

AF-400* GP
AC Adjustable Speed Drive 10-60 HP, 230 and 460V, 3-Phase, $60 / 50 \mathrm{~Hz}$

*TRADEMARK OF GENERAL ELECTRIC COMPANY, U.S.A.
(Photo MG-5649-8)

These instructions do not purport to cover all detals or variatoons in equipment nor to provide for every possible contungency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to General Electnc Company.

TABLE OF CONTENTS

Page
(ZENERAI. 7
Introduction 7
Recerving, Handling and Storage 7
Safety Recommendations 7
ins'rallation 8
Location 8
Mounting 8
Electrical Wiring and Interconnections 8
DESCRIPTION 9
Converter Module 9
DC Link Filter 9
Inverter Modules 9
Commutation Power Supply 10
Protection and Cooling 10
System Control 11
Driver Module 11
System Card 11
Regulator Card 11
Converter Card 13
Inverter Card 13
Phase Logic Card 14
Power Supply Card 14
Meter Card 14
Power Module Control Cards 14
ST'ART——P and CHECK—OUT 20
Test Equipment Required 20
T'estıng Safety Precautions 20
Power-off Continuity Test 21
Driver Selections 21
Inverter Phase Module Selection 21
Start-up Procedure 22
ADJUSTMENTS 23
TROU日LESHOOTING 25
Teat Equipment Required 26
Testing Safety Precautions 26
Fault Indication 26
Fault Indreating Lıghts 27
Driver Troubleshooting 27
Commutation Power Supply Troubleshooting 33
Inverter Module Troubleshooting 34
Converter Module Troubleshooting 35
Cherking SCR's 37
DC: Link Filter Troubleshootıng 37
Miscellaneous Troubleshooting Checks 38

TABLE OF CONTENTS
(continued)

Page
REMOVAL/REPAIR AND REPLACEMENT 42
Mechanical and Electrical Inspection 42
Power Module Repair 42
Converter Module Replacement 42
Inverter Phase Module Replacement 43
Converter Module - Press-Pak* Cell Replacement 44
Converter Module - Commutating Diode Replacement 47
Commutation Power Supply Replacement 47
Stud Mounted Cell Replacement - Converter Module 48
Press Pak* Cell Replacement - Inverter Module 49
Bypass Diode Replacement - Inverter Phase Module 51
Stud Mounted Cell Replacement - Inverter Module 51
Inverter Phase Module - Press-Pak* Main SCR/Stud-Mounted Commutating SCR 53
Filter Capacitor Replacement 54
Fan Replacement 54
STANDARD SPECIFICATIONS, OPERATOR'S STATIONS, OPTIONS AND AC MOTORS 54
Horsepower 54
Power Supply 54
Input Power 54
Overload Capability 55
Speed Range 55
Service Conditions 55
Speed Regulation 55
Functions of Basic Power Unit 55
Adjustments 55
Protective Features 55
Indicating Lights 55
Operator's Station (Basic Standard) 55
Options 55
AC Motors 56
AF-400* GP CATALOG NUMBER ASSIGNMENTS 57
Basıc Model Number by Horsepower 57
Catalog Numbers - Operator's Stations - Remote 57
Available Options - Model Numbers 58
General Purpose AF-400 Inverter Operating Notes 59
AF-400 GP INVERTER STANDARD DIAGRAMS 71
Outline - Power Unit 71
Elementary Diagram - Power Unit 72
Connection Diagram - Power Unit 74

TABLE OF CONTENTS

(continued)

「ag,

SPARE AND RENEWAL PARTS 75
Printed Circuit Cards 75
Sub-assemblies and Components (Not HP Related) 75
Spare and Renewal parts (HP Related) 76
Modification Kits 78
Remote Operator's Stations 78
Speed and Load Indicators 78
HOT LINE TELEPHONE NUMBER 79
COOSSARY OF TERMS 80

LIST OF ILLUSTRATIONS

Figure

Page

1 AF-400 Inverter Power Unit, Door Open, 60 KVA . 16
2 AF-400 Inverter System Block Diagram . 17
3 AF-400 Inverter Power Circuit . 18
4 AF-400 Inverter Functional Block Diagram . 19
5 Inverter Commutation Current Wave Shape 39
6 Motor Current Wave Shape . 39
7 Converter Firing Signals . 40
8 Inverter Firing Signals . 40
9 Pulse Transformer Card, Pulse Wave Shape . 40

11 AF-400 Inverter Phase Module with Press-Pak Cells 40 - 60 KVA,
230 or 460 VAC being withdrawn from its rack.
43

12 AF-400 Converter Module with Press-Pak Cells 40-60 KVA,
230 or 460 V AC standing on a table44

14 AF-400 Converter Module with Press-Pak Cells $40-60$ KVA,
230 or 460 V AC with front cover folded back . 45
15 AF-400 Converter Module with Press-Pak Cells 40-60 KVA, 230 or 460 V AC showing removal of heat sink clamp45

16 AF-400 Converter Module with Press-Pak Cells 40-60 KVA,
230 or 460 V AC showing removal of heat sink 46

17 AF-400 Converter Module with Press-Pak Cells 40-60 KVA,
230 or 460 V AC showing removal of Commutating Diode (DC) heat sink
46

AF-400 Converter Module with stud mounted cells $10-30 \mathrm{KVA}$,
230 or 460 V AC standing on a table $\ldots \ldots \ldots$
19 AF-400 Converter Module with stud mounted cells 10-30 KVA, 230 or 460 V AC with front cover folded back49
20 AF-400 Inverter Phase Module with Press-Pak Cells 40-60 KVA, 230 V AC standing on a table 49

LIST OF ILLLISTRATIONG

(continued)
Figut Page
21 AF-400 Inverter Phase Module with Press-Pak Cells $40-60$ KVA, 230 V AC with front cover folded back 50
22 AF-400 Inverter Phase Module with stud mounted cells 10.30 KVA , 230 or 460 V AC standing on a table 51
23 AF-400 Inverter Phase Module with stud mounted cells 10.30 KVA, 230 or 460 V AC with front cover folded back 52
24 AF-400 Inverter Phase Module with Press-Pak Main Cells and stud mounted, commutating cells $40-60 \mathrm{KVA}, 460 \mathrm{~V}$ AC standing on a table 53
25 AF.400 Inverter Phase Module with Press-Pak Main cells and stud mounted commutatıng cells $40.60 \mathrm{KVA}, 460 \mathrm{~V}$ AC with front cover folded back 53
20 AF-400 Adjustable Frequency Drive - GP Operatıng Notes, \& Elementary Diagrams, 36B590264AA Sheets 1 thru 7 59
27 AF-400 GP Inverter Outline Diagram, 36B605389AA 71
281 AF-4.00 (PP Inverter Elementary Diagram, 36D870007AA, Sheet 1 72
28 B AF-400 CP Inverter Elementary Diagram, 36D870007AA, Sheet 2 73
29 AF-400 GP Connection Diagram, 36D870007AA, Sheet 5 29

NOTE

In the text that follows, there will be a standard format for device descriptions. This format is shown below:
$X X X X \quad$ Signufies potentiometer, i.e. MAXS = Maxımum Speed
XPL Signifies Module Plugs, i.e., APL = Phase A-Inverter Module

TBX (XX) Signifies terminal board connections, l.e., TB2 (31) = Terminal Board 2, Terminal 31

GENERAL

INTRODUCTION

This instruction manual is structured around a general purpose drive. It is a guide for the installation, checkout and operation of the equipment furnished with general troubleshooting procedures for the basic drive. It is designed for the installation or maintenance electrical technician or engineer. In order to use the manual ellectively, the individual must be familiar with basic electronic terms and concepts and be able to use the required test equipment effectively.

Any special purpose equipment, as requested on the order, will normally be covered in the schematic drawings included with this package. These instructions do not purport to cover all details or variations in the equipment nor to provide for every possible contingency to be met in connection with the installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purpose, the matter should be referred to General Electric Company.

RECEIVING

The equipment should be placed under adequate cover immediately upon receipt as packing is not suitable for out-of-doors or unprotected storage.

All equipment is factory inspected before shipment and is shipped in good condition. Any damages or shortages evident when the equipment is received must be immedately reported to the commercial carrier who transported the equipment. If required, assistance may be received from General Electric Company, Speed Variator Products Operation, Erie, PA. When seekıng assıstance, please use the purchase order number, requisition number, serial number, and model number to help us in assisting you. Telephone (814) 455-3219.

HANDLING

Power units can be transported by lift trucks with the forks completely under the wooden shipping base. Crane lifting eyelets are supplied on the top of the unit for handling by a canne. A spreader bar must be used when lifting from above.

WARNING

IMPROPER LIFTING PRACTICES CAN CAUSE SERIOUS OR FATAL INJURY.

LIFT ONLY WITH ADEQUATE EQUIPMENT ANI) TRAINED PERSONNEL.

STORAGE

Thes equipment may be stored at ambent temperaturen of $-20^{\circ} \mathrm{C} 10+40^{\circ} \mathrm{C}$ for a period of uptoone year. Alr must be free of chemical and electrically conductive contammants, and other conditions must be such that no moisture condensation occurs in or on the equipment.

In addition, when a control that has been in operation in shut down for eather a hhost or extended period of times, al is recommended the envirommendal condotom he mannamed the same as when in operatom

It is recommended that space heaters or equivalent devires be used to maintain the equipment in its normal operating environment (temperature).

The electrolytic filter capacitors require "forming" after a six month or longer storage period without being energized. It is necessary to form the caparitor to prevent excessive leakage which can result in capacitor fallure. The procedure for forming the filter capacitor isgiven in step 13 of the Start-up Instructions.

SAFETY RECOMMENDATIONS

Only quahfied electrical and electronics persomel should install and maintain this equipment. They should read the complete instructions prior to applying power or troubleshooting the equipment. They should heed all WARNING and CAUTION notes or labels listed in this Manual or posted on the equipment. Definitions of label terms and colors are as follows:

WARNING

DENOTES OPERATING PROCEDURES AND PRACITICES THAT MAY RESULTT IN PERSONAL. INJURY OR LOSS OF LIFE IF NOT CORRECTI.Y FOLLOWED.

COLOR: BLACK OR WHITE LETTERING ON RED FIELD.

CAUTION

> DENOTES OPERATING PROCEDURES ANO PRACTICES THAT, IF NOT STRICTLY OBSERVFI, MAY RESULTIN DAMACETO, OR DESTRU(:TIONOF, THE EQUIPMENT.

COLOR: BLACK LETTERING ON AMBER FIELI).

INSTALLATION

LOCATION

AF-400* drive power units are suitable for most factory areas where other industrial equipment is installed. They should be installed in well-ventilated areas with ambient temperatures ranging from $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ to $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ and relative humidities up to 90%. It should be recognized, however, that since the life expectancy of any electronic component derreases with increased ambient temperature, reduction of the ambient temperature will bring about extended component life. For example, longer component life should be expected if the ambient temperature is held bet ween $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ and $30^{\circ} \mathrm{C}\left(87^{\circ} \mathrm{F}\right)$.
Proper performance and normal operational life can be expected by maintaining a proper environment for the drive system. Environments which include excessive amounts of one or more of the following characteristics should be considered hostile to drive performance and life:

1. Dirt, dusi and foreign matter.

2 Vibration and shock.
3. Mossture and vapors.
4. Temperature excursions.
5. Caustic fumes.
6. Power line fluctuations.
7. Filertromagnetic interference (noise).

WARNING

HOUHPMENT SHOULD NEVER BE INSTALLED WHERE HAZARDOUS, INFLAMMABLE OR !OMBUSTIBLE VAPORS OR DUSTS ARE PRESENT. SUFFICIENT CLEARANCE IN FRONT OF THE UNITS SHOUIDD BE ALLOWED FOR ACCESS FOR MAINTENANCE OR REPAIR

CAUTION

THIS EQUIPMENT IS DESIGNED TO OPERATE IN A NORMAL INIJUSTRIAL ATMOSPHERE. OPERATING RADIO TRANSMITTEERS NEARBY MAY CAUSE THE (ONTROL EQUIPMENT TO MISOPERATE. IT IS RECOMMENIED THAT RADIO TRANSMITTERS NOT BE OPERATED WITHIN THE VICINITY OF THE (:ONTROL EQUIPMENT WHEN THE PANEL DOORS ARE OPEN, NOR AT ANY TIME WITHIN THE IONFINES OF THE POWER CONTROL ROOM.

MOUNTING

POWER UNIT

The standurd pawer unu in $500^{\prime \prime}$ bigh, $25^{\prime \prime}$ wade, $20^{\prime \prime}$ deep, NEMA I curlosure momited on I I" hagh hate 'Total height equals 6)" Casen may be bolted down using . $3 / 8^{\prime \prime}$ diametes mounting bolt or studs through holes provided in hase feet. Cases may be bolted to a wall through holes provided in the top flange Conduit entry openings with removable rovers are provided in the top and bottom of the case. See Fig. I. If studs are cast in floor, they should extend 3 1/2" mmimum above floor. Condult entry openings through the base are fitted with removable sheet steel covers. Other conduit entry area is avallable through the top of the case.

* Trademark of General Electric Company, U.S.A

CAUTION

IF CONDLIT ENTRY OPENINGS ARE TO BE CUT IN THE TOP OF THE CASE, ADEQUATE PRECAUTIONS SHOULD BE TAKEN TO PREVENT METAL PARTICLES FROM ENTERING DEVICES AND COMPONENTS

OPERATOR'S STATION

The Operator's Station must be disassembled for mounting and wiring. First, remove the screws securing the cover to the Operator's Station enclosure and then remove the cover (with control devices mounted on the cover) from the enclosure.

When using either rigid or thin wall conduits, it is generally easier to attach the unit to the end of the conduit before locating and installing the mounting screws.

Mount the Operator's Station on any firm, reasonably flat, vertical surface by means of mounting holes in both top back and bottom back of enclosure. The Operator's Station is suitable for either wood screws or No 10 machine screws.

AC MOTOR(S)

A separate instruction book is provided giving information on location, conduit location and mounting of the motor(s). The motor(s) should be mounted on the driven machıne (or as appropriate for the installation) before proceeding with wiring, set up and adjustment.

ELECTRICAL WIRING \& INTERCONNECTIONS

All wring shall be in accordance with the National Electrical Code and be consistent with all local codes. All internal electrical connections between components in the power units are made at the factory. When installing AF. 400 drives, all connections should be checked for tightness. Connections may become loose in shipping or storage. A diagram showing the connections between the power unit and the related components is furnshed with the equipment. All terminath to which the external connections are to be made are numbered on the diagram. The equipment should be wired as per the elementary diagram and verified by continuity tests It is recommended that as each connection or wire is connected to the equipment, it be checked off on the elementary diagram.

WARNING

ALL MOTOR BASES AND EQUIPMENT ENCLOSURES MUST BE CONNECTED TO THE FACTORY OR FACILITY GROUNDING SYSTEM.

MOTOR(S) CONNECTIONS

The motor leads should be connected for the drive nameplate voltage rating according to the connection diagram plate on the motor (s). Connecting wire sizes and motor protection should be selected in accordance with NEC Standards based on the motor(s) nameplate data. Be sure to connect motor thermal switch (if supplied) back to the power unit. Tape all motor connections.

POWER UNIT CONNECTIONS

Electrical codes generally require the use of a fused disconnecting switch or crrcuit breaker in the AC power line ahead of the power unit and transformer (if used). The disconnecting switch and fuse (or circuit breaker) should be selected in accordance with the National Electrical Code and/or local code requirements based on the power input data on the power unit nameplate. If any additional relays, solenoids, brakes, etc., are added to the system, R.C. suppression networks must be added across the coils, (.5uf, 220 ohms @ 115/230V).

OPERATOR'S STATION CONNECTION

Using the elementary diagram, make all the required wiring connections bet ween devices in the Operator's Station and the connections to the power unit. Reassemble the Operator's Station. Carefully dress the interconnecting wire into the back of the station so that the device assembly may be installed. Keep the wires away from sharp edges and do not force the device assembly into place. Replace the station cover and secure with cover retaining screws.

DESCRIPTION

The AF-400 is an adjustable frequency AC motor drive designed for industrial applications. Either single motor or multi-motor operation from a single power unit can be accomplished. Adjustment of motor speed is achieved by changing both motor frequency and voltage. This is accomplished in separate sections of the drive, since the AF-400 is a variable voltage DC link type of inverter.

The various modules and components to be described are physically located in the AF-400 power unit as shown in Figure 1. These modules and components are also shown in the system block diagram of Figure 2. Following, is a
description and operating explanation of each system block, starting with the power blocks and finishing with the control blocks.

CONVERTER MODULE

The converter module is a three-phase, full-wave controlled rectifier which converts the incoming three-phase AC: power to variable voltage DCpower. The six SCR converter is shown in more detail in the power circuit of Figure 3. The SCR snubber circuits (not shown) act to protect the converter SCR's against voltage transients. The converter module also contains the commutating power supply (card) and the commutating feedback circuitry described below. The converter DC output by adjusting the firing point of each SCR relative to its AC supply phase voltage. The resultant $D C$ output voltage, therefore, contansa six times AC supply frequency ripple component of voltage This ripple voltage must be filtered to improve the wave-form before being applied to the inverter section.

DC LINK FILTER

An iron core reactor Ll and a bank of electrolytic capartor, Clact as an LC filter in the DClink, as shown in Figure 3. In addition to filtering the output of the converter, it also prevents inverter commutation transents from bermg applied back to the converter The Cl capartor dhatartolo unpply motor reartive power.

INVERTER MODULES

The three-phase inverter consists of three identical singlephase inverter modules, as shown in Figures 2 and 3. Each module consists of two inverter SCRs, two commutating SCRs, two bypass diodes and an LC commutating corcuit. Output phase A (Tl) of Figure 3 will be described, since all three phases operate in an identical manner, except for being displaced by 120 degrees in phase relationship. For simplicity, only Phase A commutating circuit is shown.

The AC motor lead T'I is alternately connected to the positıve P3 DC bus or the negative N2 DC bus, by inverter SCR's ISP or ISN, respectively. The frequency that terminal Tl is alternately connerted to the two DC: potentials is the fundamental frequency applied to the AC: motor, which determines its speed.

Although an SCR can readily be turned on by applying a firing signal to its gate, it must be commutated off by supplying an alternate path for the current which was flowing through the SCR, and by applying a small reverse
voltage to the SCR for a short period of time. This is ar complished by means of the commutating SCR's CSP and CSN, and by the commutating reactor LCand commutating rapartor CC.

At the tume when inverter SCR ISP is to be commutated off, capacitor CCis charged such that the Tl side is positive. When commutating SCR CSP is fired, the motor current flowing through ISP is diverted to the alternate path of CSP, CLP, LC and CC due to the voltage charge on CC. When the commutating current in this alternate path exceeds the motor current, no more current exists in ISP. As capacitor CC discharges further, the excess commuating current (above the motor current level) flows through the L.P and diode DP back to CSP. The voltage drop across DP produces a small reverse voltage across ISP to cause it to return to its blocking or off state. Therefore, for successful commutation, the commutation current must exceed the motor current for the amount of turn-off time required for the SCR. In order to minimize this time and the commutating energy required, special inverter grade SCR's are used which have a short turn-off time.

The commutating current pulse takes the form of a half"ycle sine wave because of the interaction of capacitor CC with reactor LC. After the commutating current peaks and tarts dimmshing, the charge on capacitor CC reverses, and the energy stored in reactor LC charges CC up in the opposite direction. At the point in time when the commutating current falls below the level of the motor current, the current in diode DP goes to zero and the potential of the TI motor lead changes from the inverter positive bus P3 to the negative bus N2 so that diode DN can furmsh the motor current. The above action occurs if the oncoming inverter SCR ISN is not fired before this point in tume If ISN is fired earlier, the transition of Tl from positive to negative bus will occur earlier in the commutation interval. In any case, capacitor CC becomes charged up in the opponte direction (Tl side negative) at the end of the lis' ${ }^{\prime}$ commutation interval. It is now charged corrertly to commutate off inverter SCR ISN when commutating SCR CSN is fired. This commutating action w the adme a the one just described. At the end of each commutating interval, the commutating SCR is commutated ofl by the charge on capacitor CC producing a reverse voltage to the commutating SCR which had just been condut ting.

The four leg reactors, CLP, CLN, LP and LN act in conjunction with the SCR snubber circuits (not shown in Figure 3) to limit dv/dt and protect the SCR's against voltage transients The leg reactors also serve to limit current if an inverter fault should occur.

The commutation losses, although small in relation to the total commutation energy, must be replaced in order to keep the commuation capasitor charged up to the proper voltage These losses are replaced from the variable voltage DC hink (P 12 to N 2) when it is near its maximum value. The amount of energy replaced, and thus the level of the rommutation capacitor voltage, is determined by the firing point of the oncoming inverter SCR in the commutation losses are replaced from another source, the commutation power supply.

CORAMUTATION POWER SUPPLY

This card contans three diodes and two resistors (R3 and R.4). It is located in the converter module (lower left hand rear). These devices are all relatively small since the commutating losses this card furnishes are a very small percentage of the drive rating.

The diodes, in Figure 3, form a three-phase, half-wave bridge which operates in conjunction with the negative $S C R$ portion of the converter (1SN, 2 SN and 3 SN) to provide a constant voltage bus relative to DClink bus. This DC supply is filtered by resistor R3 and capacitor C2.

The amount of energy furnished by the commutation power supply to each inverter phase commutation circuit depends, on the level of the DC link voltage and on the point in the commutation interval when the appropriate oncoming inverter SCR is fired Since the energy loss per commutation 15 small, the losses are replaced only every other commutation in each phase; that is, only during each positive inverter SCR commutation in each phase. The driver regulates the commutating current and voltage over the whole DC link voltage operating range, irrespective of how much of the commutating losses are supplied from the commutating power supply or from the DC link.

PROTECTION AND COOLING

Drive short carcuit protection is provided by current limiting uses in the ACsupply. An incoming circuit breaker can be supplied (if ordered) to provide both AC disconnection and short circuit protection.

Power unnt cooling is provided by a fan which is mounted at the bottom of the power unt case, as shown in Fig. l. A thermoswitch, which opens on an overtemperature condition, is placed in the cooling air stream to detect fan falure. This switch may be connected enther to shut down the drive or sound an alarm.

SYSTEM CONTROL

The system control and associated operator's devices will vary considerably depending on the application of the drive. Refer to the system elementary diagrams and instructions for description of the AF-400 general-purpose drive. See drawing 36B590264AA, sheets 1 through 7.

DRIVER MODULE

The driver takes the operator and system control commands and translates them into SCR firing signals to the various power modules to obtain the commanded drive operation. It makes use of several voltage and current feedbacks to monitor the commanded operation, and to protect the drive from misoperation and fault conditions. It contains adjusting means to provide the desired operating performance. It also contains indicatıng lights to provide visual indication of operating or fault conditions. Finally, it provides a number of signal readouts to alert the system control of various operating and fault conditions.

The driver rack shown in Figure 1 contains five control cards plus a power supply card. The control power transformer (TX1) is located on the commutated capacitor panel directly below the ventilating fan. In addition, the optional meter card can be provided (if ordered) for drive set-up and diagnostics. All cards are plug-in type for ease of replacement. Interconnections between driver and all power modules is by wire harnesses which plug into receptacles at both ends. Inputs and outputs are on terminal boards located on the bottom front of the commutating capacitor panel. See connection diagram for the inverter, 36D870007AA, Sheet 5 for inputs, and outputs, and for card layout and interconnections.

A functional block diagram of the driver is shown in Figure 4. A more detailed description of the driver functions on each card, plus signal flow, is given under the following card headings. Also refer to the "Driver Notes" on the driver elemenatry diagram for detailed information on mputs, feedbacks, adjustments, readouts, etc.

SYSTEM CARD

The system card consists mainly of logic elements, and acts as the logic interface between the system control and the driver.

The Start-Stop logic insures that starting occurs at minimum frequency and voltage, and that acceleration to the reference input is through the timed acceleration crreuit. Stopping is accomplished by first decelerating at the set timed rate untul a low voltage level is reached, at which time the inverter is stopped.

A DMF input provides a special decelerate to minimum frequency operation, from the set reference level, without stopping the inverter, the deceleration can be connected to the inverter at this minimum frequency operating level without disturbance, and will then be accelerated to the reference level at the set timed rate when the DMF signal is removed.

The minimum voltage and frequency detection logis contained on this card provides an MVFR signal readout to alert the system control when this drive condition is reached. A Run R readout provides a signal dependent on whether the inverter is operating or in a stopped condition. An IF indicating light on this card gives a visual idea of inverter operating frequency by its blinking frequency.

If a fault shutdown of the drive occurs due to any cause, the FTR readout provides a signal for the system control. Resel of the fault logic and fault indicating lights will normally occur if a normal stop operation is accomplished. However, if a separate fault reset operation is desired in addition to the STOP operation, the XFR input can be used for this purpose.

An inverse time overcurrent trip function, plus trip indicating light ITOC, is provided to shut down the drıve This operates immediately for overcurrents above 175 to 200% of rated current. For overcurrents where the current limit function on the Regulator rard is limiting, the shutdown will occur in 15 seconds to 1 minute after current limitıng begins, depending on the overrurrent level.

If synchronization of the inverter frequency to another frequency is desired, a SYNC signal input will tause the inverter frequency to change from the reference level to the external frequency level, and to lock into that frequency. A digital discriminator compares the inverter frequency with the external frequency, and provides logis: signals to the Regulator card to cause the inverter frequency to be synchronized to the external frequency in the correct phase relationsho. When phase and frequency lock-in is achieved, a SYNC indicatmg hght on the card lights and an SR inverter synchronized readoul signal is provided. Note: This feature is not required for CP, General Purpose drives.

REGULATOR CARD

The regulator card contains mainly analog regulating circuitry plus adjustment potentiometers in the driver.

A midpoint control voltage level (+10 volts) is generated on this card to provide a midpoint around which the internal regulating control can swing both positive and negative. However, all input and readout control signals are relative to the control power common potential.

This card accepts the analog reference input and, except when this signal is clamped at zero or some other level by the start-stop or other logic on the System card, applies it to the linear timing circuit. This function provides separately adjustable umed acceleration and deceleration to or from the set reference level, or to a new reference level. The tuming is adjustable from 5 to 50 seconds for a maximum reference change in either direction. A substantially faster acceleration or deceleration time than the setting can be mittated by an FR logic signal from the System card.

An adjustable motor current limit function is provided to override the analog reference if motor current exceeds the rurrent limit setting This setting can be adjusted from 60% to 150% of rated drive output current. A current limat tahality potentometer CLST is adjusted depending on the motor and load inertia to obtain stable current limit operation. The analog reference, linear timing and current limit functions are all bypassed when the inverter frequency in synchromzed to an external frequency by means of logic on the System card. However, the output level of the linear timing corcuit then is determined by the synchronized frequency, such that when synchronized operation is emded, the drive will return to the analog reference level at the set linear time rate.

NOTE

THIS FEATURE IS NOT A REQUIREMENT FOR GP, (;ENERAL PURPOSE DRIVES

The remultant RFV output signal is fed to both the voltage regulator and the frequency generator in two separate paths.

The reference to the voltage regulator is affected by the adjustment of three potentiometers. The V / Hz potenthometer provides a vernier adjustment of the volts per herta of the inverter within $+15 \%,-5 \%$ of nominal. The voltage boost potentiometer VBadjusts the fixed amount of voltage which 15 added to the inverter, irrespective of frequency, to overcome the motor IR drop. It is adjustable from zero to 7% of rated voltage The third adjustment, the voltage limit potentiometer VLIM, is an initial set-up adjustment whirh prevents the converter from turning rompletely on and saturating. This adjustment limits the maximum inverter AC output voltage to be slightly less than the AC supply voltage. This function keeps the tability-slowdown control (described later) in its
regulating range, and is also important in limiting the neverter voltage when motor transfer from inverter to AC supply is done. (Not required on GP, General Purpose drives)

The amount of IR compensation required is dependent on the amount of motor torque required to start the driven marhinery and to run at low speeds.

The voltage regulator compares this modified reference with a feedback signal propertional to converter DCoutput voltage which is obtaned from the Converter card. The output of the voltage regulator is then fed to the Converter card as the reference signal to the phase control.

The other path of the RFV reference signal to the frequency generator is affected by the adjustment of two potentiometers and a jumper selection. The MINF meter adjusts the inverter minmum frequency from 3% to 12% of set base frequency. For RFV reference levels below the set minimum frequency level, only inverter voltage is decreased. The $B F$ potentiometer adjusts the inverter base frequency over a minmum 2 to 1 range within either of the three base frequency ranges, 37.5 to $75 \mathrm{~Hz}, 75$ to 150 Hz , or 150 to 300 Hz , selected by the jumper on the regulator card. An external base frequency adjustment potentiometer may be connected to modify the card setting by as much as plus or minus 50%, within the 300 Hz maxımum frequency rating.

The frequency generator takes the analog frequency voltage signal and converts it into a pulse train whose frequency is 6 times the desired fundamental motor frequency. This frequency signal is the fed to the Inverter card. The analog frequency voltage signal input to the frequency generator is also used to provide the FVR frequency voltage readout, which is a voltage signal proportional to actual inverter frequency.

The stability-slowdown control provides the following three functions:

1. Provides stabilizing for motors at their underdamped operating points
2. Overrides the frequency reference, when it calls for substantially faster than motor coast slowdown, to keep the volts $/ \mathrm{Hz}$ applied to the motor within normal limits.
3. Provides system stabilizing during slowdown and current limit operation

The stability-slowdown control is only effective during analog reference operation, being locked out when the inverter frequency is synchronized to an external frequency.

CONVERTER CARD

The Converter Card controls the firing of the converter SCR's to obtain the correct DC link voltage to be applied to the inverter.

The three AC supply phase voltages are fed to this card through high impedance isolating resistors contained in the wire harness. The Converter card isolating circuits produce three voltage signals equivalent in phase relationship and magnitude to the AC supply phase to neutral voltages. These signals are used in the phase control to determine the correct firing points of the six converter SCR's. They are also used to detect incorrect phase sequence or loss of one or more phases, which produces a PS/LOP light indication and prevents drive operation under these conditions.

The phase control takes the Regulator card voltage regulator output and uses it in conjunction with the three $A C$ line signals to generate the six converter SCR firing signals. These six firing signals are modulated by the firing oscillator signal from the Inverter card to produce pulse train signals, which are amplified and fed to the Pulse Transformer card in the converter power module. The actual amplified firing signals are fed from a delayed firing supply from the Inverter card which delays firing signal transmission until the control has settled down after driver energization.

The converter output voltage is fed back to this card through high impedance isolating resistors in the wire harness. The isolating circuit produces a converter voltage feedback signal which is fed to the voltage regulator, on the Regulator card.

The DC link voltage applied to the inverter is fed back through high impedance isolating resistors in the wire harness. Its isolating circuit produces a link voltage feedback signal which is fed to the stability-slowdown circuit on the Regulator card and to the minimum voltage detection logic on the System card. It is also used to detect DC link over voltage, which produces a LOV light indication and an immediate drive shutdown.

Converter firing shutdown, after a fault is detected, occurs in two steps. The first step is an immediate phase back of firing signals to the maximum retard condition to quickly reduce converter output current to zero. The second step occurs about 0.1 seconds later when all firing signals are locked out to stop converter operation.

INVERTER CARD

The Inverter card controls the inverter commutation process and provides fault detection and inverter shutdown logic.

The six times fundamental frequency pulse train generated on the Regulator card is used to intiate each commutation interval, since there are six inverter commutations per cycle. The commutation control generates the logic signals which are fed to the Phase Logic card to accomplish the following inverter firing sequence during each commutation interval:

1. Stops firing the inverter SCR to be commutated off.
2. Fires the proper commutation SC.R to begin the commulation process.
3. Intiates firing of the proper oncoming inverter SCRs at a point sometıme after the midpoint of the commutation interval, dependent on the commutation current regulator.

A jumper on this card sets the correct commutation timing. This jumper placed on the 230 V AC or 460 V AC position depending on the equipment rating.

The commutation current regulator affects the commutation interval firing in order to mantan the commutation capacitor voltage within the desired limits over the whole inverter operating range for proper SCR commutation. This is accomplished by monitoring the commutation current feedback from the Current Feedback circuit in the converter module. The current peaks are compared to a desired level and the regulator then initiates earlier or later firing of the oncoming inverter SCRs in the commutation interval to control the amount of energy added to the inverter commutation circuit. If the commutation current and voltage become too high because of excessive motor current or crrcuit misoperation, a commutation overcurrent detection circuit produces a COC light indication and an immedate drive shutdown.

The pulse train oscillator on this card produces a pulse frequency which is used to modulate the continuous liring signals generated on the Converter and Phase: Logic cards The resultant firmg signals are then apphed to pulsetranslomens in the power modules to ohtain swolation al the control from the perwer.

The delayed firing supply on this card is used to provide firing signal power on the Converter and Phase Logie cards This supply is not energized until approximately 1 berond
dflei driver control power is apphed so that the rontrol logn can become operative before any SCR firmg is poushle If the delayed firing supply voltage goes below a et level, an immedtate drive shutdown is produced and the comlrol undervoltage light CIV will light. If the main +20 volt control volage goen below approximately 18 volts, it atho producen an mmediate drive shutdown and CLVV light undration In addition the delayed firing supply is locked out for control voltages under the shutdown level so that madvertent SCR firmg cannot orcur

A short circuit fault in any phase module of the inverter will produce a large discharge current from the DC link folter raparitor This is detected by current transformer C.TC and fed back to the Inverter card. When this current exceeds a set level indicating an inverter fault has occurred, an immediate drive shutdown is produced and the Inverter Fault Light IOC. will light. The immediate drive shutdown produced by either an inverter fault, a control undervoltage, a commutation overcurrent, or a DC link overvoltage causes all normal inverter firing to be locked out and produces a firmg of six inverter SCRs by means of uguals supplied to the Phase Logic card. This mmediate nhuldown ardon, however, always causes the inverter fault hyht IOC: to light when any of the other three faults deseribed above occur.

The overfrequency trip function provides a drive shutdown and lOF light indication if the inverter frequency exceeds a aet hmit due to any reason. This overfrequency limit is wectable by means of an inverter card jumper to the enther $7.5 \mathrm{~Hz}, 110 \mathrm{~Hz}, 16.5 \mathrm{~Hz}, 275 \mathrm{~Hz}$ or 400 Hz .

PHASE LOGIC CARD

The Phase Logic card translates the Inverter card logic signals into three-phase logic to control the firing of all commutation and inverter SCRs.

The six times fundamental frequency logic from the Inverter card iq translated into three-phase, full-wave logic in a pontlive ABC phase sequence by the Phase Logie card. 'Thu the whate logie 14 uned to sequentrally steer the six tmen per cycle'commutation logic from the Inverter card to the proper phase SCR firing logic dependent on the threephase sequence.

The SCR firing pulse generators take power from the delayed firing supply on the Inverter card to produce firing pulses for six inverter SCRs and six commutating SCRs in the three inverter phase modules. The firing signals for the 41x inverter SCRs are half-cycle long signals which are modulated by the firing oscillator pulse train from the liverter card, whereas, the other nine firing signals are single short time pulses.

The fault shutdown logic produces an immediate inverter shutdown in response to fault logic signals from the Inverter card. This logic locks out all normal inverter firing signals and produces a firing of the six inverter SCRs to produce a shoot-through commutation of the whole inverter.

POWER SUPPLY CARD

A 26 volt winding on the control power transformer provides single-phase AC power to the Power Supply card. A full-wave rectifier and filter capacitor on this card provides unregulated DC power to the series pass power transistors which produce the regulated +20 volt control power output. Short circuit protection is provided by a fuse while output overvoltage protection is provided by an overvoltage detection and crowbar circuit.

The power transistors are controlled by a regulator circuit which provides accurate +20 volt regulation from a reference zener. This zener also provides the reference for the control undervoltage trip function on the Inverter card.

This card has the provision for DC input supply power for $A C$ power outage ride-through.

METER CARD

The optional Meter card fits into a prewred driver receptacle and is a valuable tool for drive set-up and diagnostic checkout.

This card contains a 19 position signal selector switch for connecting to the meter and test posts any preselected and prewired signals or a back plane probe and its associated buffer circuitry is to enable reading almost all card terminal signals without affectıng driver operation. This card also contains a 3 position scale selector switch plus the necessary circuitry to enable the meter to read either $A C$ rms, DC average, or the peak reading of any signal. These functions provide this card with the capability of reading inverter output link peak commutating current, and peak levels of short time logic pulses, as well as the normal analog signals.

POWER MODULE CONTROL CARDS

The following two cards are mounted in the power modules and act as an inteface between the driver and the power module.

CURRENT ISOLATOR CARD

This card is located in back of the driver module and connected with spade terminals to terminal board TB3.

This card contains an oscillator for switching the incoming DC current signal to AC . It also contains a transformer which provides isolation between the line voltage side and the control side. The current feedback potentiometer, CFA on the isolator card is normally set to make the current output (LCS) equal to 1 volt RMS with rated output current.

The inverter commutation current transformer is connected to a rectifier bridge and specified loading resistor to provide a unidirectional voltage signal. This signal peak is 12.5 volts for the desired commutation current level of each inverter rating. An additıonal negative commutation current loading resistor is included so that the commutation current regulator will mainly regulate the positive commutation current in each phase.

PULSE TRANSFORMER CARDS

These cards are mounted on the converter and inverter phase modules and commutation power supply, one card being required for each pair of SCRs. Their major function is to provide voltage isolation between the driver control and the SCR power circuit.

Each card consists of two identical pulse transformer circuits. These provide current amplification of the actual SCR firing signals over the signals received from the driver. They also contain input nose suppression and selfprotection from abnormal loading.

The following two cards are mounted on the power modules and act as interface between the driver and power modules:

1. Pulse Transformer card with current feedback (193X389AAG01). This card is mounted on the front insulation cover of the converter power module.

NOTE

THE COMMUTATION POWER SUPPLY CARD IS LOCATED ON THE LOWER LEFT HAND SIDE OF THE CONVERTER POWER MODULE. THE PULSE TRANSFORMER CARD IS A SIX CHANNEL FOR FIRING SIX ISOLATED SCRS WITH EACH CHANNEL PROVIDING VOLTAGE ISOLATION BETWEEN THE DRIVER CONTROL AND THE SCR POWER CIRCUITS.
2. Pulse Transformer card (193X390AAG01). This card is mounted on the front insulation cover of each of the Inverter Phase Modules (Qty. 3). This card is a four channel for firing four isolated SCRs with each channel providing voltage isolation between the driver control and SCR power circuits.

Each card contains two identical pulse transformer circuits. These provide current amplfication of the actual SCR firing signals received from the driver. They also contain input noise suppression and selfprotection from abnormal loading.

The card on the converter module is also fitted with the commutation current feedbark circuit.

FIG I. AF-400 DRIVE POWER UNIT 60 KVA DOOR OPEN, WITH POWER MODULE

FIG. 3 AF 400 DRIVE POWER CIRCUIT

START-UP AND CHECK-OUT

Fivery AF-400 Inverter drive has been factory tested and is ready to operate, provided that the external power and control comections have been properly made and no shipping and installation damage has been sustained. It is recommended that the following step-by-step start-up procedure be followed to ensure proper operation of the rquppment.

WARNING

IF DOOR INTERLOCKS (IF SUPPLIED) ARE DEACTIVATED OR BYPASSED, EXTREME CAUTION MUST BE ISED. BE SURE TO RETURN INTERLOCKS TO OPERATING CONDITION AFTER START-UP OR TROIBLESHOOTING

TEST EQUIPMENT REQUIRED

The Lollowing listed equipment should be avalable during start-up and check-out. The first two items listed are rerommended for normal operation and maintenance

Meter Card - 193X48I ${ }^{\text {Col }}$
Volt-Ohmmeter - Digital preferred, 20K per volt min. input impedance.
(lamp-on Ammeter - Adjustable range up to 300 amp .
If the Meter card is not avanlable, an oscilloscope (preferably dual trace) will be required.

TESTING SAFETY PRECAUTIONS

Certan precautions need to be observed in testing this equipment

All of the control in the driver, with the exception of the 115 volt AC supply to the Option card (when furmished), is at a low voltage level with respect to ground The control rommon is connected to the driver case which is connected to an earth grounding system. Any control circuitry on the driver side of the Pulce Transformer cards is also at the low voltage level.

All power modules, power components, power wirmg, and combol wirmg and components connerted to the power must be assumed to be at a high voltage to ground. The following safety precautions must be strictly observed when testing in the power area:

WARNING

ELECTRIC SHOCK CAN CAUSE PERSONAL INJURY OR LOSS OF LIFE WHETHER THE AC SUPPIY IS GROUNDED OR NOT, HIGH VOLTAGES TO GROUND WILL BE PRESENT AT MANY POINTS THROUGHOUT THE DRIVE. CHARGED CAPACITORS REQUIRE AT LEAST ONE MINUTE DISCHARGE TIME TO 50 VOLTS OR LESS.

WHEN TESTING IN THE POWER AREA, TURN THE EQUIPMENT OFF WHEN CONNECTING OR DISCONNECTING THE TEST EQUIPMENT.

WARNING

GREAT CAUTION SHOULD BE OBSERVED WHEN INSTRUMENTS SUCH AS OSCILLOSCOPES ARE USED TO TEST LIVE (ENERGIZED) POWER CIRCUITS. THE INSTRUMENT COMMON LEAD SHOULD NOT BE CONNECTED TO ANY UNGROUNDED POINT IN THE SYSTEM UNLESS THE INSTRUMENT IS ISOLATED FROM GROUND AND ITS METAL PARTS TREATED AS LIVE EQUIPMENT. USE OF AN INSTRUMENT HAVING BOTH LEADS ISOLATED FROM THE CASE PERMITS GROUNDING OF THE INSTRUMENT CASE, EVEN WHEN MEASUREMENTS MUST BE MADE BETWEEN TWO LIVE POINTS IN THE CIRCUIT.

When testing in the control area, remember that these are low voltage circuits (20 volts) and can be damaged by improper test procedures.

CAUTION

DO NOT CONNECT POWER AND CONTROL, CIRCUITRY TOGETHER IN ANY TEST HOOKUP. THIS DEFEATS THE PURPOSE OF THE CONTROL, ISOLATION FUNCTION AND CAN DAMAGE THE: EOUIPMENT.

CAUTION

DO NOT REMOVE OR INSERT PRINTED CIRCUIT CARDS IN THE EQIIPMENT WHIIE POWER IS APPLIED THIS CAN DAMACE THE EQUIPMENT.

POWER-OFF CONTINUITY TEST

WARNING

VERIFY THAT THE MAIN THREE-PHASE AC POWER INPUT TO THE SYSTEM EQUIPMENT IS DISCONNECTED OR SWITCHED OFF.

Perform a point-to-point continuity test for all newly installed wiring and interconnection. Continuity is defined as $1 / 2$ ohm or less.

DRIVER SELECTIONS

These are two card selections and two driver terminal board selections which should be checked before starting up the drive.

NOTE

IF EITHER THE INVERTER CARD (193X476AAG01) OR THE CONVERTER CARD (193X477AAG01) IS REPLACED, THE NEW CARD SHOULD HAVE THE SAME PRESENCE OR ABSENCE OF ITS JUMPER AS THE CARD BEING REPLACED.

230/460V JUMPER ON INVERTER CARD

193476 (90 (or equivalent)
This jumper should be posstioned for 230 V or 460 V AC to agree with the drive rating.

OVERFREQUENCY TRIP JUMPER ON INVERTER CARD

The jumper selects the upper inverter frequency at which the drive will trip and shut down to prevent motor overspeed. The frequency trip levels are selected by placing the jumper in the appropriately marked socket position.

75 Hz frequency $\operatorname{tr} 1 \mathrm{p}-75 \mathrm{~Hz}$ socket position.
110 Hz frequency $\operatorname{trip}-110 \mathrm{~Hz}$ socket position.
165 Hz frequency $\operatorname{tr} 1 \mathrm{p}-165 \mathrm{~Hz}$ socket position.
275 Hz frequency trip -275 Hz socket position.
410 Hz frequency trip -410 hz socket position.

Consult your specific drive elementary diagram for proper jumper placement.

CAUTION

IN(ORRECTJUMPER JONNECOION OR DISCONNECTION WILL RESUIIT IN MALFUNCITION AND POSSIBLE DAMACE TO THE INVERTER

60 HZ JUMPER - ON CONVERTER CARD

193X477_ C 01 (or equivalent)
This jumper should be present on all drives supphed from 60 Hz AC power, and should be removed on all drives supplied from 50 Hz AC power

REGULATOR BASE FREQUENCY RANGE JUMPER 75, 150, AND 300 HZ ON REGULATOR CARD

This jumper selects the inverter base Irequency range. It should the placed in the approprately mar hed jumper woekel position.

> Base Freq. Range of 37.5 to $75 \mathrm{~Hz}-75 \mathrm{~Hz}$ sorkel position.
> Base Freq. Range of 75 to $150 \mathrm{~Hz}-150 \mathrm{~Hz}$ socket position.
> Base Freq. Range of 150 to $300 \mathrm{~Hz}-300 \mathrm{~Hz}$ socket position.

Base Frequency is the trequency at wheh the inverter reaches full voltage and is adjusted by the BF potentiometer (on the Regulator card) within either of the above rangen Consult your specifie drive elementary diagiam for proper jumper selection.

CAUTION

IMPROPER JUMPER CONNECTION OR DISCONNECTION MAY RESULT IN DRIVE MALFUNCTION AND DAMAGE.

WARNING

IMPROPER JUMPER PLACEMENT MAY PRESENT AN EQUIPMENT OR PERSONNEL HAZARD DUE TO MOTOR OVERSPEED.

INVERTER PHASE MODULE SELECTION

A potentiometer adjustment (CFA) on the current isolator card provides the means to calibrate the link-current feedback signal. This card is located in back of the "pull out" driver card rack. The CFA potentiometer is normally adjusted, such that the LCS signal reads 1.0 volts RMS with rated load at base frequency. This would normally ocrur with 100 millivolts across the shunt ISH.

START-UP PROCEDURE

Perform the following step-by-step procedure in the sequence below. If during this procedure a problem is encountered, refer to the Troubleshooting Section of this manual.

1. Before applying AC supply power to the drıve, verify that it is the proper voltage, phase and frequency as denoted on the equipment data nameplate.
2. Disconnect the three-phase output cables from the drıve terminals $\mathrm{Tl}, \mathrm{T} 2$ and T 3 , or inactivate the output contactor if one is provided.
3. Disconnect control wire harness APL, BPL, CPL and DPL from their plug receptacles at the converter and phase modules.
4. Using a volt-ohmmeter selected to the Xl ohms scale, check that no short exists between DC link busses P2 and N2. Also, check the three AC supply power fuses and all control power fuses to confirm that they are not blown.
5. Apply AC power to the drive.
6. Check the driver card indicating lights. Only the IF inverter frequency light should be indicating and it should be blinking at a low frequency. If the PL/LOP phase sequence/loss of phase light is mdicating. Check that the correct voltage is present on all three $A C$ supply power terminals $\mathrm{L} 1, \mathrm{~L} 2$ and L.3. If these are correct, the phase sequence is wrong. Disconnect the AC power, interchange any two cables, and repeat steps 5 and 6.
7. Check that the fan is operating properly and producing arr flow through the power modules. Refer to the sketch below and to labels on the air distribution chamber for correct operation.

If no rotation ocrurs, check if 115 V AC. is present between TB1 (AC 3) and $\mathrm{TBl}(\mathrm{AC} 2)$.
8. Set the driver reference input at zero. Check for zero reference voltage by selecting Meter card switch position 2, or measure the voltage bet ween driver terminal board points TB2(32) to TB2(48)

9 Interrupt $A C$ power to the drive, connect the DPL wire harness plug to the converter module and reapply AC power.
10. Check the driver lights again. Only the IF light should be on, blinking at a low frequency. Run through the Meter card selector switch positions 1 through 17 and compare these readings with the readings shown on the driver label mounted on the inside of the power unit enclosure door. This label is also included in the instruction book. The readings taken should compare with those given for the "Off Condition."

If a Meter card is not avanlable, use a volt-ohmmeter to check REF TB2 (32) to TB2(48), FVR TB2(44) to TB2(48), and the converter output voltage between P2 and N2. The P2 to N2 voltage should not exceed 30 volts DC for 230 volt AC drives or 60 volts DC for 460 volt AC drives, before the inverter is started
11. Press the drive "Start" pushbutton. Check driver lights and Meter card position 4, or P2 to N2 voltage. They should be the same as for step 10 .
12. Increase reference input to the driver slowly until the Pl to N 2 voltage reaches half of rated DC link voltage (150 volts DC for 230 volt AC drives and 300 volts DC for 460 volt AC drives). The Meter card positions 2 and 4 should both read 75 (7.5 volts between TB2(32) and TB2(48).

CAUTION

WHEN THE DRIVE HAS NOT BEEN OPERATED FOR6 MONTHS OR MORE, THE ELECTROLYTIC CAPACITORS IN THE FILTER CAPACITOR ASSEMBLY MUST BE RE_FORMED FOLLOW THE PROCEDURE [N STEP 13 IF FORMING IS REQUIRED.
13. If capacitor forming is required, increase the Pl to N 2 DC link voltage in the following steps, pausing for 5 minutes at earh step in the forming process

Operating Voltage Level		Operating Time
230VAC Drive	460VAC Drive	
200 Volts DC	400 Volts DC	5 Min .
250 Volts DC	500 Volts DC	5 Min .
300 Volts DC	600 Volts DC	5 Min .
(or at maximum reference)		

During each step of the forming process, check the voltage at the Q or midpoint of the seriesed capacitor asm. on (460 volt AC drives only). The difference between the P 1 to Q and Q to N 2 voltage readings should not exceed 5% of the P1 to N2 voltage, For example, at a Pl to N 2 voltage of 600 volts, the difference between the P1 to Q and Q to N2 voltages \therefore should not exceed 30 volts. If the Q midpoint varies more than 5%, refer to the Troubleshooting Section of this manual. In no case should more than 400 volts DC be applied across a single capacitor.
14. Press the drive "Stop" pushbutton and decrease the driver reference to zero. The DC link voltage between P2 and N2 (Meter position 4) should discharge down to less than 10% of maximum in about 30 seconds.
15. Interrupt $A C$ supply power to the drive, connect the APL, BPL and CPL wire harness plugs to the phase modules and reapply AC power.
16. With reference input to the driver at zero, press the driver "Start" pushbutton and check the driver card lights. Run through the Meter card positions 1 through 17 and compare these readings with those given on the driver label for "0 Ref. 0 Load."

If a Meter card is not available, use an oscilloscope to check the inverter commutation current feedback signals, at the CF connector point of DPL on the converter pulse transformer card. The peak voltage level of the higher commutation pulse in each phase should agree with the values given on the driver label, and the waveshapes should appear as shown in Fig. 5. The positive commutation current pulse is normally the higher since the negative pulse is attenuated on the Current Feedback card.
17. Slowly increase the driver reference input up to maximum while checking the inverter commutation current peak level of each phase, by means of selector position 9 on the Meter card, or by means of an oscilloscope as described in step 16 . The commutation current peaks should increase as
shown on the driver label, but should remain in the ranges shown.

Also, check that the base frequency is correct for your motor drive system and readjust if necessary. See Base Frequency in the Adjustments section for checking and adjustment instructions.
18. Press the drive "Stop" pushbutton and reduce the driver reference to zero. The inverter should decelerate down to about one-fourth of rated frequency and voltage, and then stop.
19. Interrupt the AC power to the drive. Reconnect the three-phase output cables to drive terminals T , T 2 and T 3 , or reactivate the output contactor, to connect the motor (s) to the inverter.
20. Reapply AC power to the drive. With reference input to the driver at zero, press the drive "Start" pushbutton and slowly bring the reference up to hall rated. Run through the Meter card positions 2 through 17 and compare these readings with those given on the driver label for " $1 / 2$ Ref., $1 / 2$ Load," If the motor loading is different than one-half of rated, the positions 7 and 9 readıngs will be different from those given.

If any Meter reading discrepancies exceeding 5% full scale (1.0) from those values given in the drive table are found, proceed to the Adjustments Section. If a Meter card is not available, use a clamp-on ammeter to read the inverter AC output current in each phase to check that they are balanced. Also, check the AC supply input currents to the converter to check that they are balanced.
21. Slowly increase the driver reference up to the maximum of 15 volts. Run through the Meter card positions 2 through 17 and compare these readings with those given on the driver label for "l Ref., I Load." Again, positions 7 and 9 readings will depend on the actual motor load.

ADJUSTMENTS

Although the drive has been adjusted in factory test, it is recommended that these adjustments be checked to determine if they are correct for your application and power system. The following sequence should be followed in checking and modifying the ten driver adjustments, all of which are located on the Regulator card. (The Voltage Limit VLIM potentiometer is located at the card top edge rather than the front edge, and is adjusted through the top
opering in the driver rack). Before starting, record the fartory adjustment positions of each potentiometer. The driver label mav be used for this purpose, and for any changes in adjustment that may be made.

NOTE

IF THE IORIVER RECOULATOR CARD IS REPLACED, ¿ET ALL. TKN POTENTIOMETER ARROWS ON THE NEW (:ARD THE SAME AS ON THE CARD BEING REPLACED THE FOLLOWING ADJUSTMENT PROCEDURE SHOULD THEN BE FOLLOWED TO CHECK THE ADJUSTMENT OF THE NEW CARD.

VB - VOLTAGE BOOST

This adjustment is dependent on the amount of motor torque required at speeds below about one-fourth of rated, or the amount of breakaway torque required. If motor torque requirements below one-fourth rated speed are less than 25% of rated torque, no voltage boost is required and VB should be wet fully counter-clockwise. For higher motor loading at low speeds, a certan amount of voltage boost is regured to prevent the motor from "pulling out" and stalling The amount of adjustment of the VB potentiometer from the CCW end depends on the amount of motor load torque at low speeds and type of motor (larger motors require less voltage hoost than smaller motors). Adjust VB only enough so that the motor(s) accelerates smoothly from rest.

IRC - IR COMPENSATION

Turming the IRC potentiometer clockwise will increase the output voltage proportional to the link current feedback, LCS. With the IRC pot fully counter-clock wise the voltage merease will be 10% of rated for LCS $=1.0$ volts corresponding to rated current.

IR compensation will normally only be required if the whating and low apeed running torque exceeds 100% of lated Again, the amount of IRC setting depends on both the amount of torque required and the type of motor.

Too much voltage boost or IR compensation will produce exceshe motor peak currents which will cause torque pulations of "iogenge" If this occurs at low speeds the VB and/or IRC setting should be reduced.

V/HZ - VOLTS/HERTZ

Operate the drive at a reference of 12 volts at driver [B2 (32) to T132(48) (reading of 12 on Meter rard position
2) Adjust the V/HZ potentiometer to obtain a DC link voltage betwern P2 and N 2 of 240 volts DC for 230 volt AC
drives and 480 volts DC for 460 volt AC drives. This corresponds to 12.5 reading on Meter card position 4.

The above volts/hertz setting should include the effects of the $V B$ voltage boost setting. If the $V B$ setting is changed, the volts/hertz should be readjusted to maintain proper motor excitation.

VLIM - VOLTAGE LIMIT (located at top edge card)

This is normally a factory adjustment and should not have to be readjusted. To check this adjustment, operate the drive at rated base speed (normally at a driver reference of 15 volts). Using the voltohmmeter, or any reliable rectifier type $A C$ voltmeter (but not an iron vane type), read the inverter output voltage between terminals T 1 and T 2 and compare it with the $A C$ supply voltage read with the same meter. The inverter output voltage should be 10 volts or less than the supply voltage for nominal 230 volt ACdrives and 20 volts less than the supply voltage for nominal 460 volt AC drives. If the voltage difference is less, turn the VIIM potentiometer counter-clockwise until the 10 or 20 volt difference is obtaned. If the voltage difference is greater, and the AC supply voltage is less than 240 or 480 volts AC turn the VIIM potentiometer clockwise until the 10 or 20 volt difference is obtained

If the AC supply voltage is above 240 or 480 volts AC the drive will not be in voltage limit (with rated reference and proper volts/hertz adjustment) so the voltage difference between AC supply and inverter output voltage will be greater than the 10 or 20 volts. The voltage limit function, therefore, only can be checked if a higher than rated reference is applied to the driver, when the $A C$ supply voltage exceeds 5% above the rated voltage.

BF - BASE FREQUENCY

With the driver reference at the rated 15 volts (TB2(32) to TB2(42) or Meter card position 2), adjust the BF potentimeter to obtain the desired motor base frequency. This frequency can be read by means of a frequency counter connected between driver TB2(52) (IPAD) and TB2(48) (COM). It can also be read to within $\pm 2 \%$ accuracy by connecting a digital voltmeter between TB2(44) (FVR) and TB2(48) (COM). The frequency is obtained by multiplying the voltage reading by 5 for the 75 Hz base frequency range, by 10 for the 150 Hz range and by 20 for the 300 Hz range. A third method of reading frequency, to within $\pm 5 \%$ accuracy, is by taking the Meter card position 3 reading and applying the 5,10 or 20 times multıplier just described.

MINF - MINIMUM FREQUENCY

Normally the MINF potentiometer is set at or near the counter-clockwise end for best starting of motors, especially if any breakaway torque is required. If a transformer is used between the power unit and the motor, the minimum frequency will have to be set higher to prevent transformer saturation. A higher minimum frequency can be obtained by turning MINF in a clockwise direction.

ATIM \& DTIM - ACCELERATION AND DECELERATION TIME

With the driver reference at the rated 15 volts, start the drive from rest and check the acceleration time and the Meter card position 10 reading. If the meter reading goes below 10 during acceleration, the drive is going into current limit, and it is probably desirable to increase the acceleration time by adjusting the ATIM potentiometer in the clockwise direction. If a Meter card is not available, the motor current can be read with a clamp-on ammeter to measure the acceleration load.

With the drive operating at rated speed, quickly adjust the driver reference to zero and check the deceleration time and the Meter card position 6 reading. If the meter reading goes above 10 before deceleration is completed, the drive is going into slowdown limit, and it is probably desirable to increase the deceleration time by adjusting the DTIM potentiometer in the clockwise direction.

If shorter acceleration or deceleration times are designed, the ATIM or DTIM potentiometers should be adjusted in the counter-clockwise direction, and the operation checked as described above. The minımum times obtanable, with the 5 to 50 second adjustment range, are limited by the current limit and slowdown limit control.

CLIM - CURRENT LIMIT

The percentage of rated drive output current at which current limit will occur can be approximated by the setting position of the $C I I M$ potentiometer, per the following table:

CLIM Settıng	CCW End	l/4 from CCW End	Mid- point	$1 / 4$ from CW End	CW End
\% Rated Current	50 to	75 to	105 to	130 to	155 to
175%	90%	120%	145%	175%	

CLST - CURRENT LIMIT STABILITY

This stability adjustment for current limit operation is dependent on the motor and load inertia, motor HP rating, and on the current limit setting. The correct setting of the CLST potentiometer can be determined by using the following table:

Load Inertia	CLST Setting for Motor HP	
	10 to 100 HP	100 to 400 HP
Negligible load inertia	CW end to 1/3 from CW end	1/3 from CW end to midpoint
Load inertia equals motor inertia	Midpoint to $1 / 3$ from CCW end	$\begin{aligned} & 1 / 3 \text { from CCW } \\ & \text { end to } 1 / 4 \\ & \text { from } C C W \text { end } \end{aligned}$
Load inertia equals 2 x motor inertia	l/4 from CCW end to $1 / 6$ from CCW end	1/6 from CCW end to $1 / 8$ from CCW end
Load inertia equals $5 \times$ motor inertia or greater	1/8 from CCW end to CCW end	CCW end

The setting ranges given in the table cover the current limit (CIIM) setting range, such that the CLST setting varies toward the clockwise end of its setting range as the CLIM setting is adjusted towards its clockwise end, and viceversa.

If stability occurs during current limit operation, the CLST potentiometer should be adjusted toward its counterclockwise end.

TROUBLESHOOTING

A systematic approach to troubleshooting will reduce the time required to find the problem. This approach consists of trying to localize the problem or cause, in the following step-by-step fashion.

1. Is the problem inside the AF-400 Drive power unit or caused by external conditions or equipment?
2. Which module in the power unit in causing the problem?
3. Which component within the the module is at fault or has failed?

The means to acromplish these are through the use of the recommended test equipment and the troubleshooting procedures outloned in this section. The efficiency with which they are used will be dependent on the skill and expertence of the test personnel, and how well they understand the drive operation, as explaned in the Dencription Section of this manual.

TEST EQUIPRAENT REQUIRED

Thr following test equipment should be avalable for noubleshooling, and is listed in the order of recommended preference. The first two items are recommended for normal operation and maintenance.

Meter Card	193X481AAG01
Volt Ohmmeter	Digital preferred -20 K per volt mm. input impedance.
Oncilloscope	Dual trace preferred
Clamp-on Ammeter	Adjustable range up to 300 amps

TESTING SAFETY PRECAUTIONS

lertain precautions need to be observed in testing this equipment.

All of the control in the Driver, with the exception of the 115 volt AC supply to the option card (when supplied) is at a low voltage level with respect to ground. The control common ts connected to the driver case which is connected to the power unt enclosure, which should be connected to an earth grounding $4 y$ stem. Any control circuitry on the Driver sde of the pulse transformers on Pulse Transformer rards, is alses at the low voltage level.

All Power modules, power components, power wiring, and control waring and components connected to the power munt be assumed to be at a high voltage to ground. The following safetv precautions must be strictly observed when testung in the power area:

WARNING

ELECTRIC. SHOCK CAN CAUSE PERSONAL INJURY OR LOSS OF LIFE WHETHER THE AC SUPPLY IS (GROUNDED OR NOT, HIGH VOLTAGES TO GROUND W'ILI BE PRESENT AT MANY POINTS THROUGHOUT THE: DRIVE. CHARGED CAPACITORS REQUIRE AT LEAST ONE MINUTE DISCHARGE TIME TO 50 VOLTS OR LESS.

WHEN TESTING IN THE POWER AREA, TURN THE EQUIPMENT OFF WHEN CONNECTING OR DISCONNECTING THE TEST EQUIPMENT.

WARNING

GREAT CAUTION SHOULD BE OBSERVED WHEN INSTRUMENTS SUCH AS OSCILLOSCOPES ARE USED TO TEST LIVE (ENERGIZED) POWER CIRCUITS. THE INSTRUMENT COMMON LEAD SHOULD NOT BE CONNECTED TO AN UNGROUNDED POINT IN THE SYSTEM UNLESS THE INSTRUMENT IS ISOLATED FROM GROUND AND ITS METAL PARTS TREATED AS LIVE EQUIPMENT. USE OF AN INSTRUMENT HAVING BOTH LEADS ISOLATED FROM THE CASE PERMITS GROUNDING OF THE INSTRUMENT CASE, EVEN WHEN MEASUREMENTS MUST BE MADE BETWEEN TWO LIVE POINTS IN THE CIRCUIT.

When testing in the control area, remember that these are low voltage circuits (20 volts) and can be damaged by improper test procedures.

CAUTION

DO NOT CONNECT POWER AND CONTROL CIRCUITRY TOGETHER IN ANY TEST HOOKUP. THIS DEFEATS THE PURPOSE OF THE CONTROL ISOLATION FUNCTION AND CAN DAMAGE THE EQUIPMENT.

CAUTION

DO NOT REMOVE OR INSERT PRINTED CIRCUIT CARDS IN THE EQUIPMENT WHILE POWER IS APPLIED. THIS CAN DAMAGE THE EQUIPMENT.

FAULT INDICATION

The two basic indications of a drive problem are:
A. Drive Operates Improperly

1 Driver is at fault - refer to Driver Troubleshooting in this section.
2. System Control is at fault - refer to the system elementary diagrams for system logic and control rircuits and operating notes

B. Drive Shuts Down, or Will Not Start

1. Driver card fault lights are indicating - refer to Fault Indicating Lights in this section.
2. Driver is at fault - refer to Driver Troubleshooting in this section.
3. System control is at fault - refer to the system elementary diagram for system logic and control circuits and operating notes.
4. AC supply fuses or circuit breakers have interrupted, or control power fuses have blown Disconnect AC power from drive and check AC supply fuses. If fuses blown, of ir AC breaker tripped, check the converter and inverter modules for faulty SCRs. Refer to Converter Troubleshooting and Inverter Module Troubleshooting in this section. Also, check control fuses. If these check out all right, check for defective filter capacitors (See DC Link Filter Troubleshooting in this Section) or for power cable or bus bar shorts in tha AC supply, DC link and AC output. Also, check for grounds in power cables and in motor windings.

FAULT INDICATING LIGHTS (on driver cards)

The IF inverter frequency light and the SYNC inverter synchronized light are not fault lights but indicate operating conditions. The IF light should be indicating at all times that the driver is energized, even after a fault. Its blinking frequency indicated the driver operating frequency.

IOC only - If this is the only fault light that is indicating, an inverter fault has occurred. Refer to Inverter Module Troubleshooting in this section.

IOF only - This indicates an inverter overfrequency shutdown. Refer to Driver Troubleshooting in this section.

COC and IOC - This indicates a commutation overcurrent trip which produces an inverter fault shutdown. Check for drive overloading at or near full speed operation. Also refer to Driver Troubleshooting in this section.

COC, IOC and ITOC - This indicates a combination commutation overcurrent, motor overcurrent shutdown. Check for drive overloading at or near full speed operation. Also refer to Driver Troubleshooting and Commutation Power Supply Troubleshooting in this section.

CUV only - This indicates a control undervoltage condition. Refer to Driver Troubleshooting in this section.

CUV and IOC - This indicates a control undervoltage trip which produces an inverter fault shutdown. Refer to Driver Troubleshooting in this section.

CUV, IOC and PS/LOP - This indicates a combination control and power undervoltage shutdown. Check the AC supply for outage problems.

LOV and IOC - This indicates a DC link overvoltage trip which produces an inverter fault shutdown. Refer to Driver Troubleshooting in this section.

LOV, IOC, COC and/or ITOC - This indicates a combination shutdown which would normally occur due to the effects of the DC link overvoltage. Refer to Driver Troubleshooting in this section.

PS/LOP only - This indicates the presence of, or a shutdown caused by wrong $A C$ supply phase sequence or a loss of one or more AC supply phases. Disconnect the AC power and check the AC supply fuses or circuit breaker, especially if the driver is supplied from another power source. Check that the drive is connected to the AC supply in the correct phase sequence..

ITOC only - This indicates an inverter output overcurrent shutdown, either due to an instantaneous trip for current levels over 175% of rated drive current, or an inverse time trip of from 15 seconds to 1 minute limit setting. Check for motor overloading, excessive volts/hz adjustment, locked rotor, or for motor single phasing. Check that the CFA potentiometer is adjusted for LCS $=1.0$ volt at rated load. Also, check for motor being switched on to the inverter at other than synchronized operation or minimum voltage and frequency. Finally, check for motor cable shorts or grounds. Also refer to Driver Troubleshooting in this section.

ITOC and IOC - This indicates an inverter output overcurrent which is excessive enough to also cause an inverter fault. Check for motor jam-ups, excessive volts/hz adjustment, locked rotor, or for motor single phasing. Also, check for motor being switched on to the inverter at other than synchronized operation or minimum voltage and frequency. Finally, check for shorts or grounds in output cables and motor windings.

DRIVER TROUBLESHOOTING

The driver consists of six or more cards, each of which contains quite a few circuits. To help in understanding and troubleshooting the driver, the functions contained on
each card are shown in the Functional Block Diagram of Figure 4. These functions are described in the Description Section of this manual.

The optional Meter Card is a great help in troubleshootıng the driver. If a Meter card is avallable, an oscilloscope is not required except in only the most difficult cases. Normally, the use of the Meter card will allow pinpointing of the problem to a specific card, which can then be replared, or to a certain power module.

The driver label, mounted on the inside of the enclosure door, gives the normal readings for the Meter card selector uwitch positions for five operating conditions. This label also is in the drive instruction book. These normal readings are given for the 17 selected signals, plus the inverter and converter firing signals selected by the position 19 back plane selector probe.

The Meter card can be used in several ways. It is useful in , hecking through the 17 key driver signals when operating at the conditions specified, to determine if any readings are abnormal. When position 19 is selected, the red wire back plane selector probe can be used to check card (receptacle) terminal signals The troubleshooting notes will specify correct and incorrect readings for special test conditions to determine if various faults exist.

If a Meter card is not available, these same readings can be made using a digital volt-ohmmeter or an oscilloscope.

When using the back plane selector probes, there are a few sencitive card terminals which should be avoided when the drive is operating with a motor, since connection of an instrument may cause changes in the drive output. These sensitive terminals are:

Receptacle F Converter Card	Receptacle G Regulator Card	Receptacle H System Card
$\begin{aligned} & \text { term. 16-LVP } \\ & \text { term. 17-LVN } \\ & \text { term. 19-CVN } \\ & \text { term. } 20-\mathrm{CVP} \\ & \text { term. } 22-\mathrm{L} 2 \mathrm{~S} \\ & \text { term. 23-1.1S } \\ & \text { term. 24-L.3S } \end{aligned}$	$\begin{aligned} & \text { term } 7-\mathrm{SSDI} \\ & \text { term. } 11-\mathrm{BFI} \\ & \text { term } 12-\mathrm{BFD} \\ & \text { term. } 23-\mathrm{SSDO} \\ & \text { term. } 32-\mathrm{RFC} \end{aligned}$	term. 28-RFC

Care should also be used in connecting an instrument to the driver reference REF receptacle G, term. 30 , receptacle K, term 18 since this may produce a small motor speed change.

Other diagnostic points are provided for oscilloscope usage. These are:

LPA - Meter - A square wave logic signal which is in Pos 17 phase with the $A C$ supply hne phase A (or phase 1) to neutral voltage.

IPAD - -A square wave logic signal which is 1 : TB2(52) phase with the inverter output phase A to neutral voltage. May be used for a frequency counter reference.

These signals are espectally useful for oscilloscope triggering when reading other signals.

CAUTION

IF DURING TROUBLESHOOTING, ONE OF THE FOLLOWING CARDS IS REPLACED, THE NEW CARD SHOULD HAVE THE SAME POTENTIOMETER SETTINGS AND JUMPER CONNECTIONS AS THE OLD CARD.

REGULATOR CARD - TEN POTENTIOMETERS (INCL. VLIM AND BASE FREQUENCY JUMPER 75 HZ, 150 HZ AND 300 HZ)
 CONVERTER CARD - 60 HZ JUMPER
 INVERTER CARD - $230 / 460 \mathrm{~V}$ JUMPER AND OVERFREQUENCY
 JUMPER ($75 \mathrm{~Hz}, 110 \mathrm{~Hz}, 165 \mathrm{~Hz}, 275 \mathrm{~Hz} \& 410 \mathrm{~Hz}$).

A. Drive Operates Improperly

1. Cannot obtain maximum rated frequency and speed.
a) Check the driver reference REF volts (Meter card pos. 2 or driver receptacle K, terminal 18 to terminal 2 (COM). If less than 15 volts check the reference potentiometer (should be 5000 ohms) or check the system control (see system elementary diagrams).
b) Check the converter voltage reference CVR (Meter card pos. 6 or driver receptacle K, 14 voltage to common). This voltage should decrease at an even rate to approximately 3.5 volts as the driver reference is increased to 15 volts. If this is the case, continue on to part (c). However, if the CVR voltage suddenly decreased to about 1.5 volts, it indicates the converter is saturating. Check the DC link voltage. It should read approximately 15 at Meter card pos. 4 or
should read either approxımately 310 volts DC or 620 volts DC between power circuit terminals P2 and N2, for 230 volt AC or 460 volt $A C$ drive respectively. If this voltage is significantly less, check the AC supply voltage level and check the converter. See Converter Troubleshooting in this section. If the DC link voltage is approximately 1.35 times the AC supply voltage, the voltage limit VLIM potentiometer on the Regulator card is not adjusted properly. Refer to Adjustments section.
c) Check the inverter frequency voltage FVR (Meter card pos. 3 or driver receptacle K , terminal 17 to terminal 2 (COM). The drive output frequency should be 5 times this voltage reading when the 75 Hz base frequency jumper is selected or 10 times when the 150 Hz base frequency jumper is used and 20 times for the 300 Hz base frequency jumper. If the FVR reading agrees with the output frequency and all jumpers are correct, then the BF potentiometer on the Regulator card should be adjusted. (Refer to Adjustments section). If the output frequency does not agree with the FVR reading, or if the $B F$ adjustment appears faulty, replace the Regulator card and check the operation.
2. Motor will not accelerate from stall or low speed.
a) Check the driver REF volts (Meter card pos. 2 or driver receptacles K, terminal 18 to terminal 2. If it is less than 2 volts, check the reference potentiometer or system control (see system elementary diagrams).
b) Check if the inverter is operating. Meter card pos. 11 (RI), or driver receptacle K, term. 9 voltage to common, should be near 20 . If zero, refer to Drive Shuts Down, or Will Not Start.
c) Check the DMF input at driver TB2, terminal 35. It should be high (near 20 volts to common). If it is near zero volts to common, check the system control connected to this input.
d) Check if the drive is in current limit. (The drive should shut down with an ITOC fault light after about 45 seconds). Meter card, pos. 10 (CL), or driver receptacle K , term. 10 voltage to common, should be near 20 . If less
than 10 , check the settıngs of the current limit ClIM and voltage boost VB potentiometers on the Regulator card. Refer to Adjustments section.
e) If the problem cannot be found, replace the Regulator card and check operation.
3. Motor operation is rough or unstable.
a) Check voltage boost VB potentiometer adjustment. Excessive voltage boost at low speed and light load operation will cause motor "cogging" or a grınding nose. Refer to Adjustments section.
b) Check IR compensation, IRC potentiometer adjustment. Too high a setting may result in rough or unstable operation. Refer to Adjustments section.
c) If violently unstable motor operation occurs below one-half rated speed, check that the stability-slowdown circuit is connected. On driver receptacle G, terminal 23 should be connected to terminal 7 .
d) If unstable operation occurs when in current limit stability CLST potentiometer is not adjusted properly. Refer to Adjustments section.
e) Check for low AC supply voltage to the driver TB1, terminal 3 and 4 . This should not be less than 105 volts AC .
f) Check for uneven motor loading or motor single phasing.
g) If the problem cannot be found, replace the Regulator card and check operation.
4. Cannot control motor speed.
a) Check the driver reference REF (meter card pos. 2 or TB2(32) voltage) to see if the problem is in the driver or in the system control. If the problem appears to be in the system control, refer to the system elementary diagrams.
b) Check the SYNC input at driver TH2(42). It should be high (near 20 volts to common). If it is near zero volts to common, check the system control connected to this input.
(1) Check the FU4, FU5 and control fuses Refer to Commutation Power Supply Trouhleshooting in this section.
d) If the problem cannot be found, replace the Regulator card and check operation.

5 Cannot atop motor.
NOTE: If motor cannot be stopped by the normal means, interrupt $A C$ power to the drive.
a) Check the STOP input at driver TB2(34). It should be low (near zero volts to common) to stop the drive. If it is higher than 3 volts to common, check the system control connected to this input (see system elementary diagrams).
b) Check the FU4 anf FU5 and control fuses. Refer to Commutation Power Supply Troubleshooting in this section
c) Cherk for low DC. hnk voltage. If the Meter card pos. 4 reads less than 3, or if the DC voltage between power circuit terminals P3 and N 2 is less than 70 volts (230 volt AC drive) or 1 t0 volts (460 volt ACdrive), and the STOP driver input is low, then the System card is probably defectuve and should be replaced.
d) Check for high DC link voltage If the Meter card pos 4 reads higher than 4 , or if the DC voltage between power circuit terminals P3 and N 2 is greater than 75 volts (230 volt AC drive) or 150 volts (460 volt AC drive), and the STOP driver input is low, the converter is not turning off. Check the converter reference voltage CVR (Meter card pos. 6 or driver receptacle K , term. 14). If this voltage to common is about 10 volts, the problem is ether in the Converter card or in the converter power module. Refer to Converter Troubleshooting in this section. If the CVR voltage to common is less than 8 , then the problem is etther in the Regulator card or the System card. Try replacing each card separately and checking the operation.
6. Cannot obtan rated motor horsepower.
a) Cherk the motor nameplate for the rated voltage and frequency for rated horsepower. Check the inverter output voltage and
frequency at rated reference. See the driver label for Meter card pos. 2, 3, 4, 7, 8 and 9 readings for the REF, I LOAD condition. If these readings and/or the inverter output voltage is too low, refer to Adjustments section for proper base frequency, volts per $\mathrm{Hz}_{\text {, }}$, and voltage limit settings. Rated power output cannot be obtained at a driver reference voltage, that is much less than 15 volts since this voltage is closely related to the DC link voltage and thus the inverter $A C$ output voltage.
b) Check the AC power supply voltage. It should not be less than 5% below rated nameplate AC input voltage to the drive.
7. Cannot synchronize inverter with AC line or other external frequency.
a) Check that SYNC input at driver TB2(42) is low (near common). If it is not, check the system control (refer to the system elementary diagrams).
b) If SYNC is low, check IS at Meter card, pos. 12 or receptacle K , term. 8. If IS is high (near +20 volts), use an oscilloscope to determine if the proper frequency signals appear at receptacle H terminals 9 and 10 . The inverter frequency should be apphed to terminal 9 and the AC line, or external frequency, should be applied to terminal 10 Also, check that the RFC clamp is being applied to override the reference by checking that the driver reference will not effect motor speed.
c) If the IS signal is low, check the SYNC light and the SR readout at driver TB2(36). If the light does not indicate and SR remains high, try replacing the System card and the Regulator card separately and check operation after each replacement to determine if either card is defective.
B Drıve Shuts Down, or Will Not Start

1. IOF fault light on.
a) Check the frequency trip selection on the inverter card. Refer to the driver label, or Start-up and Check-out section of this manual, for proper jumper placement.
b) Check for an overhauling load pumping back into the inverter DC link to increase the voltage and frequency.
c) If the problem keeps occurring, replace the Inverter card and check operation.
2. COC and IOC (and ITOC) fault lights on.
a) Check the peak voltage of the three commutation current feedback signals over the whole operating range of the drive. This can be read on Meter card position 9 or with an oscilloscope by probing receptacle K , terminal 11. Refer to the driver label for the normal peak voltage reading. See Figure 5 for wave shape of a normal commutation current pulse. A COC trip should not occur until one of these peaks reaches about 18 volts.
b) If one of the commutation current peaks is significantly higher than the others, the commutation reactor LC or Capacitor CC in one of the phase modules could be defective or have the wrong value. Replace the phase module if LC or CC appears to be defective and check drive operation.
c) If all current feedback signals are the same, but go too high near rated output, check for motor overloading or for high AC supply voltage.
d) If excessive commutation currents persist, replace the Inverter card and check operation.
3. CUV (and IOC) fault lights on.
a) Check the +10 volt (Meter card, pos. 1) and +20 volt TB2(40) control power. A CUV trip will occur at about 18 volts. If the +20 volt measures low, check the 115 volt AC supply to the driver $\mathrm{TBl}(\mathrm{l})$ and (2). It should be no lower than 105 volts AC. If the ACsupply is all right, check for excessive loading of the Power supply card, especially from external loads connected to driver TB2(40). If the low +20 volt problem cannot be found, replace the Power Supply card and check operation.
b) If the +20 volt is all right, check the DFS voltage (Meter card, pos. 13, or receptacle K, term. 7 voltage to common). If it is below 16 volts interrupt AC power to the drive and disconnect driver wire harnesses APL, BPL, CPL and DPL. Check if DFS is being pulled
down by either the Converter card or the Phase Logic card by energizing the driver with either one of these cards pulled out. If either of these cards loads DFS down, it should be replaced and the test repeated. If DFS is pulled down with both cards pulled, the Inverter card should be replaced and the operation checked.
c) If the DFS voltage is above 18 volts, but the CUV light stays on when the fault is reset with the Stop pushbutton (or external fault reset), disconnect the DPL wire harness at the Converter Module. If the CUV light can then be reset, the problem is in the Pulse Transformer card on the Converter Module. Refer to Converter Troubleshooting in this section.
d) If the DFS voltage is above 18 volts, and the CUV light does not indicate until the inverter is started (to start the motor), disconnect wire harnesses APL, BPL and CPL. If the CUV light does not come on, stop the drive and connect only one of the (APL, BPL or CPL) wire harnesses to the driver and check for the CUV light when a drive start is nitiated, with the driver reference set at zero.

CAUTION

NEVER TRY TO START THE INVERTER WITH TWO OF THE THREE (APL, BPLOR CPL) WIRE HARNESSES CONNECTED, WHEN THE MOTOR IS CONNECTED TO THE DRIVE. ALSO, THE DRIVER REFERENCE SHOULD NEVER BE INCREASED FROM ZERO WITH ANY OF THE WIRE HARNESSES DISCONNECTEID, UNLESS THE DC LINK IS OPENED. (SEE INVERTER MODULE TROUBLESHOOTING).

If the CUV light comes on when any one wire harness is connected, the problem is in the Pulse Transformer card on the inverter module related to that wire harness. Refer to Inverter Module Troubleshooting in this section.
4. LOV and IOC (and COC, ITOC) tault lights on.
a) Check that the slowdown rontul is comerted. On driver receptacle (C , termonal 23 should be connected to term. 7.
b) Check for overhauling load or for excessuve AC: supply voltage.
c) Check that the link voltage feedback and the converter voltage feedback at driver receptacle F, terminals 15 and 21 are at the same voltage to common. If their voltage levels are different, elther the Converter card is defective or the resistance solated feedback signals through RF4-7 are incorrect. Check the FU4 and FU5 voltage feedback fuses on the commutation power supply. Replace the Converter card and check the operation,

5. ITOC (and 10C) fault lights are on.

a) Check the Converter DC Link (LCS) feedback signals, over the whole operating range of the drive. This can be read on Meter card position 7 , or with an oscilloscope by probing TB3(LCS). The normal feedback signal voltage should be adjusted for 1 volt rms with rated load. See Figure 6 for the wave shape of normal motor current. An instantaneous ITOC trip should not occur until the peak of the current feedback reaches about 5 volts as seen on the oscilloscope.
b) If the current feedback signal is significantly more than 1.0 volt, RMS, adjust the CFA potentiometer on the Current Isolator card until the DC Link (LCS) output current feedback signal equals 1.0 volt for 100% reference and 100% load. Replace the card if it appears to be defective and check drive operation.
c) Check the current limit CIIM potentiometer setting on the Regulator card to see if it is too low for the motor loading. If shutdown occurs because the motor cannot get started, check the voltage boost $V B$ setting. Refer to Adjustments section.
d) If a transformer is used between the power untt and the motor, check the settings of the MINF and VB potentiometers. Increase the minmmum frequency by turming MINF clockwise and decrease the voltage boost by turning $V B$ counter-clockwise, until the drive can be started and stopped satisfactornly.
6. Cannot reset fault hghts.
a) Check that fault is not a maintained fault that has not been cleared.
b) Check that the STOP input at driver TB2(34) 1s low (near common) and that XFR input at driver TB2 (43) is high (near +20 volt). If they are not, check the system control (refer to the system elementary diagrams).
c) Check that the RUNR readout at driver TB2(31) is high and the MVFR readout at driver TB2(38) is low. If they are not, check the DC link voltage. Meter card, position 4 should read 1.5 or less, and the P3 to N2 voltage should read no higher than 30 volts DC (230 volt AC drıves) or 60 volts DC (460 volt AC drives). If inconsistent or higher voltages are read, refer to part 7c).
d) If the above four logic signals are correct, try replacing the System card and checking operation.

7 Drive shuts down (no fault lights on), or drive will not start (no fault lights on).
a) Check that the STOP input at driver TB2 (34) is high (near +20 volt) and the START input at TB2 (33) is low (near common). If they are not, check the system control (refer to the system elementary diagrams)
b) Check that the RUNR readout at driver TB2 (31) and the MVFR readout at TB2(38) are both low. If they are not, check that the FTR fault readout at driver TB2(37) is low. Also, check the DC link voltage. Meter card position 4 should read 1.5 or less, and the P 3 to N 2 voltage should read no higher than 30 volts DC (230 volt AC drives) or 60 volts $\mathrm{DC}(460$ volt AC drives).
c) If inconsistent or higher AC link voltages are present when the drive is at standby, check the converter reference voltage CVR (Meter card, position 6 or driver receptacle K , term. 14). If this voltage to common is about 10 volts, the problem is either in the Converter card or in the Converter Power Module. Refer to Converter Troubleshooting in this section. If the CVR voltage to common is less than 8 , then the problem is either in the Regulator card or in the System card. Try replacing each card separately and checking the operation
8. IF light not indicating or on continuously at standby.
a) Check the +10 volt (Meter card, position 1) and the 115 VAC between $\mathrm{TBl}(3)$ to TBl (4) control voltages. If they are zero, but 115 volt AC appears between driver Terminal 1 and Terminal 2, check the fuse FU7 on the Power Supply card. If no voltage is present between Terminal 1 and Terminal 2 , check the control power transformer and its fuse (see system elementary diagram).
b) If +20 volt control power is all right, check the IPAD signal at driver TB2(51) with an oscilloscope. If a square wave frequency is present, replace the System card and check the operation. If no frequency appears at IPAD, check the OP signal at driver connector K , terminal 19. If there is no pulse frequency signal at OP (consists of 10 to 35 usec , wide, low going pulses), replace the Regulator card and check operation. If frequency pulses appear at OP, replace the Phase Logic card and check operation. If no frequency pulses appear at IBL, replace the Inverter card and check operation.
9. SCR firing signals not reaching power modules.
a) Check that there are no fault lights indicatıng and that the FTR fault readout at driver TB2(37) is low. If a fault has occurred, it will lock out all firing signals. Clear the fault and reset the fault circuits to enable the firing sıgnals.
b) Converter' firing signals should be present at drive standby. Check for firing signals at driver receptacle F, terminals 26 through 31 . Use either the red wire back plane selector probe with the Meter card, position 19 and compare with readings on the driver label, Figure 7.
c) If any firing signals are present at the driver but missing at the converter modules, check the plug connections at both ends of wire harness DPL for loose pins or bad connections, and check the wire harness for broken wires. If any firing signals are missing or faulty at the driver, replace the Converter card and check the operation.
d) Inverter firing signals will not be generated until the drive is started. Check that Meter card, position 11 reads high or that driver TB2(31) RUNR reads low. Check for firing
signals at driver receptacle D) termmals 5 through 19. Use etther the red wire back plane selector probe with the Meter card, position 19 and compare with the reading on the driver label, and compare with the wave shapes of Figure 8.
e) If any firing signals are present at the driver but missing at the inverter modules, cheek the plug connections at both ends of the appropriate wire harness APL, BPL or CPL. (refer to driver elementary diagram). Check the plugs for loose pins or bad connectionsand check the wire harness for broken wires. If any firing signals are missing or faulty at the driver, replace the Phase Logic card and cherek the operation.

COMMUTATION POWER SUPPLY TROUBLESHOOTING

The commutation power supply components are contained in the Converter Module and consist of the Commutation Power Supply card, CPS, the filter capacitor, C:2, the commutation leg reactors, CLP and ClN, the DC link decoupling rectifier, DC, and the commutation current transformer, CTC.

To help in troubleshooting, refer to the elementary diagram. Wait 3 minutes after disconnecting power and verify that capacitors are discharged by cheching the voltage between terminal CP and Nl before removing the Converter Module from its rack.

1. CPS Card

Remove and inspect the card for damaged components and etching runs or loose connections. Verify proper resistor values per elementary diagram, Table 1. The power supply diodes may be cherked with a VOM on the XIK resistance scale. Good dodes will have a low forward resistance and almost infinite reverse resistance. If any components appear to be defective, replace the card.
2. Filter Capacitor, C2

The capacitor may be checked with a VOM on the highest resistance scale to determine if it charges up, Also, verify that the discharge resistor, R2, moumted on the capacitor terminals is undamaged and has the correct value.

3 Reactors CLP and CLN

The reactors should indicate a very low resistance when checked with a VOM. During operation the reactors will run hot and will typically show some discoloration. However, there should not be any charring or cracking of the insulation tape wrapped around the coils.
4. Rectifier, DC:

This rectifier is mounted on a heatsink in back of the module. With a VOM on the XIK resistance scale the rectifier should have a low forward resistance and essentially infinte reverse resistance.
5. Current Transformer - CTC

Disconnect the CTl or CT2 connection at the pulse transformer card and with a VOM check that the winding resistance measures between 15 and 25 ohms. Check that arrow marked on the outside of the transformer points from the CLP reactor towards the CP terminal.

Inspect the transformer for any mechanical damage and make sure it is not in direct contact with the reactors or any terminals.

INVERTER MODULE TROUBLESHOOTING

Each of the three identical inverter modules contains the power carcuitry for one phase of the three-phase inverter To help in troubleshooting these modules, refer to the Inverter Phase Module elementary diagram and to the simplified overall power circuit of Figure 3. Since practically all of the circuitry on these modules is at AC supply potential, troubleshooting should be done with the AC' power off where possible. Wait 3 minutes after disconnecting power before doing any checking, to allow raparitors to discharge.

1. Checking SCRs, Diodes and Snubbers

The inverter phase module SCRs and diodes can be checked with the power off, and the module disconnected. The measurement points for the phase modules are as follows:

P3 to T1, 2, 3	Check positive inverter SCR and diodes.
N2 to Tl, 2, 3	Checks negative inverter SCR and diodes.
CP to M1	Checks positive commutation SCR.
CN to M1	Checks negative commuta- tıon SCR.

Using a volt-ohmmeter selected to read ohms on the Xl ohms or X10 ohms scale, the normal readings indicating good devices are as follows, with the positive meter lead connected to the first point.

P3 to T1, 2, 3	High resistance
$\mathrm{Tl}, 2,3$ to N 2	Low resistance
CN to M1	Low resistance High resistance

If any of the above readings are zero, refer to the Mamenance and Repair section for removal, disassembly and replacement information. The individual SCRs and diodes should be rechecked when they are disconnected from each other to ensure that a short in one device does not produce a faulty reading across another device. See the Checking $S C R s$ portion of this section

Whenever a phase module has been removed for replacement of SCRs or diodes, the RC snubber circuits around the SCRs, commutating capacitors and choke, leg chokes and wiring should be inspected and checked for damage.
2. Checking Commutating Capacitors CCA, CCB, and CCC.

These capacitors may be checked by connecting the volt-ohmmeter, selected to the X lK scale, between M1 and MC for each phase module. A good capacitor will read above 100 K resistance (after a brief charging period) whereas a bad capacitor will give a low or zero reading. The capacitors should be checked again after the phase module has been removed and the capacitors have been disconnected from the other power circuitry. Refer to Maintenance and Repair section.

3. Inverter Phase Module Operational Test

If checking all phase module SCRs, diodes and commutation capacitors according to the preceding instructions does not indicate any failed devices, but inverter fault shutdowns still occur, the following procedure should be used to locate the problem.

Interrupt the DC link between N1 and N2 to prevent power flow from the converter into any inverter fault condition. This is easiest to accomplish on 10 through 60 KVA drives by on one side of the Ll , connecting the cable and wire together and taping the connection.

With the DC link disconnected between N 1 and N 2 , the drive can be started and the inverter operated up to full reference. With the motor disconnected from the inverter, the P3 to N2 DC link voltage will build up somewhat as the reference is increased. With the motor connected to the inverter, the DC link will stay close to zero. The maximum inverter frequency that can be obtained at full reference will be limited to less than half of rated by the below normal DC link voltage. Except for these differences from normal, the inverter can be operated to check out the inverter SCR firing and commutation operation without danger of further damaging the equipment if a fault problem is present. In addition, by disconnecting the plugs of two of the three wire harnesses APL, BPL. or CPL, just one phase module can be operated at a time to simplify checking and to help in pin-pointing the problem.

The inverter phase commutations can be checked in the driver by checking the commutation current feedback signal (CF). The peak value of commutation current can be read on the Meter card. (See the driven label on the inside of the power unit door for normal readings). The commutation current can also be read with an oscilloscope connected driver TB39 (SEI.I) and TB34 (COM), and using the black wire, back plane selector probe to receptarle K terminals. See Figure 5 for normal commutation current wave shapes.

4. Checking Pulse Transformer Cards

The Pulse Transformer card on the front of the phase module may be checked with an oscilloscope to see if SCR firing signals from the driver are being applied to the pulse transformers. Connect the ground lead of the oscilloscope to the card COM terminal, and connect the probe lead to the top (cooling) tab of one of the red power transistors. A normal pulse wave shape is shown in Figure 9. Change the oscilloscope probe lead to the top tab of the other red power transistors to check this four channel card. If normal pulses are observed when that inverter phase is operating, the card is probably good. If no pulses are observed, connect the oscilloscope probe to the IP, $2 \mathrm{P}, 1 \mathrm{~N}$ and 2 N input terminals to check for driver firing signals. See Figure 8 for normal firing signals. Also, check for +20 volt firing power at +20 A or +20 B input terminals. If input firing power and firing pulses are present, then the card is probably defective. Replace the card and check operation. If no input power or firing pulses are present, refer to part 9 of Drive Shuts Down, or Will Not Start in the Driver Troubleshooting portion of this section.

CONVERTER MODULE TROUBLESHOOTING

To help in troubleshooting this module, refer to the Converter Module elementary diagram and to the simplified overall power circuit of Figure 3. Since practically all of the circuitry on this module is at AC. supply potential, troubleshooting should be done with the AC power off where possible. Wait 1 minute after disconnecting power before doing any checking to allow capacitors to discharge.

1. Checking SCRs and Snubbers

The converter SCRs can be checked with the power off, without disconnecting anything 'Ihe measurement points for the module are as follows:

10 TO 60 KVA

1.1 to Pl Checks positive phase 1 SCR
LII to NI Checks negative phase I SCR
1.2 to PI Checks positive phase 2 SCR
1.2 to NI Checks negative phase 2 SCR
1.3 to PI Checks positive phase 3 SCR
L3 to NI Checks negative phase 3 SCR

Using a volt-ohmmeter selected to read ohms on the X IK scale, check across all s1x SCRs in both directions. Good SCRs should read over 100 K in both the forward and reverse directions, while failed SCRs will read zero ohms in one or both directions.

If any SCRs appear to be falled, the converter module should be disconnected from the rest of the power circuitry at terminal points $\mathrm{LL}, \mathrm{L} 2, \mathrm{~L} 3, \mathrm{Pl}$ and Nl . (The module may have to be pulled partly out to accomplish this). Recheck the above readings at the disconnerted converter module terminals. If the reading still indicate a bad device, refer to the Maintenance and Repar section for removal, disassembly and replacement information. The indıvidual SCRs should be rechecked when they are disconnected from the converter circuit to ensure that a short in one device does not produce a faulty reading across another device. See the Checking SCRs portion of this section.

Whenever the converter module has been removed tor replarement of SCRs, the RC snubber circuit around the SCRs ACline chokes and wring should be inspected and checked for damage.

2 Converter Module Operational Test
If converter misoperation is suspected, but all converter SCRs appear to be good, the following procedure should be used to perform an operational test.

Interrupt the DC link between N 1 and N 2 to prevent any power flow from the converter from reaching the filter capacitor or inverter. This is easiest to accomplish by disconnecting both the cable and control wire from one side of the Ll reactor, connecting the cable and wire together, and taping the connection.

With the DC link disconnected between Nl and N 2 , the drive can be started and the converter operated up to full voltage. The inverter will operate also, but at a low voltage and reduced frequency, with or without the motor connected.

The converter operation may be checked by means of the driver Meter card selected to position 5. The reading should change from 10 at zero reference to 5.5 at full reference. The converter output voltage may also be checked by connecting a volt-ohmmeter across the Pl to Nl terminals. The DC output voltage should be controllable from near zero to approximately 300 volts DC (230 volts AC input drives) or 600 volts $D C$ (460 volt $A C$ input drives).

If full output voltage cannot be obtaned, it is possible that one or more converter SCRs are not firing, or that the driver is not putting out the proper signals. Refer to part I, of Drive Operates Improperly and Part 9 of Drive Shuts Down, or Will Not Start under Driver Troubleshooting. If the driver is putting out the proper firing signals, check the converter Pulse Transformer cards. If these check out good, an open SCR or open gate SC:R should be suspected Refer to Checking SCRs to test for this problem.

3. Checking Pulse Transformer Cards

The Pulse Transformer card on the front of the converter module may be checked with an oscilloscope to see if SCR firing signals from the driver are being apphed to the pulse transformers. Connect the ground lead of the oscilloscope to the card COM terminal, and connect the probe lead to the top (cooling) tab of one of the red power transistors. A normal pulse wave shape is shown in Figure 9. Change the oscllloscope probe lead to the top tab of the other red power transistor to check the other circuits of this card. If normal pulses are observed when the converter is operating, the card is probably good. If no pulses are observed, connect the oscilloscope probe to the $1 P, 2 \mathrm{P}, 1 \mathrm{~N}, 2 \mathrm{~N}$ input terminals to check for drıver firing signals. See Fig. 7 for normal firing signals. Also, check for +20 volt fring power at +20 A or +20 B input terminals. If
input firing power and firing pulses are present, then the card is probably defective. Replace the card and check operation. If no input power or firing pulses are present, refer to part 9 of Drive Shuts Down, or Will Not Start in the Driver Troubleshooting portion of this section.

CHECKING SCRS

Disconnect the suspected SCR as much as possible from the remainder of the power circuitry. Using a volt-ohmmeter selected to read ohms on the times 1 K scale, check the forward and reverse resistance of each individual SCR cell (See the Module Elementary dagram). Good or faulty SCRs will give the following typical readings:

SCR Description	Forward Reading	Reverse Reading
Cood SCR	100 K to Infinity	100 K to Infinity
Shorted SCR	Zero	Zero
Inoperative SCR	1 to 2 K	100 K to Infnity
Open SCR	100 K to Infinity	100 K to Infinity

Since an open SCR will give about the same resistance reading as a good SCR, another method must be used to find this type of fault. It should be pointed out, however, that practically all cells fall by shorting and very few by opening. If an open SCR is suspected, or if it is desired to check the switching operation of an SCR, the following circuit should be used.

The volt-ohmmeter is selected to read ohms on the lK scale, and is connected to read the forward resistance of the SCR. When switch SW is closed, the forward resistance of a good SCR will change from a high value (100 K to infinity) to a low value (l to 10 K). When the switch is opened, a good SCR will revert to its high forward resistance or blocking state if the holding current source (volt-ohmmeter battery) is momentarily removed. A faulty SCR will not switch, remaining in etther an open or a conducting state.

If any SCR's are suspected of being faulty from the above resistance checks, the SCR conversion module should be removed from the case. After the SCR (cathode) and gate leads have been disconnected, recheck the forward and reverse resistances before replacing the SCR.

This should be done before the SCR is defintely classified as damaged or faulty, since a fault in another SCR or another part of the circuitry can produce a faulty reading from a good SCR before it is disconnected from the circuit After a Press.Pak SCR is removed from the heatsink 11 may read open due to lack of pressure against the internal cell structure. Apply pressure to obtain a true reading

DC LINK FILTER TROUBLESHOOTING

The DC link filter consists of the LI filter choke and the Cl filter capacitor assembly.

1. Cl Filter Capacitor Assembly (s)

This consists of one assembly of paralleled (230 volt AC drives) or series-paralleled (460 volt AC drives) electrolytic capacitors. When the drive has not been operated for 6 months or more, these capacitors start to degrade and their leakage current increases. A procedure called forming is required to return the electrolytic capacitors to their rated operating capability. Refer to step 13 of the Start-up Procedure in the Start-up and Check-out section for the proper forming procedure.

Electrolytic capacitors can fail by shorting, can exhibit excessive leakage current, or can dry up and lose their capacitance. The latter usually results from a ruptured vent plug dur to "gassing" from excessive current and/or temperature.

The filter capacitor assembly can be checked for shorted capacitors using a volt-ohmmeter after the power has been off for more than 1 minute and the Nl to P2 voltage is less than 10 volts. On 460 volt AC drives with seriesed capacitors, the assembly can be checked for excessive leakage capacitors by checking the midpoint or Q point voltage when the drive is operating. Using a volt-ohmmeter, check the difference between the Nl to Q and the Q to Nl voltages at maximum DC. link voltage. This difference should not exceed 5% of the Pll to P2 voltage. If the above tests indicate either a shorted or leaking capacitor, the filter assemhly should be removed and disassembled to the poont where the ressstance of each capacitor can be individually checked. Refer to the Mantenance and Reparr section for instructions. Any shorted or leaky capacitors should be replaced. the remaining capacitors should be insperted for ruptured vemt plugs according to the following instructions.

The best way of evaluating the condition of the electrolytuc capacitors is to visually inspect their vent
plugs These are 3/16" diameter red plugs in the top rover of the capacitor case Internal gas pressure can rause a bubble to form in this plug and red color will highten until it is almost white. Eventually, the plug will rupture. However, this does not cause an immedate capacitor falure, but will result in a gradual loss of capacitance. Any electrolytic capacitors which are found to have ruptured plugs should be replaced as soon as conveniently possible. If any caparitor vent plug contains a bubble larger than $1 / 16$ " in diameter, the capacitor assembly should be mspected at the next scheduled shutdown planned maintenance for ruptured vent plugs.

If more than 25% of the capacitors have broken vent plugs, and the drive has been operated over 20,000 hours, consideration should be given to replacing all of the capacitors in the filter assembly. Refer to the Maintenance and Repair section for instructions.

2. LI Filter Choke

This choke should be visually checked for signs of overheating, damaged insulation or loose connections.

MISCELLANEOUS TROUBLESHOOTING CHECKS

The following check list of miscellaneous items is included to provide additional directions of investigation in troubleshooting this drive.

A. Cooling and Temperature Problems

1 Check tor sufficlent air flow through power unt.
2. Check if fan rotation is correct.

3 (heck if air filters are clean (if provided).
4. Cheeck of intake arr is below $40^{\circ} \mathrm{C}$.
5. Cherk for adjarent heat sources.
6. Check for recorculation of discharge air.
7. Check if room ventilation is adequate to remove the heat being produced

B Input Power

1. Cherk for correct voltage (withon $+10 \%,-5 \%$ of nameplate rating) and frequency.
2 Cherek for balanced phase voltages.
2. Check for transient over or under voltages.
3. Have transient voltages occurred due to lightning or ground faults?
4. Check for excessive line regulation due to a high impedance (soft) AC supply.
6 Is AC supply grounded or ungrounded?
7 Is the avalable short circuit current too high?

8 Are there power factor correction capacitors causing harmonics, or their switching causing voltage transients.
C. System Grounds

1. Check that the power unit case is properly grounded.
2. Check for grounds in motor windings or in power cables to the motor.
3. Check for grounds in control wiring.

D Loose or Shorted Connections

1. Check incoming power connections.
2. Check connections to power modules, filter capacitor and choke, cırcuit breaker or fuses, etc.
3. Check outgoing power connections to starters, motors, etc.
4. Check incoming control wiring connections.

5 Check connections to Pulse Transformer cards.
6. Check for bent terminals shorting to one another on driver back plane.
E. Electrical Noise

1. Check that all power unit relays have RC suppression on therr coils
2. External relays, solenoids, brakes, etc. interfacing with the power unit should also be suppressed.
3. Check for other external sources of electrical norse
F. Output Load
4. Check starting torque requirements
5. Check for transformer saturation at low frequencres if output transformer is used.
6. Check for motor overloads or jam-ups.
7. Check operation of motor transfer switching.

INVERTER COMMUTATION CURRENT WAVE SHAPE

At $1 / 2$ rated voltage $\&$ frequency

$10 \mu \mathrm{sec} . / \mathrm{div} .(230 \mathrm{~V}$ AC Drives)
$20 \mu \mathrm{sec}$./div. (460V AC Drives)

At rated voltage $\&$ frequency

5 Volts Division

FIGURE 5

MOTOR CURRENT WAVE SHAPE

At half speed and low load
At full speed and full load

FIGURE 6

CONVERTER FIRING SIGNALS

FIGURE 7

INVERTER FIRING SIGNALS

Top trace -
Middle trace -
Bottom trace -

A, B, CCP - Positive commutation SCR firing signal
A, B, CA - Commutation power supply SCR firing signal
A, B, CIN - Negative inverter SCR firing signal

FIGURE 8

PULSE TRANSFORMER CARD PULSE WAVE SHAPE

FIGURE 9

REMOVAL/REPAIR AND REPLACEMENT
 WARNING

ELECTRIC SHOCK CAN CAUSE PERSONAL INJURY OR LOSS OF LIFE WHEN POWER OFF MAINTENANCE IS BEING PERFORMED, VERIFY ALL POWER TO THE DRIVE IS SWITCHED OFF OR DISCONNECTED. RECOMMEND POWER SWITCHES BE RED-TAGGED DURING POWER OFF MAINTENANCE.

MECHANICAL INSPECTION

The mechanıcal maintenance required for the drive system is divided into two basic units, the power unit and motor. The power units only mechanıcal maintenance is checking that the unit is free of dirt and dust.

Motor mantenance is covered by the motor instruction book supphed with the motor and should be followed in all cases.

ELECTRICAL INSPECTION

Power off (every six months): Check all electrical connections for tightness. Look for signs of poor connections or overheating (arcing or discoloration). Manually check cooling fan for easy rotation.

POWER MODULE REPAIR

The removal, repair and/or replacement instructions vary depending on the type of power module and its KVA ratıng. Refer to the instructions which follow under the specific heading and rating which applies to your drive.

If minımized down-time is a critical factor, it is recommended that a complete converter module and a complete inverter phase module of your drive rating be stocked as spares.

CONVERTER MODULE REPLACEMENT

The converter module is best removed as follows:

3 Chech voltage across capacitor Cl (P 2 to N 2) with a DC. voltmeter. The capacitor discharge resistor (R1) hould have reduced this voltage to 10 volts or less before work tarts on the case.

4 Disconnect firing ribbon cable connector DPL.
5. Kemove the nine (9) nuts and washers from the power connecturs:
L.1. L2 and L .3 arross the top of the module.

PI, P3 and N1 to the left of the module $\mathrm{CP}, \mathrm{N} 2$ and CN to the right of the module.
6. Carefully pull module out of the rack using the red plastic insulation cover in front of the module. (See Figure 10).

1. Tools required:

Ratchet $-3 / 8^{\prime \prime}$
Socket - $7 / 16^{\prime \prime}$ for $3 / 8^{\prime \prime}$ ratchet
Nut Driver - $7 / 16^{\prime \prime}$ with $6 "$ shaft

FIGURE 10
AF-400 Drive Converter Module being removed Press-Pak SCRs $40-60 \mathrm{KVA}, 230$ or 460 V AC
(Photo MG-5649-5)

[^0]7. The module can be repaired on the table. See Press Pak SCR replacement - converter module or stud mounted SCR replacement - converter module (See page 51 and page 60).
8. To install the repaired or spare converter module, lift the converter module onto the top rack. Slide the assembly into the rack. Use the red plastic insulation cover in front of the module.
9. Reconnect the power terminals L1, L2, L3, P1, P3, $\mathrm{N} 1, \mathrm{CP}, \mathrm{N} 2$ and CN . Reconnect the firing ribbon cable connector DPL.
10. Check to see that all electrical connections are tight before re-applying power.

INVERTER PHASE MODULE REPLACEMENT

. The Inverter Phase Module is best removed as follows:

1. Tools required:

Ratchet $-3 / 8^{\prime \prime}$
Socket - $7 / 16^{\prime \prime}$ for $3 / 8^{\prime \prime}$ ratchet
Nut Driver - $7 / 16^{\prime \prime}$ with $6^{\prime \prime}$ shaft
2. Disconnect the three-phase input power.
3. Check voltage across capacitor $\mathrm{Cl}(\mathrm{P} 2$ to N 2$)$ with a DC voltmeter. The capacitor discharge resistor (R1) should have reduced this voltage to 10 volts or below before work starts on the case.
4. Disconnect firing ribbon cable connector APL, BPL or CPL.
5. Remove the five (5) nuts and washers from the power connectors:

P3, M1 and N2 to the left of the module CP and CN to the right of the module
6. Carefully pull the module(s) out of the rack using the red plastic insulation cover in front of the module (See Fig. 11).

FIGURE 11
AF-400 Drive Inverter Phase Module being removed. Press-Pak SCRS $40-60$ KVA, 230 or 460 V AC
(Photo MG-5649-6)
7. The module can be repaired on a table. See (1) Press-Pak SCR replacement - phase module, or (2) stud mounted SCR replacement - Phase module or (3) Press-Pak SCR and stud mounted SCR replacement - Phase module (Pages 63, 68 and 71 respectively).
8. To install the repaired module or a spare module, lift the Phase module(s) onto the Inverter rack.
9. Slide the assembly into the rack using the red insulation cover on the front of the module.
10. Reconnect the power terminals $\mathrm{P} 3, \mathrm{M} 1, \mathrm{~N} 2, \mathrm{CP}$ and CN . Reconnect the firing ribbon cable connector APL, BPL or CPL.
11. Check to see that all electrical connections are tight before reapplying power.

PRESS-PAK CELL REPLACEMENT CONVERTER MODULE 40 to 60 KVA, 230 V AC or 460 V AC

1. Tools required:

Ratchet - $3 / 8^{\prime \prime}$
Deep Socket - 7/16" for $3 / 8^{\prime \prime}$ ratchet
Wrench - 7/16" box
Wrench - $3 / 8^{\prime \prime}$ box
Screwdrıver $-8^{\prime \prime}$ long with $5 / 16^{\prime \prime}$ tip
2. Stand the converter module on its back side on a table. The pulse transformer, printed carcuit card should be on top. (Normally on the front of the module). See Fig. 12.

FIGURE 12
AF-400 Drive Converter Module standing on a table. Press-Pak SCRs $40-60$ KVA, 230 or 460 V AC (Photo MG-5629-10)

3 After locating the defectıve Press.Pak SCR cell (ISP, $2 \mathrm{SP}, 3 \mathrm{SP}, 1 \mathrm{SN}, 2 \mathrm{SN}$ or 3 SN), trace the appropriate red (cathode) and white (gate) firing circuit leads to the pulse transformer printed circuit card. Remove the plastic the wraps from the appropriate firing circuit. Disconnect these circuits from the pulse transformer card, faston connectors. Free these wires from the harnesses and check to see that they are, in fact, connected to the defective cell.
4. Remove 4 machine screws and nuts that secure the front red plastic insulation cover to the converter module. See Fig. 13

FIGURE 13
AF-400 Drive Converter Module showing removal of machine screws that secure the front cover. Press-Pak SCRs 40-60 KVA, 230 or 460 V AC
(Photo MG-5629-6)
5. Fold back the cover, thereby, exposing the Press.Pak SCR heatsink clamps The remaning wire harnesses should support the front insulation cover while removing and replacing the defective Press-Pak cell See Fig. 14.

FIGURE 14
AF-400 Drive Converter Module with front insulation cover folded back Press-Pak SCRs
$40-60 \mathrm{KVA}, 230$ or 460 V AC
(Photo MG-5629-4)
6. Remove the bolt, two flat washers and nut that hold the heatsink associated with the defective SCR cell to the DC bus (Pl or N1). See Fig. 15.

FIGURE 15
AF-400 Drive Converter Module
showing removal of the nuts and washers that secure the heatsink clamp.

Press-Pak SCRs
40-60 KVA, 230 or 460 V AC
(Photo MG-5629-7)
7. Remove the two clamp nuts that secure the defective SCR, while supporting the bottom heatsink and clamp with one hand underneath the heatsink assembly. See Fig. 16.

FIGURE 16
AF-400 Drive Converter Module showing removal of heatsink Press Pak SCRs $40-60 \mathrm{KVA}, 230$ or 460 V AC
(Photo MG-5629-8)
8. Note that 1SP, 2SP and 3SP SCRs are connected to the top heatsinks, whereas, $1 \mathrm{SN}, 2 \mathrm{SN}$ and 3SN SCRs are connected (back to back) on the bottom heatsink assembly.
9. NOTE CAREFULLY THE ARRANGEMENT OF THE CLAMP PARTS AND SCR ORIENTATION.

10 Remove the clamp rods, thereby, separating the two heatsinks and permitting the defective SCR to be removed along with its red and white firing circuit leads, which were previously removed from the pulse transformer printed circuit card.
11. The gate and cathode leads of the replacement SCR should be connected to the pulse transformer card per the converter module elementary diagram. See Fig. 17.

FIGURE 17
AF-400 Drive Converter Module showing removal of the commutating diode (DC) heatsink. 40-60 KVA, 230 or 460 V AC
(Photo MG-5629-9)
12. The other SCR associated with the clamp assembly should be carefully lifted from the heatsink mounting surfaces.
13. Inspect the surfaces that both $S C R$ s mount between. These surfaces should be wiped clean with a lint free cloth. Inspect the surfaces and make sure they are smooth; if not smooth, replace the heatsink assembly.

14 Lubricate both mounting surfaces for each SCR using a thin coat of thermal grease, General Electric, G322L, Versilube Plus (or equivalent).

15 Place both SCRs in the same orientation, as in the original assembly and place the SCR center holes over the roll pin in the mounting surface.

NOTE

THE BOTTOM SCR FITS OVER A ROLL PIN IN THE HEATSINK AND THETOP SCR FITS OVER A ROLL PIN IN THE PLATE
16. The clamp parts and heatsink should be assembled in the original manner and the two nuts tightened finger tight so that the threads showing are the same on both clamp rods.
17. Check to see that the SCR center holes are still over the roll pins.
18. With the nuts finger tight, use a wrench to tighten each nut, alternately in one quarter ($1 / 4$) turn steps until the clamp tughtness (over finger tightness) equals one and one quarter ($1-1 / 4$) turns.

NOTE

WHEN TIGHTENING THE CLAMP USE A SOCKET WRENCH TO HOLD THE BOTTOM HEADS OF THE CLAMP RODS WHEN COUNTING TURNS.
19. Reconnect all electrical connections to both heatsinks and the SCR firing circuit leads to the pulse transformer card.
20. Re-install the front insulation board which includes the pulse transformer card and bolt in place with the four (4) machine screws and nuts.
21. Re-tie the SCR firing circuit leads with plastic clamps.
22. Check to see that all electrical connections are tught.

COMMUTATING DIODE (DC) REPLACEMENT CONVERTER MODULE 40 to $60 \mathrm{KVA}, 230 \mathrm{~V}$ AC or 460 V AC

1. Tools required:

Ratchet - 3/8'
Deep Socket - $9 / 16^{\prime \prime}$ for $3 / 8^{\prime \prime}$ ratchet
Deep Socket - 7/16" for 3/8" ratchet
Wrench - 7/16" box
2. Stand the converter module on its back side on a table. See Fig. 12.
3. Remove the P3 connection (Anode) to the Commutating Diode (DC).
4. Remove the two bolts that secure the (DC) diode heatsink to the converter module.
5. Remove the top protective metal plate (2-1/4/20 machine screws).
6. Remove the stud mounted diode from its heatsink. It is secured with a nut and lock washer. See Fig. 17.
7. Before replacing the commutating diode, inspect the mounting surface on the heatsink as well as the stud mounted diode mounting surface. These surfaces should be wiped clean with a lint free cloth. Inspect the surfaces and make sure they are smooth.
8. Lubricate both mounting surfaces using a thin coat of thermal grease, General Elertric (,322L, Versilube Plus (or equivalent).
9. Insert the diode into the heatsink and tighten down the stud nut to a pressure equivalent to 100 inch pounds, using a torque wrench.
10. Replace the two bolts that secure the heatsink to the converter module.
11. Replace the anode connection P3

12 Replace the top protective metal plate

COMMUTATION POWER SUPPLY REPLACEMENT - CONVERTER MODULE 40 to $60 \mathrm{KVA}, 230 \mathrm{~V}$ AC or 460 V AC

1. Tools required:

Screw driver - 8" long with 5/16" tip
Nut Driver - $1 / 4$ " with $6^{\prime \prime}$ shaft
2. Remove the top protective metal plate ($2-1 / 4 / 20$ machine screws).
3. The commutating power supply is contained on a printed circuit board located on the left side of the converter module. It is connected through five (5) slotted terminals on terminal board TBl.
4. Loosen the five (5) terminal board screws on terminal board TB1 and slip the card away from the terminal board.
5. To replace the card, reverse the above procedure.
6. Make sure the five (5) terminal board screws are tight. These are electrical connections that also serve to support the card.

STUD MOUNTED CELL REPLACEMENT CONVERTER MODULE 10 to 30 KVA, 230 V AC or 460 V AC

1. Tools required:

Ratchet - 3/8'
Deep Socket - 7/16" for $3 / 8^{\prime \prime}$ ratchet
Wrench - 7/16" box
Wrench - $3 / 8^{\prime \prime}$ box
Screw Driver - 8' long with $5 / 16^{\prime \prime}$ tip
2. Stand the converter module on its back side on a table. The pulse transformer printed circuit card should be on top. (Normally on the front of the module).
3. After locating the defective stud mounted SCR cell $1 \mathrm{SP}, 2 \mathrm{SP}, 3 \mathrm{SP}, 1 \mathrm{SN}, 2 \mathrm{SN}$ or 3 SN) trace the appropriate red (cathode) and white (gate) firing circuit leads to the pulse transformer printed circuit card. Remove the plastic tie wraps from the appropriate firing circuits. Disconnect these circuits from the pulse transformer card, faston connectors. Free these wires from the harnesses and check to see that they are, in fact, connected to the defective cell.
4. Remove four (4) machine screws and nuts that secure the front, red plastic insulation cover to the converter module.
5. Fold back the cover, thereby, exposing the stud mounted SCR heatsinks. The remaining wire harnesses should support the front insulation cover while removing and replacing the defective stud mounted SCR cell.
6. Remove the two (2) nuts that secure the defective SCR heatsink to the DC bus (Pl or N 1).
7. Disconnect the SCR power circuits.
8. Remove the stud mounted SCR frm its heatsink. It is secured with a nut and lock washer. See Fig. 19

FIGURE 18
AF-400 Drive Converter Module with stud mounted SCRs standing on a table $10-30 \mathrm{KVA}, 230$ or 460 V AC (Photo MG-5629-14)

FIGURE 19
AF-400 Drive Converter Module with stud mounted SCRs showing removal of stud mounted SCR cell. 10-30 KVA, 230 or 460 V AC
(Photo MG-5629-2)
9. Before replacing the stud mounted SCR, inspect the mounting surface on both the heatsink as well as the stud mounted SCR cell. These surfaces should be wiped clean with a lint-free cloth. Inspect the surfaces and make sure they are smooth.
10. Lubricate both mounting surfaces using a thin coat of thermal grease, General Electric G322L, Versilube ${ }^{\circledR}$ Plus (or equivalent).
11. Insert the stud mounted SCR into the heatsink and tighten down the stud nut to a pressure equivalent to 30 inch pounds, using a torque wrench.
12. Replace the heatsink and the two (2) nuts that secure it to the DC bus, (Pl or Nl).
13. Reconnect all electrical connections to their respective busses and the SCR firing leads to the pulse transformer card.
14. Re-install the insulation board which includes the pulse transformer card and bolt it in place with the four (4) machine screws and nuts.
15. Carefully fold into the harnesses the power wiring and SCR firmg circuit leads. Re-tie all leads with plastic clamps.
16. Check to see that all electrical connections are tight.

PRESS-PAK CELL REPLACEMENT INVERTER PHASE MODULE 40-60 KVA, 230V AC

1. Tools required:

Ratchet - 3/8'
Deep Socket - 7/16" for 3/8" ratchet Wrench - $3 / 8^{\prime \prime}$ box
Screw Driver - 8" long with $5 / 16^{\prime \prime}$ tip
2. Stand the Inverter Phase Module on its back side on a 30 " high table. The pulse transformer printed circuit card should be on top. (Normally on the front of the module). See Fig. 20.

FIGURE 20
AF-400 Drive Inverter Phase Module standing on a table. Press-Pak SCRs 40-60 KVA, 230 V AC (Photo MG-5629-12)
3. After locatıng the defective Press Pak SCR cell (ISP and ISN - Main SCRs or CSP and CSN Commutating SCRs) trace the appropriate red (cathode) and white (gate) firıng circuit leads to the pulse transformer printed circuit card Remove the plastic the wraps from the appropriate firing circuits. Disconnect these crrcuits from the pulse transformer card, faston connectors. Free these wires from the harnesses and check to see that they are, in fact, connected to the defective cell.
4. Remove four (4) machine screws and nuts that secure the front, red plastic insulation cover to the Inverter Phase Module.
5. Fold back the cover, thereby, exposing the Press Pak SCR heatsink clamps. The remainng wire harnesses should support the front insulation cover while removing and replacing the defective Press Pak SCR cell.
6. Remove the two (2) clamps nuts that secure the defective SCR cell whle supporting the bottom heatsink and clamp with one hand underneath the heatsink assembly.
7. Note that 1SP and CSP SCR cells are connected to the top heatsinks. whereas, 1 SN and CSN SCR cells are connected to the bottom heatsink assembly.
8. NOTE CAREFULLY THE ARRANGEMENT OF THE CLAMP PARTS AND SCR ORIENTATION.
9. Remove the bottom heatsink and SCR cell by dropping the assembly so the clamp rods are free Carefully remove the defective SCR cell along with its red and white firing circuit leads which were previously removed from the pulse transformer printed circuit card.
10. The gate and cathode leads of the replacement SCR should be connected to the pulse transformer card per the inverter phase module elementary diagram. See Fig. 21.
11. The other SCR cell associated with the clamp assembly should be carefully lifted from the heatsink mounting surfaces.
12. Inspect the surfaces that both SCR cells mount between. These surfaces should be wiped clean with a lint-free cloth. Inspect the surfaces and make sure they are smooth; if not, replace the heatsink assembly.

FIGURE 21
AF-400 Drive Inverter Phase Module with the front cover folded back Press-Pak SCRs 40-60 KVA, 230V AC (Photo MG-5629-5)
13. Lubricate both mounting surfaces for each SCR cell using a thin coat of thermal grease, General Electric G322L, Veralube ${ }^{\text {® }}$ Plus (or equivalent)
14. Place both rella in the same orientation as in the original assembly and place the cell center holes over the roll pin in the mounting surface.

NOTE

THE BOTTOM SCR CELL FTTS OVER A ROLI PIN IN THE HEATSINK AND THE TOP SCR FITS OLER A ROLL PIN IN THE PIATE.
15. The clamp parts and heathink should be assembled in the orignal manner and the two nuts tightened finger tight no that the threddn nowing are the same on both clame rod
16. Check to see that the SCR cell center holes are still over the roll pins.
17. With the nuts finger tight, use a wrench to tighten each alternately in $1 / 4$ turn steps until the clamp tightness (over finger tightness) equals one and one quarter ($1 \mathrm{l} / 4$) turns.

NOTE

WHEN TIGHTENING THE CLAMP USE A SOCKET WRENCH TO HOLD THE BOTTOM HEADS OF THE CLAMP RODS WHEN COUNTING TURNS.
18. Reconnect all electrical connections to both heatsinks and the SCR firing circuit leads to the pulse transformer card.
19. Re-install the red plastic insulation board which includes the pulse transformer card and bolt it in place with the four (4) machine screws and nuts.
20. Re-tie the SCR firing circuit leads with plastic clamps.
21. Check to see that all electrical connections are tight.

BYPASS DIODE (DP AND DN) REPLACEMENT INVERTER PHASE MODULE 40-60 KVA, 230 V AC

1. Remove the anode connection to the Bypass Diode (DP or DN).
2. After separating the two main Press-Pak heatsinks (see Press-Pak SCR Replacement - Inverter Phase Module, $40-60 \mathrm{KVA}, 230 \mathrm{~V} \mathrm{AC}$) remove the stud mounted bypass diode from the appropriate heatsink. It is secured with a nut and lock washer.
3. Before replacing the bypass diode(s), inspect the mounting surface on the heatsink as well as the stud mounted diode mounting surface. These surfaces should be wiped clean with a lint free cloth. Inspect the surfaces and make sure they are smooth.
4. Lubricate both mounting surfaces using a thin coat of thermal grease, General Electric G322L, Versilube ${ }^{\circledR}$ Plus (or equivalent).
5. Insert the diode into the heatsink and tighten down the stud nut to a pressure equivalent to 30 inch pounds, using a torque wrench.
6. Replace the heatsinks according to instructions under Press-Pak SCR Replacement - Inverter Phase Module, $40-60 \mathrm{KVA}, 230 \mathrm{~V}$ AC.
7. Replace the anode connection (DP or DN).

STUD MOUNTED SCR REPLACEMENT INVERTER PHASE MODULE 10-30 KVA, 230 V AC or 460 V AC

1. Tools Required:

Ratchet - $3 / 8^{\prime \prime}$
Deep Socket $-7 / 16^{\prime \prime}$ for $3 / 8^{\prime \prime}$ ratchet Wrench $-3 / 8^{\prime \prime}$ box
Screw Driver - $8^{\prime \prime}$ long with $5 / 16^{\prime \prime}$ tup
2. Stand the phase module on tits back side on a table. The pulse transformer printed circuit card should be on top. (Normally on the front of the module). See Fig. 22.

FIGURE 22
AF-400 Drive Inverter Phase Module standing on a table stud mounted SCRs 10-30 KVA, 230 or 460 V AC (Photo MG-5629-11)
3. After locating the defertire stud mounted SCR cell (1SP and ISN - Mann SCRs or CSP and CSN commutating SCR s) trace the appropriate red (cathode) and white (gate) firing circuit leads to the pulse transformer printed circuit card. Remove the plastic tie wraps from the appropriate firing circuits. Disconnect these carcuits from the pulse transformer card, faston connertors Free these wires from the harnenses and check to see that they are, in fact, connected to the defective SCR cell.
4. Remove four (4) machine screws and nuts that secure the front red plastic insulation cover to the inverter phase module.
5. Fold back the cover, thereby, exposing the stud mounted SCR heatsinks. The remaining wire harnesses should support the front insulation cover while removing and replacing the defective stud mounted SCR cell See Fig 23

6. Disconnect the power leads from the appropriate reactors. Replacement stud mounted SCR cells are furnıshed by General Electric Company with the power leads and firing circuit leads soldered to the stud mounted SCR cells.
7. Remove the two (2) nuts that secure the heatsink with the defective stud mounted SCR cell to the phase module.
8. Remove the stud mounted SCR cell from its heatsink. It is secured with a nut and lock washer.
9. Before replacing the stud mounted SCR cell, inspect the mounting surface on both the heatsink as well as the stud mounted SCR cell. These surfaces should be wiped clean with a lint free cloth. Inspect the surfaces and make sure they are smooth.
10. Lubricate both mounting surfaces using a thin coat of thermal grease, General Electric G322L, Versilube Plus (or equivalent).
11. Insert the stud mounted SCR cell into the heatsink and tighten down the stud nut to a pressure equivalent to 30 nch pounds, using a torque wrench.
12. Replace the heatsink and the two (2) nuts that secure it to the phase module.
13. Reconnect all electrical connections to their respective reactors and the SCR firing leads to the pulse transformer printed circuit card.
14. Re-install the insulation board which includes the pulse transformer card and bolt it in place with the four (4) machine screws and nuts.
15. Carefully fold into the harnesses the power wiring and SCR firıng circuit leads. Re-tie all leads with plastic clamps.

16 Check to see that all electrical connections are tight.

FIGURE 23
AF-400 Drive Inverter Phase Module with front insulation cover folded back stud mounted SCRs
10-30 KVA, 230 or 460 V AC
(Photo MG-5629-1)

INVERTER PHASE MODULE 40-60 KVA, 460 V AC PRESS-PAK SCR CELL REPLACEMENT MAIN SCR CELLS STUD MOUNTED SCR CELL REPLACEMENT COMMUTATING SCR CELLS

1. Tools Required:

Ratchet $-3 / 8^{\prime \prime}$
Deep Socket - $7 / 16^{\prime \prime}$ for $3 / 8^{\prime \prime}$ ratchet
Deep Socket - $9 / 16^{\prime \prime}$ for $3 / 8^{\prime \prime}$ ratchet
Wrench - $3 / 8^{\prime \prime}$ box
Screw Driver $-8^{\prime \prime}$ long with $5 / 16^{\prime \prime}$ tip
2. Stand the phase module on tts back side on a table. The pulse transformer printed circuit card should be on top. (Normally on the front of the inverter phase module). See Fig. 24.

FIGURE 24
AF-400 Drive Inverter Phase Module 40-60 KVA, 460V AC standing on a table
Press-Pak Main SCR cells stud mounted
Commutating SCR cells.
(Photo MG-5629-13)
3. After locating the defective Press-Pak Main SCR cell (1SP and 1SN) follow the instructions for PressPak Main SCR cells, $40-60 \mathrm{KVA}, 230 \mathrm{~V}$ AC units. See Fig. 25.

FIGURE 25
AF-400 Drive Inverter Phase Module 40-60 KVA, 460 V AC with front cover folded back. Press-Pak Main SCR cells stud mounted commutating SCR cells.
(Photo MG-5629-3)
4. After locating the defective stud mounted commutating SCR cell (CSP and CSN) follow the instructions for stud mounted commutating SCR cells, $10.30 \mathrm{KVA}, 230 \mathrm{~V}$ AC or 460 V AC units. See Fig. 25.
5. Check to see that all electrical connections are tight.

FILTER CAPACITOR REPLACEMENT

1. Tools required:

Ratchet - 3/8"
Deep Socket - $7 / 16^{\prime \prime}$ for $3 / 8^{\prime \prime}$ ratchet
Wrench - 7/16" box
Screw Driver - $5 / 16^{\prime \prime}$ shank, $8^{\prime \prime}$ long blade
2. Open all electrical circuits to the case in which the Filter Capacitors are located.
3. Check voltage across capacitors (N2 to P2) with DC voltmeter. The capacitor discharge resistor (R1) should have reduced this voltage to 10 volts or below before work starts in the case.
4. Disconnect the power leads to the capacitor.
5. Loosen the capacitor clamp and remove the capacitor.
6. When the faulty capacitor is replaced, make certain that the new capacitor is connected to the electrical circuit with the same polarity orientation as was the faulty rapacitor.
7. Re-connect all power leads.

8 If the replacement electrolytic capacitors have been on the shelf (non-operating) for longer than 6 months, they should be formed. Refer to step 13 of the Start-up Procedure in the Start-up and Checkout section for the proper forming procedure.

FAN REPLACEMENT - 10 to 60 KVA

1. Tools required:

Ratchet - 3/8"
Ratchet Extension - $3 / 8^{\prime \prime}$, $6^{\prime \prime}$ long
Deep Socket - $1 / 2^{\prime \prime}$ for $3 / 8^{\prime \prime}$ ratchet
Nut Driver - $5 / 16^{\prime \prime}$ with $6^{\prime \prime}$ blade
Screw Driver - 5/16" shank, $8^{\prime \prime}$ long blade
2 Open all electrical circuits to the case in which the faulty fin ansembly is located.

3 Check the voltage across the caparitor assembly (N 2 to P2) with a DC voltmeter. The capacitor discharge reastor (R1) should have reduced this voltage to 10 volts or below hefure work starts in the case.
4. Disconnect the fan motor leads from the termmal board

5 Remove the mounting screws from the fan housing that holds the fan to the module rack.
6. Remove the fan assembly.
7. The repaired or replacement motor and fan assembly should be bolted in place.
8. Reconnect the motor leads to the terminal board.
9. Cherk all electrical connections for tıghtness.
10. Apply power to the fan motor. Looking into the motor from the fan side, the rotation should be counter-clockwise, and the air flow will be toward the top of the case.
11. Open the electrical circuit to the fan motor. If the motor rotation was meorrect any two motor leads may be interchanged at the terminal board to correct this
STANDARD SPECIFICATIONS, OPTIONS, OPERATOR'S STATIONS AND AC MOTORS

RATINGS

$$
\text { Horsepower - } 10 \text { through } 60 \mathrm{HP}
$$

$$
\text { Power Supply } \quad \text { Voltage }-3 \text { phase, } 230 \text { or } 460 \mathrm{~V} \text { AC. }
$$ ($+10 \%-5 \%$)

-Frequency - 60 or $50 \mathrm{~Hz}(\pm 2 \%)$
(by jumper selection on converter card)
Input Power
RMS Amperes

HP	230 V AC	460 V AC
10	28	
15	42	21
20	56	28
25	70	35
30	84	42
40	112	56
50	140	70
60	168	84

1 Min. Overload - 150\%
Motor Starting Torque 140\%
(l Minute)

Speed Regulation - 3% (approximately) with induction motor (Due to slip)
0% with synchronous reluctance motor
Service Deviation - 1\%
Function of Basic
Power Unit
-Drive Start and Stop
Speed Control by Potentiometer
Unidirectional operation
Coast Stop
Adjustments -
Current feedback - 0 to 100%
Current Limit - 50 to 150%
Linear timed acceleration - 5 to 50 sec
(Independent adjustments)
Voltage Boost
IR Compensation
Volts/Hertz
Minimum Frequency - (Minimum Speed)
Base Frequency - 2 to
-75 to 150 Hz
-150 to 300 Hz

Protective Features -

AC line, current limiting fuses
115 V AC Control Power Fuses
Surge voltage protection
Control undervoltage shutdown
Commutation overcurrent shutdown
Inverter overfrequency shutdown
Inverter fault shutdown
DC Link overvoltage fault-shutdown
Phase sequence of loss of phase trip
Inverse time overcurrent trip
Isolation between power and control circuits
Indicatıng Lights -

ITOC - Inverse time overcurrent
IF - Inverter Frequency
SYNC - Synchronizing light
Inverter to AC line
(Not used on GP Drıves)
LOV - Link overvoltage trip
PS/LOP - Incorrect phase sequence or loss of phase
IOC - Instantaneous Overcurrent
(Will also operate on DC link overvoltage trip; commutation overcurrent or control undervoltage shutdown).
IOF - Inverter overfrequency trip
COC - Commutation overcurrent trip
CUV - Control undervoltage trip
Operator's Station (Basic Standard)
Speed Adjust Potentiometer
Start-Stop Pushbuttons
NEMA 1 Enclosure

Options -

Incoming Line Circuit Breaker 230 or $460 \mathrm{~V} \mathrm{AC}, 3$ phase
Relay Option Card
Reversing Relay (Selective rotation)
Fault Relay
Run Relay (Pilot relay for AC motor contactors to and including NEMA size 2)
Process Follower Card
Meter Card (Diagnostic Test Card)
Operator's Stations

1. Spered Adjust Potentiometer Start-Stop Pushbuttons
Forward/Reverse Selector Switch
NEMA 1 Enclosure
2. Speed Adjust Potentiometer

Start-Stop Pushbuttons
Manual/Automatic Selector Switch
NEMA 1 Enclosure
Speed Indicator - $0-100 \%$ Speed
Load Indicator - 0-100\% Load
Enclosure for one instrument
Enclosure for two instruments

AC Motor -
Type: Squirrel cage induction or synchronous reluctance
Synchronous speed at $60 \mathrm{HZ}: 3600 \mathrm{RPM}$
1800 RPM
1200 RPM
900 RPM
Temperature Protection: Thermotector (if specified)
Enclosure: DPFG (Dripproof, fully guarded) TEFC (Totally enclosed, fan cooled) TENV (Totally enclosed, nonventilated)

NOTE: SYNCHRONOUS SPEED AND FREQUENCY SELECTION SHOULD BE COMPATIBLE WITH MOTOR OVERSPEED DESIGN AND LOW SPEED THERMAL OPERATION.

AF-400 DRIVE GP CATALOG NUMBER ASSIGNMENT

BASIC (STANDARD) MODEL NUMBER BY HORSEPOWER

KVA	Model Number	230V	Model Number	460V
10	6VGBF2010A	6VGBF2010B	6VGBF4010A	6VGBF4010B
15	6VGBF2015A	6VGBF2015B	6VGBF4015A	6VGBF4015B
20	6VGBF2020A	6VGVF2020B	6VGBF4020A	6VGBF4020B
25	6VGBF2025A	6VGBF2025B	6VGBF4025A	6VGBF4025B
30	6VGBF2030A	6VGBF2030B	6VGBF4030A	6VGBF4030B
40	6VGBF2040A	6VGBF2040B	6VGBF4040A	6VCBF4040B
50	6VGBF2050A	6VGBF2050B	6VGBF4050A	6VFBF4050B
60	6VGBF2060A	6VGBF2060B	6VGBF4060A	6VCBF4060B

CATALOG NUMBER ASSIGNMENT - OPERATOR'S STATIONS REMOTE

Speed Adjust, Start-Stop
Speed Adjust, For.-Rev., Start-Stop
Speed Adjust, Man.-Auto., Start-Stop
Speed Indicator
Load Indicator
Finclosure - 1 Instrument
Enclosure - 2 Instruments

6VOC76
$6 \mathrm{VOC82}$
6VOC52
6VSI 12
6VIIII2
6VIEAI
6 VIE 21

AVAILABLE OPTIONS MODEL NUMBERS

Prorem Follower Card (193X391AAOO1)

Relay Opton Card (193X30|AA(;02)
*Reverbing Relay Modification
*Fault Relay Modifreation
*Run Relay Modification
(Included with standard GP General Purpose Drives)

6VREVI0Al 6VREV10FMAl
6VFLTIOAl 6VFLTIOFMAl
6VRUN10Al 6VRUN10FMAl
*'These options modify the Process Follower Option Card in kit 6VPFl0A1 or the Relay Option card furnished with all standard (P' - Ceneral Purpose Drives.
(AF3124)

ADJUSTABLE FREQUENCY DRIVE

general purpose OPERATING NOTES
 WARNING

BEFORE REMOVING A PRINTED CIRCUIT CARD OR BEFORE MAKING ANY WIRING CHANGES OR CONNECTIONS, POWER SHOULD BE REMOVED FROM THE INVERTER.

THIS IS AN ADJUSTABLE FREQUENCY AC MOTOR DRIVE BUILT IN A FLOOR MOUNTED ENCLOSURE. NOTE THAT THE CASE DOOR HANDLE IS KEY LOCKABLE.
BEFORE APPLYING POWER TO THE DRIVE, READ INSTRUCTION BOOK GEK-24996 AND FOLLOW ALL WARNINGS, CAUTIONS AND NOTES GIVEN IN THAT BOOK. THE PROPER SEQUENCE OF STEPS TO FOLLOW WHEN STARTING UP A DR:'"E ARE ALSO DESCRIBED IN THE INSTRUCTION BOOK.

THIS DRIVE REQUIRES AIR FLOW THROUGH THE ENCLOSURE. IT ENTERS AT THE BOTTOM AND EXITS AT THE TOP OF THE ENCLOSURE. THE REQUIRED AIR FLOW IS 275 CFM AND THE INLET AIR TEMPERATURE SHOULD NOT EXCEED $40^{\circ} \mathrm{C}$. THE AC POWER WIRES ARE NORMALLY BROUGHT INTO THE TOP OF THE ENCLOSURE THROUGH THREE, FAST ACTING, THYRISTOR FUSES. A CIRCUIT BREAKER WITH MAGNETIC TRIP MAY BE SUPPLIED AHEAD OF THESE FUSES AS OPTIONAL EQUIP MENT. WHEN THE CIRCUIT BREAKER IS SUPPLIED IT HAS AN OPERATING MECHANISM THAT EXTENDS THROUGH THE FRONT DOOR.

THE INVERTER OUTPUT WIRES ARE NORMALLY TAKEN OUT OF THE TOP OF THE EN CLOSURE, THROUGH A CHANNEL UNDERNEATH THE CIRCUIT BREAKER MOUNTING BRACKET. THE PURCHASER MAY CHOOSE TO HAVE THE OUTPUT WIRES CONNECTED TO AN AC CONTACTOR AS SHOWN ON ELEMENTARY DIAGRAM 36B590264AA SH4.

A LIST OF FUSES USED IN THESE INVERTER DRIVES BY KVA RATING FOLLOWS:

RATING		FUSESFUI-FU3		FUSES		FUSE FU7	
VOLTAGE	KVA	AMPS	VOLTS	AMPS	VOLTS	AMPS	VOLTS
230	10	60	500	3	600	1	250
	15	60					
	20	100					
	25	100					
	30	100					
	40	300					
	50	300					
\downarrow	60	300	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow

FIGURE 26
GP Operating Notes \& Drive Elementary Diagram, Sheet 1
(continued on Sheet 1A)

RATING		$\begin{aligned} & \text { FUSES } \\ & \text { FUI-FU3 } \end{aligned}$		FUSES FU4-FUS		FUSE FU7	
VOLTAGE	KVA	AMPS	VOLTS	AMPS	VOLTS	AMPS	VOLTS
460	10	35	500	3	600	1	250
	15	35					
	20	60					
	25	60					
	30	60					
	40	175					
	50	175					
\downarrow	60	175	\downarrow	\downarrow	\downarrow	\downarrow	\Downarrow

NOTE
FOR ALL RATINGS, THE DRIVER POWER SUPPLY CARD (I93X480A GOI)FUSE IS SAMPS-250VOLTS.

THE ADJUSTMENT OF MOTOR SPEED IS ACHIEVED BY CHANGING BOTH MOTOR FREQUENCY AND VOLTAGE. THIS IS A VARIABLE VOLTAGE DC LINK TYPE INVERTER. A DESCRIPTION OF THE BASIC INVERTER IS PROVIDED IN INSTRUCTION BOOK, GEK-24996.
THE GENERAL PURPOSE (GP) INVERTER IS PROVIDED WITH AN OPTION CARD (193×391 (AGO2) WHICH IS PLUGGED INTO A CARD HOLDER ATTACHED TO THE TOP OF THE DRIVER RACK. THIS OPTION CARD CAN BE USED IN CONJUNCTION WITH OPERATOR'S STATION, MODEL GVOC72 TO START AND STOP THE INVERTED DRIVE AND TO CONTROL ITS SPEED.
NOTE: I. RELAY CONTACTS ON OPTION CARDS I93X39IA_GOI OR GO2 ARE RATED IISVAC: HIGHER VOLTAGE SHOULD NOT BE USED.
2. ALL EXTERNAL RELAYS AND AC CONTACTORS MUST HAVE THEIR COILS SUPPRESSED. (EX. A I/2 MFD-220 OHM SUPPRESSOR MAY BE USED.)
THE START/STOP PUSH BUTTONS CAN BE WIRED INTO THE CIRCUIT AS SHOWN ON ELEMENTARY DIAGRAM 36B590264AA SH5. IF WIRED AS SHOWN, THE THERMAL SWITCH (THSW) WILL CAUSE THE DRIVE TO STOP DUE TO HIGH AMBIENT TEMPERATURES OR LOSS OF COOLING AIR. IF A MOTOR OVERLOAD RELAY IS USED, ITS INTERLOCKS (OL) CAN BE CONNECTED INTO THIS CIRCUIT CAUSING THE DRIVE TO STOP WHEN THE OVERLOAD RELAY TRIPS.
THE SPEED ADJUST POTENTIOMETER CAN BE CONNECTED INTO THE CIRCUIT AS SHOWN ON ELEMENTARY DIAGRAM 36B590264AA SH6. AS SHOWN, TWO POTENTIOMETERS ON THE OPTION CARD CONTROL MINIMUM AND MAXIMUM SPEEDS AT WHICH THE DRIVE WILL OPERATE. MAX MAN AD,JUST THE MAXIMUM SPEED LIMIT AND MIN MAN ADJUSTS THE MINIMUM SPEED LIMIT.
IF IT IS DESIRABLE TO HAVE AN EXTERNALLY, ADJUSTABLE MINIMUM AND MAXIMUM SPEED ADJUSTMENT, THE SPEED ADJUST POTENTIOMETER MAY BE CONNECTED BETWEEN TB2(40) AND TBI (18).
before applying power to the inverter, make sure that the following CARD Jumpers are properly located to agree with the intended APPLICATION.

1. BASE HZ JUMPER-REGULATOR CARD SET FOR THE DESIRED BASE HZ RANGE.
2. HZ TRIP JUMPER-INVERTER CARD SET FOR FREQUENCY WHERE FAULT TRIP IS DESIRED.
3. VOLTAGE JUMPER-INVERTER CARD

SET FOR THE INVERTER INPUT VOLTAGE.
4. 60 HZ JUMPER-CONVERTER CARD

WHEN THE INVERTER IS TO OPERATE FROM A 50 HZ SOURCE, THIS JUMPER MUST BE REMOVED.
FOLLOW THE INSTRUCTIONS IN GEK-24996 INSTRUCTION BOOK FOR START-UP PROCEDURES, PROPER ADJUSTMENT OF THE DRIVER POTENTIOMETERS AND FOR TROUBLESHOOTING.

FIGURE 26 (continued)
GP Operating Notes \& Drive Elementary Diagram, Sheet 1 A
(continued on Sheet 1B)

NOTE: CAPACITOR FORMING
ELECTROLYTIC CAPACITORS HAVE A LIMITED SHELF LIFE WHEN NOT ENERGIZED. IT IS THEREFORE NECESSARY TO FORM THE CAPACITORS BEFORE NORMAL CHARGING CAN TAKE PLACE. FORM ALL "GP" DRIVES REGARDLESS OF SHIPMENT DATE.
A. LESS THAN 6 MONTHS: NO FORMING REQUIRED.
B. MORE THAN 6 MONTHS: SEE INSTRUCTION BOOK GEK-24996 (START-UP AND CHECK OUT SECTION) FOR DETAILS.
TERMINAL BOARDS, (TBI AND TB2), LOCATED IN THE LOWER RIGHT CORNER OF THE POWER UNIT, PROVIDE CONNECTIONS FOR INCOMING COMMAND SIGNALS, AS WELL AS OUTPUT SIGNALS. THE CONTROL WIRES ARE NORMALLY BROUGHT INTO THE ENCLOSURE THROUGH THE BOTTOM.
FOR THIS GENERAL PURPOSE (GP) DRIVE THERE ARE KITS AVAILABLE WITH PUSHBUTTONS, SWITCHES, INSTRUMENTS AND PRINTED CIRCUIT CARDS WHICH CAN BE USED AS SHOWN IN THE ELEMENTARY DIAGRAM 36B590264AA SHEETS 5 AND 6. THESE KITS ARE DESCRIBED BELOW:

1. METER CARD - $193 \times 481 A-G O 1$

THE DRIVER IS PROVIDED WITH A RECEPTACLE WIRED TO PROVIDE SIGNALS TO THE METER CARD (WHEN USED). THE TROUBLESHOOTING SECTION OF GEK-24996 REFERS TO THIS CARD AND TO ASSISTANCE DURING SET-UP AND TROUBLESHOOTING.
the meter card can be obtained and plugged into the extreme RIGHT DRIVER RECEPTACLE AS INDICATED ON THE LABEL UNDERNEATH THE PRINTED CIRCUIT CARDS.
2. OPERATOR S STATION

SPEED ADJUST, START-STOP - MODEL 6VOC72
SPEED ADJUST, FWD, REV, START-STOP - MODEL 6V082
SPEED ADJUST, MAN, AUTO, START-STOP - MODEL 6VOC52
THESE STATIONS (7.4 INCHES LONG $\times 3.5$ INCHES WIDE X 3.06 INCHES DEEP) CONTAIN A SPEED ADJUST POTENTIOMETER, START-STOP PUSHBUTTONS, AND FWD-REV OR MAN-AUTO SELECTOR SWITCHES. THEY CAN BE WIRED INTO THE CIRCUITRY AS SHOWN ON 36B590264AA SH5 AND SH6.
WHEN POWER IS TURNED ON THE INVERTER FREQUENCY LIGHT (IF) ON THE SYSTEM CARD IN THE DRIVER RACK STARTS TO BLINK ON AND OFF AT A LOW FREQUENCY. ON THE OPTION CARD, THE MIN SPEED AND FAULT LIGHTS ALSO TURN ON. IF SELECTOR SWITCHES ARE POSITIONED TO (REV) AND (MAN) AS SHOWN ON 36B590264AA SH5, THE (REV) AND (MAN) INDICATING LIGHTS ON THE OPTION CARD WILL TURN ON IN THAT ORDER.
WHEN THE (START) PUSHBUTTON IS DEPRESSED, THE INVERTER WILL BE STARTED BY ENERGIZING THE INVERTER START (IS) RELAY, PROVIDED THE INVERTER IS AT NEARLY ZERO FREQUENCY IN ORDER TO PERMIT THE MINIMUM SPEED RELAY (MSR) TO BE ENERGIZED. WHEN THE INVERTER STARTS, THE IS RELAY SEALS IN AROUND THE (MSR) RELAY WHICH IS DE-ENERGIZED AS SOON AS THE INVERTER OUTPUT FREQUENCY INCREASES. THE (START) AND (RUN) LIGHT WILL ALSO TURN ON. NOTE THAT THE (FAULT), (REV), (MAN) AND (RUN) INDICATING LIGHTS WILL TURN ON EVEN THOUGH THE RELAYS ARE NOT PLUGGED INTO THEIR RESPECTIVE SOCKETS.
AFTER THE (START) PUSHBUTTON IS DEPRESSED, THE SPEED ADJUST POTENTIOMETER CAN BE TURNED CLOCKWISE IN ORDER TO INCREASE THE SPEED. THE DRIVE WILL ACCELERATE TO THE SET SPEED AT THE RATE SET BY THE (ATIM) POTENTIOMETER ON THE REGULATOR CARD. WHEN THE DRIVE REACHES APPROXIMATELY 4 PERCENT OF BASE SPEED, THE (MIN SPD) INDICATING LIGHT WILL TURN OFF. THE (MIN SPD) LIGHT INDICATES THAT (MSR) RELAY IS ENERGIZED.
WHEN THE (STOP) PUSHBUTTON IS DEPRESSED. THE INVERTER OUTPUT VOLTAGE AND FREQUENCY DROP AT THE RATE SET BY THE (DTIM) POTENTIOMETER ON THE REGULATOR CARD. WHEN THE MOTOR IS KEPT CONNECTED TO THE CONVERTER OUTPUT TERMINALS (SEE SH5, JUMPER FROM TB2 (31) TO TBI (2I)) THE CIRCUIT PROVIDES A CONTROLLED STOP AND THE MOTOR WILL COME TO A STOP along with the inverter output frequency and voltage.
HIGH INERTIA LOADS MAY RESULT IN DECELERATION TIMES LONGER THAN THE (DTIM) SET VALUE DUE TO LINK VOLTAGE PUMP UP.

FIGURE 26 (continued)
GP Operating Notes \& Drive Elementary Diagram, Sheet 1B
(continued on Sheet 1C)

THE dRIVE CAN be arranged TO Switch from the forward to the reverse DIRECTION OF ROTATION, ELECTRONICALLY. TO ACCOMPLISH THIS A REVERSING MODIFICATION KIT (MODEL GVREVIO) SHOULD BE ORDERED. THE OPTION CARD (CAT. 193X39IA GO2) SHOULD BE REMOVED FROM THE RECEPTACLE AND SUPPORTED 50 THE RELAY FROM THE MODIFICATION KIT CAN BE PLUGGED INTO ITS DESIGnated card socket without flexing the printed circuit card. in addition TO THE REVERSING MODIFICATION KIT, IT WILL BE NECESSARY TO PROVIDE AN OPERATORS STATION WITH A (FOR-REV) SELECTOR SWITCH SUCH AS MODEL GVOC8Z. after plugging in the reversing relay. insert the option card back INTO ITS RECEPTACLE AND WIRE THE (FOR-REV) SELECTOR SWITCH INTO THE CIRCUIT BETWEEN TBI(4) AND TBI(34) AS SHOWN ON SHEET 5 OF 36E590264AA.
WITH THE SWITCH IN THE FOR POSITION, THE DRIVE CAN BE STARTED AND THE MOTOR WILL TURN IN THE FORWARD DIRECTION. WHEN THE SELECTOR SWITCH IS TURNED TO THE REV POSITION, THE MOTOR WILL DECELERATE TO A CONTROLLED STOP: CHANGE DIRECTION OF ROTATION AND ACCELERATE WITH PRESET RATE TO SET SPEED.

SOME TIMES IT IS DESIRABLE TO CONNECT THE MOTOR (OR MOTORS) TO THE IN VERTER THROUGH AN AC CONTACTOR (S). A RUN RELAY MODIFICATION KIT (MODEL GVRUN 10) CAN BE ORDERED FOR THIS PURPOSE. THE RELAY IN THIS KIT can be plugged in the same manner as described for the rev relay, ABOVE. THE AC CONTACTOR (OR ITS AUXILIARY RELAY) SHOULD BE CONNECTED AS SHOWN ON SHEET 5, BETWEEN TBI(I5) AND TBI(3).

NOTE: THE MAXIMUM SIZE AC CONTACTOR WHICH SHOULD BE CONNECTED BETWEEN THESE TWO POINTS IS NEMA SIZE 2.

NOW, WITH THE OPTION CARD PLUGGED INTO ITS RECEPTACLE, THE AC CONTACTOR (OR AUXILIARY RELAY) WILL BE ENERGIZED WHEN THE (START) PUSHBUTTON IS DEPRESSED. WITH A JUMPER FROM TBI(21) TO TBI(31), WHEN THE (STOP) PUSHBUTTON IS DEPRESSED THE MOTOR STAYS CONNECTED TO THE INVERTER OUTPUT TERMINALS THROUGH THE AC CONTACTOR UNTIL THE INVERTER HAS DECELERATED TO A STOP. WHEN THE INVERTER STOPS THE AC CONTACTOR IS DE-ENERGIZED. if the above mentioned jumper is not used, the ac contactor is enerGIZED WHEN THE INVERTER (START) PUSHBUTTON IS DEPRESSED. NOW WHEN THE (STOP) PUSHBUTTON IS DEPRESSED THE AC CONTACTOR (S) IS IMMEDIATELY DEENERGIZED AND THE AC MOTOR DECELERATES TO AN UNCONTROLLED STOP (COAST) INDEPENDENT OF THE INVERTER.

IT SHOULD also be noted that interlocks available on the run relay ARE FORM C- THE NORMALLY OPEN INTERLOCK AT TBI(I6), THE NORMALLY CLOSED INTERLOCK AT TBI(I7) AND THE COMMON POINT AT TBI(I5).
if it is desirable to have a signal which indicates when a fault conDITION EXISTS IN THE INVERTER, A FAULT MODIFICATION KIT (MODEL GVFLTIO) CAN GE OBTAINED. THE RELAY IN THIS KIT SHOULD BE PLUGGED INTO ITS DESIGNATED OPTION CARD SOCKET IN A MANNER DESCRIBED FOR THE REV RELAY (ABOVE). WHEN THE OPTION CARD IS RE-INSERTED IN ITS RECEPTACLE AND THE DRIVE IS STARTED, THE FAULT (FLT) RELAY WILL BE ENERGIZED. SIGNALS INDICATING THE CONDITION OF THE RELAY ARE FROM TBI(13) TO TBI(12) A NORMALLY OPEN INTERLOCK: OR FROM TBI(14) TO TBI(I2) A NORMALLY CLOSED interlock. When a fault condition occurs the fault relay is de-EnergIZED.

WHEN IT IS DESIRABLE TO HAVE THE INVERTER FOLLOW A PROCESS SIGNAL 0-IO VOLTS, 10-50 MA, 4-20 MA, OR 0-5 MA, A PROCESS FOLLOWER OPTION CARD (193×391 _G01) CAN BE OBTAINED. THE OPTION CARD (193×391 _ GO2) IN THE STANDARD GENERAL PURPOSE (GP) INVERTER DRIVE SHOULD BE REMOVED. ALL RELAYS BEING USED ON THAT CARD (REV, RUN, AND FLT) CAN BE UNPLUGGED FROM THE 193×391 __GO2 CARD AND PLUGGED INTO THEIR DESIGNATED SOCKETS ON THE I93×39IA_GOI CARD. CARE SHOULD BE TAKEN TO SUPPORT THE CARD WHEN UN plugging and plugging in the relays to prevent card flexing.

THE PROCESS FOLLOWER OPTION CARD (I93X39IA_GOI) SHOULD BE INSERTED INTO THE OPTION CARD RECEPTACLE ON TOP OF THE DRIVER RACK. THE PROCESS SIGNAL SHOULD BE BROUGHT INTO TBI(8) (POSITIVE SIGNAL) AND TBI(7) (NEGATIVE SIGNAL). NOTE THE JUMPER ON THE OPTION CARD SHOULD BE PLUGGED INTO THE post representing the follower signal being used. When a manual signal WILL ALSO be USED THE POTENTIOMETER FOR THIS SIGNAL SHOULD COME FROM TBI(32) TO TBI(22) SEE SHEET 6. TO SELECT EITHER THE MANUAL SIGNAL OR THE PROCESS SIGNAL AN (AUTO-MAN) SELECTOR SWITCH MUST BE CONNECTED BETWEEN TBI(4) AND TBI(26).

FIGURE 26 (continued)
GP Operating Notes \& Drive Elementary Diagram, Sheet 1C
(continued on Sheet 1D)

OPERATOR S STATION (EVC52) HAS AN (AUTO/MAN) SELECTOR SWITCH, (START-STOP) PUSHBUTTON AND A SPEED ADJUST POTENTIOMETER TO CONTROL MANUAL SPEED. WHEN THE SELECTOR SWITCH IS IN THE MANUAL (MAN)POSITION, THE PROCESS FOLLOWER OPTION CARD (MA) RELAY IS ENERGIZED AND THE DRIVE WILL FOLLOW THE MANUAL SPEED ADJUST POTENTIOMETER SIGNAL. IN THE aUTOMATIC (AUTO) POSITION THE (MA) RELAY IS DE-ENERGIZED AND THE PROCESS SIGNAL CONTROLS THE DRIVE.

THE FOLLOWING PROCEDURE IS SUGGESTED TO SET-UP AND ADJUST THE PROCESS FOLLOWER FUNCTION.

NORMAL START UP PROCEDURE AS DESCRIBED IN GEK-24996 SHOULD BE FOLLOWED.
AFTER THE INVERTER IS OPERATING PROPERLY IN THE MANUAL MODE (MA RELAY PICKED UP), THE PROCESS FOLLOWER FUNCTION CAN BE ADJUSTED. THE SAMPLE CASE DESCRIbED BELOW ASSUMES A MANUAL SETUP AT 100\% FREQUENCY (SPEED) WITH A REFERENCE OF 15 VOLTS AT REF, TB2(32). IN THE AUTO MODE A PROCESS CONTROLLER SIGNAL OF 4 TO 20 MILLIAMPERES IS CHOSEN TO COVER FROM 40% TO 90% OF THE MANUAL FREQUENCY (SPEED) RANGE AS INDICATED IN FIG. 27.
A) ADJUST THE "OFFSET" POT TO MAKE THE (OPS) TEST POST VOLTAGE EQUAL 10 VOLTS. (THIS PRELIMINARY ADJUSTMENT SETS THE OFFSET TO ZERO).
B) GAIN: APPLY AN INPUT SIGNAL EQUAL TO THE MAXIMUM CHANGE IN PROCESS CONTROLLER SIGNAL, I.E. $\triangle I=20-4=16 M A$. (THIS CORRESPONDS TO A VOLTAGE OF 8 VOLTS BETWEEN CVRP AND CVRN.) ADJUST THE GAIN POT SUCH THAT THE VOLTAGE AT REF, TB2(32) EQUALS THE VOLTAGE DIFFERENCE AT MAXIMUM (90%) AND MINIMUM (40\%) FREQUENCY (SPEED): I.E., $\triangle R E F=13.5-6=7.5$ VOLTS. (THIS SETS THE DESIRED SLOPE OF THE OUTPUT VS. INPUT CURVE.)
C) MIN AUTO: TURN THE OFFSET POTENTIOMETER CCW UNTIL THE REF VOLTAGE 15 LESS THEN THE DESIRED MIN LEVEL. TURN THE MIN AUTO POT CW UNTIL THE REF VOLTAGE EQUALS THE MIN DESIRED LEVEL (A LEVEL OF SV OR 33\% FREQ. IS INDICATED ON FIG. 27).

F16.27

 MAX. DESIRED LEVEL. TURN THE MAX AUTO POT CCW UNTIL THE REF VOLTAGE EQUALS THE MAX. DESIRED LEVEL. (A MAX. LEVEL OF I5V OF 100\% FREQ. IS INDICATED IN FIG. 27).
E) OFFSET: INCREASE THE INPUT SIGNAL TO THE MAX. RATED LEVEL (2OMA IN THIS CASE). ADJUST THE OFFSET POT SUCH THAT THE REF VOLTAGE EQUALS THE MAX. OPERATING LEVEL, I.E. REF=I3.5 VOLTS OR 90% FREQUENCY (SPEED).

FIGURE 26 (continued)
GP Operating Notes \& Drive Elementary Diagram, Sheet 1D (continued on Sheet 1E)

THE REF VOLTAGE SHOULD NOW FOLLOW THE HEAVY CURVE OF FIG. 27 AS THE INPUT IS CHANGED FROM 4 THROUGH 20 MILLIAMPERES.

IF Fine tuning is reauired, adjust the offset at minimum level and THE GAIN AT MAXIMUM LEVEL.
note: a change in the gain setting will also affect the offset.
in order to obtain an indication of the inverter load, load indicator KIT, (6VLII2) MAY BE ORDERED. THE INSTRUMENT IN THE KIT IS CONNECTED TO THE CURRENT ISOLATOR TB3(LCS) AND TB3 (COM). SEE 36B590264AA SH.4. AN ENCLOSURE (MODEL GVIEII) FOR THE LOAD INDICATOR MAY ALSO BE ORDERED.

AN INDICATION OF MOTOR SPEED CAN BE OBTAINED BY ORDERING A SPEED INDICATOR KIT (6V5II2). THIS INSTRUMENT IN THE KIT 15 CONNECTED TO THE FREQUENCY VOLTAGE READ OUT SIGNAL (FVR), TB2(44) AND COM TB2(48). SEE 36B590264AA SHE. AN ENCLOSURE (MODEL GVIEII) FOR THE SPEED INDICATOR MAY ALSO BE ORDERED.

IN THE EVENT AN ENCLOSURE IS DESIRED FOR BOTH A LOAD INDICATOR AND A SPEED INDICATOR AN ENCLOSURE (MODEL GVIEI2) FOR TWO INSTRUMENTS MAY ALSO BE ORDERED.

SYMBOLS

[0] SUPPLIED BY OTHERS,REMOTELY MOUNTED
\triangle OPTIONAL FEATURE - SPECIAL PLUG IN RELAY FOR OPTION CARDS, (193×391 angol \&GO2)

SPECIAL OPTION CARD WITH ADDITION PROCESS FOLLOWER FEATURES (193X39IAAGOI)
\qquad TWISTED WIRE
A SUPPRESSED COHL

			CARD
COMPONENT NOMENCLATURE		POTENTIOMETER NOMENCLATURE	
Cl	- Converter filter capacitors	AUTOMAX	- MAX. SPEED ADJ.-PROCESS FOLLOWER
CB	- CIrcuit breaker	Automin.	- MIN. SPEED ADS.-PROCESS FOLLOWER
CONY.mod.	- ac to dc conversion module	ATIM	- ACCEL. TIME ADJ.-REGULATOR
CURR.ISOL.	- Current isolator card	BF	- base frequency adj.-regulator
FU 1-3	- main power ac fuses	Cfa	- CURRENT FEEDback ad.-curr,isol.
FU 4-6	- Control circuit fuses	CLIM	- current limit adj.-regulator
FUl	- lisy ac control power fuse	CLST	- curr. Lim. stability abj.-regulator
FLT	- fault relay-option card	DTIM	- decel. time adj.-REgulator
15	- inverter start relay-option card	GAIN	- gain adj.-Process follower
LI	- Converter filter reactor	IRC	- IR COmpensation adj.-regulator
LSH	- D.c. Link shunt	MINF	- minimum freq. adj.-regulator
MA	- auto.-manual relay-option card	OfFSET	- OFFSET ADJ.-PROCESS FOLLOWER
MS	- a.C. motor contractor	V日	- VOLtage boost adj-regulator
MSR	- minimum Speed relay-option card	V/HZ	- VOLTS PER HERTZ ADJ.-REGULATOR
OL	- motor starter overload contact	VLIM	- voltage limit adj.-regulator
PB $1-2$	- PUSH BUTTONS		
PH.MOD. A-C	- inverter phase modules	CARD	
plus	- JI, J32,JXI, JX11,JX32 ARE		
	driver backplane plugs.		INDICATING LIGHTS
	A-D PL ARE FIRING HARNESS		
	MODULE PLUGS.	ITOC	- inverse time overcurrent thip-system
R1	- CAPACITOR dISCHARGE RESISTOR	IF	- inverter frequency-system
REV	- reversing relay-option card	SYng	- INVERTER LINE SYNCHRONIZED-SYSTEM
RF 1-7	- isolation feedback resistors	Lov	- Link overvoltage trip-converter
RUN	- gun relay-option card	PS/LOP	- Ph. SEQ/LOSS OF Phase trip-converter
$5 \mathrm{~W}-2$	- selector smitch	10 C	- instantaneous overcurrent trip-inverter
TBL-3	- terminal bonrds	10F	- inverter overfrequency trip-inverter
THSW	- thermal switch inverter air	COC	- commutation overcurrent trip-inverter
TXI	- COntrol transformer	cuv	- Control undervol tage trip-inverter

FIGURE 26 (continued)
GP Operating Notes \& Drive Elementary Diagram, Sheet 2
(continued on Sheat 3)

	TERMINAL BOARD NOMENCLATURE
ACl	- control transformer-l15V fused line
AC2	- Control transformer-grounded line
AC3	- Control transforner - lisv unfused line
Bfo	- base frequency decrease-signal infut
BFI	- base frequency increase-signal input
BFP	- base frequency external potentiometer supply
COM	- COMMON POINT-CONTROL
CVRN	- current voltage reference-negative
CVRP	- current voltage reference-positive
016	- digital reference-input
DMF	- decelerate to minimum frequency signal.
DPF	- digital frocess follower
FLTC	- fault relay interlock-common
FlTNC	- Fault relay interlock-nobmally closed
FLTNO	- FaUl
FTR	- fault trip read out signal
FVR	- frequency voltage readout signal
IPAD	- inverter phase "a" logic signal
ISA	- inverter start relay coil
155	- inverter start-seal
LCS	- link current signal
MAA	- manual auto relay conl
MSRC	- min. speed relay-Common
MSRNC	- MIN. SPEED RELAY-NORMALLY CLOSED
MSRNO	- MIn. SPEED RELAY-NORMALLY OPEN
MVFR	- min. voltage and frequency readout
PPS	- primary power supfly input (CURR. ISOL.)
REF	- reference input signal
REVA	- reversing relay coil
RMA	- reference manual-auto
RMAX	- REFERENCE POTENTIOMETER-MAXIMUM CONNECTION
RMIN	- reference potentiometer-minimum connegtion
RT30	- rectified zov d.c.
RUNA	- run relay coil
RUNC	- RUN INTERLOCK-COMMON
RUNNC	- RUN interlock-normally closed
RUNNO	- RUN INTERLOCK-NORMALLY OPEN
RUNR	- run read out
$\overline{S R}$	- inverter synchronized readolit signal
START	- drive start infut signal
STOP	- drive stop input signal
SYNC	- inverter synchronized commano signal
TH 1-2	- thermal switch terminals
$\times 1-2$	- Control transformer-z6V a.c. terminals
XFR	- external fault reset input signal
+20V	- + zov dic. regulated power supply

FIGURE 26 (continued)
GP Operating Notes \& Drive Elementary Diagram, Sheet 3 (continued on Sheet 4)

FIGURE 26 (continued)
GP Operating Notes \& Drive Elementary Diagram, Sheet 4
(continued on Sheet 5)

FIGURE 26 (continued)
GP Operatıng Notes \& Drive Elementary Diagram, Sheet 5
(contınued on Sheet 6)

FIGURE 26 (continued)
GP Operating Notes \& Drive Elementary Diagram, Sheet 6
(continued on Sheet 7)

FIGURE 26 (continued)
GP Operating Notes \& Drive Elementary Diagram, Sheet 7

$\underset{\text { AF-400 Drive GP Outline Diagram }}{\substack{\text { FIGURE } \\(36 B 605389 A A)}}$

FIGURE 28B

AF-400 Drive GP Inverter Elementary Diagram

(36D870007AA, Sheet 2)

FIGURE 29
AF-400 Drive GP Connection Diagram
(36D870007AA, Sheet 5)

SPARE AND RENEWAL PARTS (HP related)

AF-400 Drive - 10 to $60 \mathrm{HP}, 230$ or 460 Volts AC. Three-Phase, 50 or 60 Hz

PRINTED CIRCUIT CARDS

Catalog Number \longrightarrow Description

193X385AAG01
193X387AAG01
193X389AAG01
193X390AAG01
193X391AAG01
193X391AAG02
193X475AAG01
193X476AAG01
193X477AAG01
193X478AAG01
193X479AAG01
193X480AAG01
193X481AAG01

Commutation Power Supply Card
Current Isolator Card
Pulse Transformer w/C.F.B. Circurt Card
Pulse Transfomer Card
Process Follower Card
Auxiliary Relay Card
Phase Logic Card
Inverter Card
Converter Card
Regulator Card
System Card
Power Supply Card
Meter Card

SUB ASSEMBLIES AND COMPONENTS (NOT HP RELATED)

Catalog Number	Description
36A353243BA	
104X156CA10	
Control transformer assembly	
104X215BA012	Control transformer only
	Ventilating Fan

SPARE AND RENEWAL PARTS (HP RELATED)
At-400 Drive $10-60 \mathrm{HP}, 230$ or 460 Volts AC. Three-Phase, 50 or 60 Hz

Part Name		Drive HP Rating 230 Volts AC								Drive HP Rating					460 Volts AC		
Catalog Number		10	15	20	25	30	40	50	60	10	15	20	25	30	40	50	60
AC Power Fuses 104X 109 AA	$\begin{gathered} \mathrm{Qty}^{3} \\ 50 \mathrm{Amp} \\ 60 \mathrm{Amp} \\ 100 \mathrm{Amp} \\ 175 \mathrm{Amp} \\ 300 \mathrm{Amp} \end{gathered}$	007	007	009	009	009	021	021	0.21	005	005	007	007	007	015	015	015
AC Control Circuat Fuses 104X109BC	$\begin{aligned} & \hline \text { Qty } 3 \\ & 3 \mathrm{Amp} \end{aligned}$	018	018	018	018	018	018	018	018	018	018	018	018	018	018	018	018
AC Control Power Fuse 104 X 109 AD	$\begin{aligned} & \text { Qty. I } \\ & 1 \text { Amp } \end{aligned}$	075	075	075	075	075	075	075	075	075	075	075	075	075	075	075	075
$\begin{aligned} & \text { Inverter Main SCR } \\ & 942 \mathrm{B279} \\ & 104 \mathrm{X125DA} \end{aligned}$	$\begin{gathered} \text { Qty } 6 \\ \text { Assembly } \\ \text { Unut } \end{gathered}$	$\begin{array}{\|c} \text { CDGO2 } \\ \hline 127 \end{array}$	$\begin{gathered} \text { CDG02 } \\ 127 \end{gathered}$	$\begin{gathered} \text { CDG02 } \\ 1.27 \end{gathered}$	$\begin{gathered} \mathrm{CDCO} 2 \\ 127 \end{gathered}$	$\begin{gathered} \mathrm{CDCo2} \\ { }_{127} \end{gathered}$	ceco2 081	$\begin{gathered} \text { CEG02 } \\ 081 \end{gathered}$	$\begin{gathered} \text { CEC02 } \\ 081 \end{gathered}$	CDG0s	$\begin{gathered} \text { CDC05 } \\ 131 \end{gathered}$	$\begin{gathered} \mathrm{CDGO5} \\ 131 \end{gathered}$	$\begin{gathered} \text { CDG05 } \\ 131 \end{gathered}$	$\begin{gathered} \text { CDG05 } \\ 131 \end{gathered}$	$\begin{gathered} \text { CEG03 } \\ 060 \end{gathered}$	$\begin{gathered} \text { CEGO3 } \\ 060 \end{gathered}$	$\begin{gathered} \text { CEG03 } \\ 060 \end{gathered}$
Inverter Mann Diode 942 B 299 CD 957 A 614 BA $104 \times 125 \mathrm{AA}$	Q4y. 6 Assembly Assembly Unit	G06 131	G06 131	604 132	604 132	C04 132	G04 G02 132 134	G04 G02 132 134	G04 G02 132 134	G0: 124	$\begin{aligned} & 607 \\ & 124 \end{aligned}$	G07 124	G07 124	G07 124	G03 C01 133 135	G03 G01 133 135	603 601 133 135
$\begin{aligned} & \text { Commutating SCR } \\ & 942 \mathrm{~B} 279 \\ & \text { 104X125DA } \end{aligned}$	Qty. 6 Assembly Unat	$\begin{array}{\|c} \text { CDG02 } \\ 127 \end{array}$	$\begin{array}{\|c} \text { CDG02 } \\ 1.27 \end{array}$	$\begin{array}{\|c\|c\|c\|} \text { CDGO2 } \end{array}$	$\begin{gathered} \text { CDG02 } \\ 127 \end{gathered}$	$\begin{gathered} \text { CDG02 } \\ 127 \end{gathered}$	${ }_{\text {CEG02 }}$	CEG02 081	$\begin{gathered} \text { CEG02 } \\ 081 \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{CDG} 05 \\ 131 \end{gathered}\right.$	$\begin{gathered} \text { CDG05 } \\ 131 \end{gathered}$	$\begin{gathered} \text { CDG05 } \\ 131 \end{gathered}$	$\begin{gathered} \text { CDG05 } \\ 131 \end{gathered}$	$\begin{gathered} \text { CDG05 } \\ 131 \end{gathered}$	$\begin{gathered} \text { CDG05 } \\ 131 \end{gathered}$	$\begin{gathered} \text { CDG05 } \\ 131 \end{gathered}$	$\begin{gathered} \text { CDG05 } \\ 131 \end{gathered}$
Commutating Diode 942B27aCD 957A614BA $104 \times 125 A A$	Qty 6 Assembly Assembly Assembly	$\begin{gathered} 606 \\ 131 \end{gathered}$	$\begin{aligned} & \text { G06 } \\ & 131 \end{aligned}$	G04 132	G04 132	C04 132	G04 132	604 132	G04 132	$\begin{gathered} \text { G07 } \\ 124 \end{gathered}$	$\begin{aligned} & \mathrm{C} 07 \\ & 124 \end{aligned}$	$\begin{gathered} \mathrm{G} 07 \\ 124 \end{gathered}$	$\begin{gathered} \mathrm{G} 07 \\ 124 \end{gathered}$	$\begin{gathered} \mathrm{C} 07 \\ 124 \end{gathered}$	G03 133	603 133	603 133
$\begin{aligned} & \text { Converter SCR } \\ & 942 \mathrm{~B} 279 \\ & 104 \times 125 \mathrm{DA} \end{aligned}$	Qty 6 Assembly Unit	$\begin{array}{c\|c} \hline \text { CDG03 } \\ 083 \end{array}$	$\begin{array}{\|c} \text { CDG03 } \\ 083 \end{array}$	$\begin{array}{\|c} \mathrm{CDG} 03 \\ 083 \end{array}$	$\begin{array}{\|c} \text { CDGO3 } \\ \hline 0 B 3 \end{array}$	$\underset{083}{\mathrm{CDG} 03}$	$\begin{gathered} \text { CEG01 } \\ 058 . \end{gathered}$	$\begin{gathered} \text { CEGO1 }_{4} \\ 058 \end{gathered}$	$\begin{gathered} \text { CEGO1 } \\ 058 \end{gathered}$	$\left\lvert\, \begin{array}{c\|c} \text { CDG04 } \\ 090 \end{array}\right.$	$\begin{gathered} \text { CDG04 } \\ 090 \end{gathered}$	$\begin{gathered} \text { CDG04 } \\ 090 \end{gathered}$	$\begin{gathered} \text { CDG04 } \\ 090 \end{gathered}$	$\begin{gathered} \text { CDG04 } \\ 090 \end{gathered}$	$\begin{gathered} \text { CEG04 } \\ 057 \end{gathered}$	$\begin{gathered} \text { CECO4 } \\ 057 \end{gathered}$	$\begin{gathered} \text { CEG04 } \\ 057 \end{gathered}$
Phase Module 331X4I5AA 331X414AA	Qty 3	G03	G03	G02	G02	G02	G03	G03	603	G03	C03	602	G02	G02	G01	G01	G01
Converter Module 331X425AA 331X424AA	Qtv 1	G03	C03	G02	G02	G02	G03	G03	G03	G03	603	G02	G02	G02	G01	G01	601
$\begin{aligned} & \text { Filter Reactor - L1 } \\ & 104 \times 220 \mathrm{AB} \end{aligned}$	Qty 1	014	014	013	013	013	012	012	012	014	014	013	013	013	012	012	012

SPARE AND RENEWAL PARTS (HP RELATED)
AF-400 Drive $10-60 \mathrm{HP}, 230$ or 460 Volts AC, Three-Phase, 50 or 60 Hz

SPARE AND RENEWAL PARTS

AF- 400 Drive -10 to $60 \mathrm{HP}, 230$ or 460 Volts AC, Three-Phase, 50 or 60 Hz

MODIFICATION KITS

Catalog Number

6VPFI0AI
6VREV10A1
104X166AA059
6VFLTl0A1
104X166AA060
6VRUN10A1
104X166AA061

REMOTE OPERATORS STATIONS

Catalog Number

6VOC72
6VOC82
6VOC52
104X169AA008
104X152AC027
104X152AC027
36B605269AAG05

SPEED AND LOAD INDICATORS

Catalog Number

6VSSI12A1
$104 \times 117 \mathrm{CC003}$
6 VLII2A1
104X117CC005

6VIE11
6VIE2I

Description

Process Follower Kıt
Reversing Relay Kit
Reversing Relay
Fault Relay Kit
Fault Relay
Run Relay Kit
Run Relay
Description
Speed Adjust - Start Stop
Speed Adjust - Forward/Reverse Selector - Start Stop
Speed Adjust - Manual/Auto Selector - Start Stop
Start Pushbutton
Forward/Reverse Selector Switch
Manual/Auto Selector Switch
Speed Adjust Pot Assembly

Speed Adjust Pot Assembly

Description

Speed Indicator Kıt
DO-91 X 0-100\% Speed Meter
Load Indicator Kit
DO-91 0-150\% Load Meter

Enclosure for 1 Instrument
Enclosure for 2 Instruments

HOT LINE TELEPHONE NUMBER

The Contract Warranty for AF-400 drives is stated in the General Electric Apparatus Handbook, Section 105, Page 71.

The purpose of the following is to provide specific instructions to the AF-400 user regarding warranty and administration and how to obtain assistance on out-of-warranty failures.

AF-400 DRIVE POWER UNITS (10 to 60 HP)

The warranty covers all major parts of the power unit, such as printed circuit boards, SCR modules, etc., but does not provide for replacement of fuses or the complete power unit.

1. In the event of failure or misapplication during "in warranty" refer to the instruction book to identify the defective part or sub-assembly.
2. When the defective part has been identified (or for assistance in identification) call:

General Electric Company
Erie, Pennsylvania (814) 455-3219
(24-Hour Phone Service)

Before calling, list Catalog numbers of the power unit, motor, operator's station or modification kits.

AF-400 DRIVE MOTORS

AC motor repairs are generally handled by General Electric Apparatus Service Shops. For specific instructions on your motor, call the number listed above and furnish complete nameplate data.

GLOSSARY OF TERMS

Page
APL - Inverter Control Plug - Phase A $17,19,19,22,23,31,33,35$,
ATIM - Acceleration Time Adjust - Regulator Card 25
AUTO MAX - Maximum Speed Adjust - Process Follower 63
AUTO MIN - Minimum Speed Adjust - Process Follower 63
BPL - Inverter Control Plug - Phase B 17,19,22,23,31,33,35
BF - Base Frequency Adjust - Regulator Card $12,24,29$
Cl - Converter Filter Capactor 9,17,18,19,36,37
CB - AC Power Circuit Breaker 16,17
CFA - Current Feedback Adjust - Current Isolator 15,17,19,21,27,32
CLIM - Current Limit Adjust - Regulator Card 25,29,32
CLP - Commutating Reactor - Positive $10,19,33,34$
CLN - Commutating Reactor - Negative $10,18,19,33,34$
CLST - Current Limit Stability Adjust - Regulator Card $12,25,29$
CN - Commutation Power Supply - Negative 18,34
COC - Commutation Overcurrent Trip - Inverter $13,19,27,31,55$
COM - Common Point - Control 24,29
CONV MOD. - AC to DC Conversion Module 67
CP - Commutation Power Supply - Negative $17,18,33,34,42$
CPL - Inverter Control Plug - Phase C $17,19,22,23,31,33,35$
CSN - Commutating SCR - Negative $10,18,50,52,53,55$
CSP - Commutating SCR - Positive $10,18,50,52,53,55$
CTC - Current Transformer - Commutating 14,18,33,34
CURR. ISOL - - Current Isolator Card 67
CUV - Control Undervoltage Trip - Inverter $14,19,27,31,55$
DIG - Digital Reference Input
DPL - Converter Control Plug $17,19,22,23,31$
DMF - Decrease to Minimum Frequency Signal 11,29
DTIM - Decel Time Adjust - Regulator Card 25
FLT - Fault Relay - Option Card 62
FTR - Fault Trip - Readout Signal 11,32,33
FUl-3 - Man Power AC Line Fuses 17,18
FU4-6 - Control Circuit Fuses 30,32
FU7-115V AC Control Power Fuse 17,33
FVR - Frequency Voltage Readout Signal $12,22,29$
GAIN - Gain Adjust - Process Follower 63
IF -- Inverter Frequency Light - System Card 11,19,22,27,55
IOC - Instantaneous Overcurrent Trip Light $14,19,27,31,55$
IOF - Inverter Overfrequency Trip Light 14,19,30,55
IPA - Inverter Phase A Logic Signal
IRC - IR Compensation Adjust - Regulator Card 24,29
IS - Inverter Start Relay - Option Card 30
ISN - Inverter SCR - Negative 9,10
ISP - Inverter SCR - Positive 9,10
ITOC .-. Inverter Time Overcurrent Trip -. Inverter $11,19,27,29,31,32,55,65$

GLOSSARY OF TERMS

(continued)
Jl - Driver Backplane Plug 67,68
J32 - Driver Backplane Plug 67,68
JX1 - Driver Backplane Plug 68
JX11 - Driver Backplane Plug 68
JX32 - Driver Backplane Plug 68
LCS - DC Link Current Signal 27,32
Ll - Converter Filter Reactor 9,17,18,35,37,67
LSH - DC Link Shunt 17,21,67
LOV - DC Link Overvoltage Trip $13,19,24,55$
1Ll - 1L3 - Commutation Power Supply Input 18
MA - Manual Auto Relay Card - Option Card 62,63
MINF - Minimum Frequency Adjust - Regulator Card $12,25,32$
MS - AC Motor Starter 67
MSR - Minimum Speed Relay - Option Card 68
MVFR - Minimum Voltage Frequency Readout 11,32
N1 - Negative Converter Output 18,33,35,36,37
N2 - Negative Inverter Input $9,10,17,18,22,23,24,30,32,34,35$
OL - Motor Starter Overload 65
OFFSET - Offset Adjust - Process Follower Card 63
Pl - Converter Output - Positive $17,18,22,23,36$
P2 - Converter Filtered Output - Positive $17,18,22,23,24,32,37$
P3 - Inverter Positive Input 9,10,18,30,32,34
PB1 - 2 Pushbuttons 68
PH MOD - Inverter Phase Module 67
PS/LOP - Phase Sequence/Loss of Phase Trip $13,19,22,27,55$
Rl - Capacitor Discharge Resistor 18
REF - Reference Input Signal 19
REV - Reversing Relay - Option Card 62
RF1.7 - Isolation Feedback Resistors 67
RT30 - Rectified 30V DC 68
RUN — RUN Relay - Option Card 60,62
SR - Inverter Synchronized Readout Signal 30
SW1-2 - Selector Switches 68
SYNC - Inverter Line Synchronized Light $11,19,25,29,30,55$
TH1-2 - Thermal Switch Terminals 17,18
THSW - Thermal Switch - Inverter Air 17
TX1 - Control Transformer 11,17

GLOSSARY OF TERMS

(continued)

Abstract

Page VB — Voltage Boost Adjust - Regulator Card 12,24,29,32 V/Hz - Volts per Hertz Adjust - Regulator Card 12,19,24 VLIM - Voltage Limit Adjust - Regulator Card 12,23,24,29 X1-X2 - Control Transformer - 26 V AC Terminals 22 XFR - External Fault Reset - Input Signal 11

GENERAL ELECTRIC COMPANY SPEED VARIATOR PRODUCTS OPERATION ERIE, PENNSYLVANIA 16531

GENERAL ELECTRIC

[^0]: 2 Disconnect the three-phase AC input power.

