

GE Multilin

Technical Notes

Using the PQM Power Quality Meter for single-phase three-wire systems

GE Publication Number: GET-8487

Copyright © 2005 GE Multilin

Scope

PURPOSE	The purpose of this application note is to explain how to use the GE Multilin PQM Power Quality Meter for single-phase three-wire systems.
SETUP	The current and voltage inputs to the meter are connected as shown in Figure 1 on page 2.
METER SETTINGS	The PQM setpoints are as follows. In the S2 SYSTEM SETUP $\Rightarrow \oplus$ CURRENT/VOLTAGE CONFIGURATION MENU, set:
	PHASE CT WIRING: "PHASES A, B AND C" PHASE CT PRIMARY: "200 A" NEUTRAL CURRENT SENSING: "OFF" VT WIRING: "4 WIRE WYE / DIRECT" NOMINAL DIRECT INPUT VOLTAGE: "240 V" NOMINAL SYSTEM FREQUENCY: "60 Hz"

Power Calculations with an Example

For three phase CT and VT wiring, the PQM meter calculates power in individual phases and sums to give total power as follows

total power =
$$P_a + P_b + P_c$$

= $V_{an}I_a\cos\phi + V_{bn}I_b\cos\phi + V_{cn}I_c\cos\phi$ (EQ 1)

EXAMPLE

TOTAL POWER

Assume a 240 V single-phase three-wire system with load of 200 A and a power factor angle of 30° lagging. In this case, we have:

 V_{ab} = 240 V, load current = 200 A, and phase angle (ϕ) = 30° lagging The calculated power using the single phase power equation is:

$$P = V/\cos\phi$$

= 240 V × 200 A × cos(30°) = 41.568 kW (EQ 2)

To determine the power calculated by meter, we have the voltages measured by meter:

$$V_{an} = 120 V \angle 0^{\circ}$$

 $V_{bn} = 120 V \angle 180^{\circ}$
 $V_{cn} = 0 V$

Assume a CT ratio of 200:5 = 40. The currents measured by meter are:

$$I_a = 5 \text{ A} \angle -30^\circ$$

 $I_b = 5 \text{ A} \angle 150^\circ$
 $I_c = 0 \text{ A}$

The power calculated by the meter is:

total power =
$$P_a + P_b + P_c$$

= $V_{an}I_a\cos\phi + V_{bn}I_b\cos\phi + V_{cn}I_c\cos\phi$
= 120 V × 5 A × 40 × cos 30° + 120 V × 5 A × 40 × cos 30° + 0 (EQ 3)
= 20.784 kW + 20.784 kW
= 41.568 kW