Using the PQM Power Quality Meter for single-phase three-wire systems

GE Publication Number: GET-8487

Copyright © 2005 GE Multilin

Scope

PURPOSE

SETUP

METER SETTINGS

The purpose of this application note is to explain how to use the GE Multilin PQM Power Quality Meter for single-phase three-wire systems.

The current and voltage inputs to the meter are connected as shown in Figure 1 on page 2.

The PQM setpoints are as follows. In the S2 SYSTEM SETUP $\Rightarrow \sqrt{ }$ CURRENT/VOLTAGE CONFIGURATION MENU, set:

PHASE CT WIRING: "PHASES A, B AND C"
PHASE CT PRIMARY: "200 A"
neutral current sensing: "OFF"
VT WIRING: "4 WIRE WYE / DIRECT"
NOMINAL DIRECT INPUT VOLTAGE: "240 V"
nominal system frequency: " 60 Hz "

FIGURE 1. Single-phase three-wire system wiring

Power Calculations with an Example

For three phase CT and VT wiring, the PQM meter calculates power in individual phases and sums to give total power as follows

$$
\begin{align*}
\text { total power } & =P_{a}+P_{b}+P_{c} \\
& =V_{a n} I_{a} \cos \phi+V_{b n} I_{b} \cos \phi+V_{c n} I_{c} \cos \phi \tag{EQ1}
\end{align*}
$$

Assume a 240 V single-phase three-wire system with load of 200 A and a power factor angle of 30° lagging. In this case, we have:

$$
\begin{aligned}
& V_{a b}=240 \mathrm{~V}, \\
& \text { load current }=200 \mathrm{~A} \text {, and } \\
& \text { phase angle }(\phi)=30^{\circ} \text { lagging }
\end{aligned}
$$

The calculated power using the single phase power equation is:

$$
\begin{align*}
P & =V I \cos \phi \tag{EQ2}\\
& =240 \mathrm{~V} \times 200 \mathrm{~A} \times \cos \left(30^{\circ}\right)=41.568 \mathrm{~kW}
\end{align*}
$$

To determine the power calculated by meter, we have the voltages measured by meter:

$$
\begin{aligned}
& V_{a n}=120 \mathrm{~V} \angle 0^{\circ} \\
& V_{b n}=120 \mathrm{~V} \angle 180^{\circ} \\
& V_{c n}=0 \mathrm{~V}
\end{aligned}
$$

Assume a CT ratio of 200:5 $=40$. The currents measured by meter are:

$$
\begin{aligned}
& I_{a}=5 \mathrm{~A} \angle-30^{\circ} \\
& I_{b}=5 \mathrm{~A} \angle 150^{\circ} \\
& I_{c}=0 \mathrm{~A}
\end{aligned}
$$

The power calculated by the meter is:

$$
\begin{aligned}
\text { total power } & =P_{a}+P_{b}+P_{c} \\
& =V_{a n} I_{a} \cos \phi+V_{b n} I_{b} \cos \phi+V_{c n} I_{c} \cos \phi \\
& =120 \mathrm{~V} \times 5 \mathrm{~A} \times 40 \times \cos 30^{\circ}+120 \mathrm{~V} \times 5 \mathrm{~A} \times 40 \times \cos 30^{\circ}+0 \\
& =20.784 \mathrm{~kW}+20.784 \mathrm{~kW} \\
& =41.568 \mathrm{~kW}
\end{aligned}
$$

