on
 the type of variable.

 2. File

 3. Program

 4. Calendar

 5. Management : This class represents objects which
are used to manage other objects. These are the subclasses:

 i. Command : Objects in this class are used to
change the value of a group of properties in a set of
objects.

 ii. EventEnrollment : The objects in this class
contain information to manage events in BACnet system. It
provides a connection between the occurrence of an event
and transmission of notification message to one or more
recipients.

 iii. Group : A group object represents a collection of
other objects and one or more of their properties. A group
object enables one to specify a large number of other
objects in a shorthand manner.

 iv. Recipients : The recipient object contains
information required for the distribution of event
notifications. It is used to form a link between the
different kinds of events and list of destination devices
which should receive the notification. The event
notifications can be sent to different destinations based on
the time-of-day or day-of-week.

 v. Schedule : Schedule object is used to describe a
periodic schedule for writing specified values to specified
attributes of objects. This schedule can also contain
exceptions. The intent of this is not for real-time periodic
transfer of messages as required during process control.

 6. Loop : A loop object represents the externally
visible characteristics of any form of feedback control
loop.

 7. Proprietary : BACnet allows any vendor to define
a proprietary object, as long as it satisfies some compliance
conditions. This class is use to represent these objects.

 At this second level of detail, the detailed internal
structures of the major classes is not shown. Also not
captured are the associations between the different classes.

 The detailed structure of the classes is captured in the third
level of detail. The discussion of this level of detail is out
of scope for this paper.

 3. Application Services

 Five areas of application services are defined in BACnet.

 1. Alarm and Event Services

 2. File Access Services

 3. Object Access Services

 4. Remote Device Management Services

 5. Virtual Terminal Services

 These services are shown in Figure ___. Here we will not
go into the details of the services. An idea of what objects
are expected to support which services is provided in the
OMT diagrams. There are two very interesting services,
which are defined in BACnet : Who-Is and I-Am. All
objects are expected to support these services. These
services are used to locate objects in the system. Since all
objects support these services, one does not need to have a
localized object-directory to find objects in the system.
This substantially reduces the logic required to do object-
directory management.

 Networked devices require a common language in
order that they may interoperate with each other. This
common language is often referred to as a common
application language (CAL) and relies on the definition of
an application layer protocol. There are three critical
elements of acommon application language. First, the
communicating devices must share a common defintion of
the information elements that may be exchanged between
them. Second, these devices must share a common syntax
for describing the messages that are interchanged. Finally,
these devices must share a common definition of the
services or behavior that can be requested across the
network.

 In general, we see two approaches to developing
these application layer definitions. A common approach is
to combine the definition of behavior and information into

the structure of application layer messages that are passed
between devices. Although this approach typically
improves system performance since there are fewer steps in
interpretation of the messages exchanged, it sacrifices
extensibility in the sense that the semantics of a given
message are tied directly to its structure and that structure
has been fixed by the defintion. Another approach is to
provide an encoding step between the defintion of
semantics and the structure of the message. This is the
approach used by application layer standards such as MMS.
In fact, MMS is really only a framework within which an
application layer protocol definition may be developed.

 The need to define consistent information and
behavior at the application layer lends itself naturally to the
object-oriented paradigm found in some programming
languages. Within this paradigm, objects define both data
and action. The MMS framework defined in ISO 9506-1
and ISO 9506-2 employs some aspects of the object-
oriented paradigm. MMS defines abstract objects such as
variables, events, domains, and journals. For each abstract
object type, attributes are defined that provide information
about the object. MMS also defines an abstract set of
operations called services that may be performed on
objects of a particular type. Unlike the object-oriented
paradigm used in some programming languages, these
services are not strictly part of the objects themselves nor
is there an inheritence hierarchy as one would traditionally
find in C++ for example.

 The definition of a common application language
using MMS requires that the abstract defintions found in
MMS must be mapped into the particular domain of
interest. This mapping corresponds to the development of
what is referred to as a companion standard. A companion
 standard defines objects, attributes, and operations that are
consistent with the MMS framework abstractions but
which are relavent to a particular application domain. A
particular companion standard definition need not employ
all of the abstractions defined in the MMS standard but it
must be consistent with the MMS framework. A modelling
 framework such as that provided by OMT (Object
Modelling Tool) may be employed in this process. A
companion standard must also define how the objects and
operations that have been defined are mapped into
messages communicated between devices. A number of
encoding strategies have been proposed including BER
(Basic Encoding Rules) and PER (Packed Encoding
Rules). In general, these rules define how information is
mapped into the bytes that actually form the messages
communicated between devices. In choosing the encoding
rules for a particular application it is important to realize
that there is a trade-off that must be made betweenthe
power of the encoding scheme and the performance and
memory required in its implementation.

 OOM provides a tool whereby the “nouns” and “verbs”
that describe an IED and its functions can be created or
“abstracted”. The “nouns” or the information contained
within the IED are known as the “attributes” of the object
and the “verbs” or what the IED can do to the data are
known as the “methods”. For example, a relay will make
measurements of voltage and current and compute watts
and vars. The attributes for this one aspect of a relay
would be: Volts, Amps, Watts, and Vars. Subsequently,
one of the methods would then be “Compute”.

 In establishing the groundwork for abstracting the
numerous attributes and methods of the substation IED’s,
a model of the model or a “meta” model was created.
This “meta” model defines data that would be present in
any type of IED. There is a standard diagram that is used
to construct the object model which is illustrated in
Figure 2 via the “meta” model for an IED. The top line is
the name of the object being described which in this case
is a Virtual Device object. The middle section is the
“attribute” list and the bottom section is the “methods”
list. Clearly, there are more attributes and methods
needed to describe, for example, a relay object. The
beauty of the object modeling approach, however, is that
various attributes can be grouped in classes and then
linked back to the base model. This technique allows the
addition of new attributes without having to re-do the
definitions and assignments of the previously defined
attributes.

 Work is now in progress in the MMS Forum and the IEEE
Power System Relay and Substation Committees to define
standard or public object definitions. Common items
such as Voltage, Current, Watts, Vars, etc. can very
readily be agreed upon as far as a standard definition goes.
It is inevitable, however, that each manufacturer’s IED
will have attributes that are new or unique to that IED.
These “vendor specific” attributes, being otherwise
unknown to anything else in the system, need a mechanism
to define what they are.

 As such, the concept of “self defining data” was included
in the requirements document. In response to the standard
query “who are you?”, an IED would be required to
download its object definition, complete with a data
dictionary, to define any “vendor specific” attributes. In
this manner, an RTU function could automatically query
all IED’s in the substation and compile a standard list of
the information it is required to obtain.

 Implementation
 The current institutional efforts to define structure for the
new digital universe must be accompanied by the rapid
development of implementation vehicles if the industry is

to advantage, rather than succumb to the new technology.
If the current standards work is to have more than
historical value it must be accelerated to synchronize with
the pace of technological change, be viewed as a real time
consensus definition of best practice, and be connected to
an implementation path embraced by the utility industry.

 Utilities are driven by the need for increased productivity
in the emerging competitive environment, while at the
same time are undergoing personnel reductions which
weaken their ability to define and implement integrated
automation systems to improve productivity. Functionally
fragmented institutional structures are evolving to support
these integrated system goals, but the trauma of such major
changes further inhibits internal solutions.

 Figure 3 illustrates the principal elements of substation
integration and automation systems. The integration
function has, in today's environment, typically moved
outside of the utility box. The Integrator's challenge is to
define best fit / best value solutions tailored to the specific
utility's goals. In this consulting role the Integrator is
expected to develop specifications for open systems with
maximum flexibility for growth. His role can be expanded
to identify the supplier of products and services, layout the
program, manage the program, or take turnkey
responsibility, as well as providing ongoing support and
services.

 The IED suppliers provide protection or monitoring based
intelligent digital devices which are performance / cost
optimized in a rapidly changing competitive market. The
IED's also provide the data acquisition and control
interface with the power system at the substation.

 The Software suppliers provide custom software
interfacing, drivers and control functions to integrate the
IED's and provide the required system functions. The
Integration Equipment includes the substation control and
interfacing equipment such as Programmable Logic
Controllers (PLC's) Personal Computers (PC's), Remote
Terminal Units (RTU's), and associated communication
equipment.

 The value to the utility of being able to implement open
systems which meet current and future requirements with
interoperable elements is obvious. The alternative of a
single supplier providing all elements integrated into a
closed system has generally not been acceptable to the
utility industry. Several other approaches are emerging
which include:
• Combinations of the Software supplier and the

Integrator
• The IED supplier with the Software supplier
• The integration Equipment supplier with the Integrator

 and so on. In the absence of at least an appropriate de facto
standard embraced by all the often competing elements, the
solutions will continue to be somewhat cumbersome,
inflexible and costly.

 The two essential aspects of realizing the benefits of the
application of digital technology to substation and power
system automation are: First; a fast track commitment by
the utilities to sponsor and support the definition of open
standards for integration; and Second; the development and
utilization of Integrators who effectively implement these
emerging standards.

 One example of the possible ways in which this could be
accomplished would be the utilization of existing utility
organizations such as EPRI to establish system integrators
which, because of their utility sponsorship, would
implement the preferred standards, represent the utilities,
and strongly influence the support of the related hardware
and software suppliers. Various other proactive utility
initiatives would appear to be worth considering. The
screens for such initiatives might include:

• support by a significant number of utilities
• a possible equity position by the sponsoring utilities
• a strong linkage with the continuing "standards"

activity
• a strategy that allows customizing for individual

utilities
• operational control at the Integrator with an advisory

board representing the sponsoring utilities
• the assignment of key utility personnel to the

Integrator during a project.

 The alternative of waiting to see what becomes available
does not look very attractive for the utility.

Conclusions
The search for a common communication platform in the
utility industry is becoming acute being driven by the
proliferation of communicating Intelligent Electronic
Devices. A “top down” approach to solving the
communication problem has been sponsored by EPRI.
This effort has resulted in the creation of a requirements
document that is open to the public for review. A
summary of the basic requirements is presented. The heart
of the requirements document is the use of Object
Oriented Methodology as the tool to create a common
IED communication language. This effort will only be
effective if there is a concerted effort between the various
industry players to quickly bring this technology to
practice.

References

1. M. Adamiak, E. Weintraub, J. Schnegg, J. Burger, The
Integration of Protection, Control, and Monitoring is a
High Voltage Substation, Proceedings of the 46th
Annual Texas A&M Conference for Protective Relay
Engineers, April 12-14, 1993.

2. ISO 7498 - OSI Basic Reference Model

3. Rumbaugh et al, Object-Oriented Modeling and
Design, Prentice-Hall, 1991

4. Peter Coad and Ed Yourdon, Object-Oriented Analysis,
2nd edition, Prentice-Hall, 1991

