CONTENTS

Page
Description and Application 1
Adjustment 2
Trouble Shooting 2
Illustrations
Fig. 1 One non-polarized relay function schematic 3
Fig. 2 One non-polarized relay function connection 4
Fig. 3 Two non-polarized relay function schematic 5
Fig. 4 Two non-polarized relay function connection 6
Fig. 5 One- or two-polarized relay function schematic 7
Fig. 6 One- or two-polarized relay function connection 8
Fig. 7 Card schematic 193X704AAG01, G02 9
Fig. 8 Card layout 193X704AAG01. G02 10

DESCRIPTION AND APPLICATION

The voltage sensitive relay is a universal card used to detect the level of an input voltage, or the difference between input voltages. The relay card can contain one or two sensitive relays. This allows the function to act as a differential relay with the two-relay version, or, with different connections to the card receptacle, to act in a polarized or nonpolarized fashion.

The function is applied in either open-or closedloop circuits. In many applications the card is employed to switch a signal or pick up another relay whenever it is actuated. In other cases it is the forward gain element in a closed-loop system. In this general area of application, whenever the relay operates it actuates some circuit that directly effects at least one of the inputs to the sensitive relay card. An example of this would be a motoroperated rhcostat position control.

The voltage sensitive relay card contains, in addition to the relay(s), a universal amplifier and components to allow for wide variations in input voltages. There is a gain adjustment (P629) around the universal amplifier which is used to set the sensitivity of the relay action. A bias adjustment (P626) is also included to set the level at which the relay(s) will pick up or to act as a zero adjust.

The relay card also contains two limit adjustments (P627 and 628). These adjustments are normally left in the fully clockwise or counterclockwise position. In the clockwise position, they serve to limit the universal amplifier output to approximately 10 volts. In the counterclockwise position they clamp the universal amplifier output at near zero volts. By turning one fully clockwise and the other fully counterclockwise, the relay card becomes polarized. The relay operates on one net polarity of input only.

[^0]
ADJUSTMENT

1. Voltage-sensing Relay - Polarized Operation
a. Turn gain potentiometer fully clockwise.*
b. If input signal is positive, turn $P 628$ fully clockwise and P627 fully counterclockwise.

If input signal is negative, turn P627 fully clockwise and P628 fully counterclockwise.
c. Set input signal to value required for pick-up of sensitive relay and adjust bias potentiometer until relay picks up.

NOTE: If input signal cannot be varied conveniently, a battery or other d-c source may be used to supply an artificial signal.
2. Voltage-sensing Relay - Non-polarized Operation
a. Turn gain potentiometer fully clockwise.*
b. With input signal at zero (perferably shortcircuited to common), turn bias potentiometer to give as near zero output voltage as possible, measured across relay coil.
c. Turn P627 and P628 clockwise.
d. Turn gain potentiometer fully counterclockwise.
e. Set input signal to value required for pick-up of sensitive relay and adjust gain potentiometer clockwise until relay picks up.
3. Voltage Comparison or Differential Relay Single Relay with Non-polarized Output or Dual Relay with Polarized Outputs
a. Turn P627, P628 and gain potentiometer clockwise.
b. With input signal(s) at zero (perferably shortcircuited to common), turn bias potentiometer to give as near zero output voltage as possible, measured across relay coil.
c. Set input(s) to the maximum value required and adjust external rheostat (tracking adjust) to give as near zero output voltage as possible across relay coils.
d. The above adjustment gives operation a minimum difference between input signal(s)* (maxi-
mum sensitivity). If operation at a larger difference between input signals is required, turn the gain potentiometer counterclockwise until the desired operation is obtained.
4. Voltage Comparison - Single Relay with Polarized Operation
a. Turn gain potentiometer fully clockwise.*
b. If relay is to pick up on a positive signal, turn P628 fully clockwise and P627fully counterclockwise.
c. If relay is to pick upona negative signal, turn P627 fully clockwise and P628 fully counterclockwise.
d. See adjustment 3, part b.
e. See adjustment 3, part c.
f. See adjustment 3, part d.

NOTE: Input voltages are not necessarily equal for relay operation. The input signals are the currents caused by the applied voltages. This applies to single polarized and non-polarized relays as well as dual relays with polarized outputs.

TROUBLE SHOOTING

1. Follow the general trouble shooting procedure in the General Description in GEI-87501A-13 or GEI-92001.
2. Check potentiometer setting per marked or recorded potentiometer positions.
3. Replace card with spare.
a. If malfunction persists, the failure is in the external wire connections.
b. If trouble disappeared, visually inspect defective card for damaged components.
4. See GEI-92016 for instructions on universal amplifier.

* If relay operation is erratic or unduly sensitive to electrical noise, the gain potentiometer should be turned slightly counterclockwise until satisfactory operation is obtained.

NOMENC LATURE

AMPL 626	Standard Amplifier
C626	Noise Suppression Capacitor
D628	Positive Limit Diode
D629	Negative Limit Diode
D630	Blocking Diode
P626	Bias Adjust Potentiometer
P627	Positive Limit Adjust Potentiometer
P628	Negative Limit Adjust Potentiometer
P629	Gain Adjust Potentiometer
R626,627, 628	Bias Resistors
R629	Noise Suppression Resistor
R630,631	Input Resistors
632,633	
R634,635	Input Resistors
636,637	
R638	
R639	Commoning Resistor
R641,642	Amplifier Gain Resistor
RX626	Limit Resistors
	6.3 V Relay

NOTES

1. Numbers inside the small rectangles indicate tab numbers which correspond to matching receptacle numbers.
2. Select input resistance to approximately 1 K per volt, based on the relay operating input voltage. The maximum input voltage is ten times that of the
relay operating input voltage, not exceeding 300 volts.
3. CAUTION: IF 300 VOLTS INPUT IS APPLIED TO TAB 9, TAB 10 MUST NOT BE USED; OR IF 300 VOLTS INPUT IS APPLIED TO TAB 10, TAB 9 MUST NOT BE USED. THIS IS A PRECAUTION TO AVOID 300 VOLTS POTENTIAL BETWEEN TABS.
4. The position of bias adjust potentiometer (P626) determines the input voltage value at which the relay operates.
5. For more accurate zero adjust: there are four resistance combinations furnished with resistors R626, R627, and R628, which provide four ranges that can be selected. As more resistance is added, the range of P 626 zero adjust becomes narrower, permitting a more accurate zero adjust setting to be made as input voltages approach or are close to zero volts.
6. The gain can be adjusted sothat the relay pickup is obtained between 0.01 and 1.7 MA input current.
7. Refer to GEI-92016 instruction book for information about amplifier (AMPL 626).
8. The components and circuits shown in dashed lines are protective components and do not affect the relay function.

Fig. 1. One non-polarized relay function schematic

SPECIFICATION

Input: 0 to $\pm 300 \mathrm{VDC}$
Output: ± 10 volts at 1 MA

FUNCTIONAL CONNECTION

VOLTAGE CHECK LIST
(With +20 volts DC between Tab 30 and Tab 13, and - 20 volts DC between Tab 3 and Tab 13)

Plus	Minus	DC Voltage
Tab 2	Tab 13	0 to -10 volts DC (depending on input)

NOTES

1.
2. _ The sequence wiring of receptacles may require wires for both entering and leaving a terminal. This is accomplished by making the connections to the horizontally adjacent terminals and inserting a jumper spring between the terminals.
3. ___ Number in circle at side of receptacle indicates space unit requirements.
4. __ See Fig. 1, NOTE 5 under functional shemetic diagram.
5. \qquad See Fig. 1, NOTES 2 and 3.

Fig. 2. One non-polarized relay function connection

AMPL 626
C626
D626
D627
D628
D629
D630
P626
P627

R626, 627, 628 Bias Resistors
R630,631, 632
633
R634, 635, 636
637
R638
R639
R641, 642
RX626, 627

Positive Limit Adjust Potentiometer
Negative Limit Adjust Potentiometer
Positive Limit Adjust Potentiometer
Negative Limit Adjust Potentiometer

R629 Noise Suppression Resistor
Standard Amplifier
Noise Suppression Capacitor
Relay Function Polarizing Diode*
Relay Function Polarizing Diode*
Positive Limit Diode
Negative Limit Diode
Blocking Diode
Bias Adjust Potentiometer

Gain Adjust Potentiometer

Input Resistors
Input Resistors
Commoning Resistor
Amplifier Gain Resistor
Limit Resistors
6.3 V Relay

1. Numbers inside the small rectangles indicate tab numbers which correspond to matching receptacle numbers.
2. Select input resistance to approximately 1 K per volt, based on the relay operating input voltage. The maximum input current is 10 MA . The minimum resistance is 1 K , which must be an external resistor. Resistors R630 through R637 furnish two inputs with seven resistance combinations each.
3. CAUTION: IF 300 VOLTS INPUT IS APPLIED TO TAB 9, TAB 10 MUST NOT BE USED; OR IF 300 VOLTS INPUT IS APPLIED TO TAB 10, TAB 9 MUST NOT BE USED. THIS IS A PRECAUTTON TO AVOID 300 VOLTS POTENTIAL BETWEEN TABS凹HICH MAY dAMAGE THE RELAY CARD OR BLOW A FUSE.
4. The gain can be adjusted so that the relay pickup is obtained between 0.01 and 1.7 MA input current.
5. Refer to GEI-92016 instruction book for information about amplifier (AMPL 626).
6. The components and circuits shown in dashed lines are protective components and do not affect the relay function.
[^1]Fig. 3. Two non-polarized relay function schematic

SPECIFICATION

Input: 0 to $\pm 300 \mathrm{VDC}$ Output: ± 6.3 volts at 1 MA

VOLTAGE CHECK LIST

(With +20 volts DC between Tab 30 and Tab 13, and -20 volts DC between Tab 3 and Tab 13)

Plus	Minus	Voltage
Tab 2	Tab 13	0 to -6.3 volts DC (depending on input)

FUNCTIONAL CONNECTION

NOTES

1.

2. \qquad The sequence wiring of receptacles may require wires for both entering and leaving a terminal. This is accomplished by making the connections to the horizontally adjacent terminals and inserting a jumper spring between the terminals.
3. \qquad Number in circle at side of receptacle indicates space unit requirements.
4. \qquad See Fig. 3, NOTES 2 and 3.
5.

Indicates jumper spring

Fig. 4. Two non-polarized relay function connection

NOMENC LATURE

AMPL 626
C626
D626
D627
D628
D629
D630
P626
P627
P628
P629
R626,
627, 628
R629
R630, 631, 632 633
R634, 635, 636
637
R638 Commoning Resistor
R639 Amplifier Gain Resistor
R641, 642
RX626,627

Standard Amplifier
Noise Suppression Capacitor
Relay Function Polarizing Diode
Relay Function Polarizing Diode
Positive Limit Diode
Negative Limit Diode
Blocking Diode
Bias Adjust Potentiometer
Positive Limit Adjust Potentiometer
Negative Limit Adjust Potentiometer
Gain Adjust Potentiometer
Bias Resistors
Noise Suppression Resistor
Input Resistors Limit Resistors
6.3 V Relay

1. Numbers inside the small rectangles indicatetab numbers which correspond to matching receptacle numbers.
2. Select input resistance to approximately 1 K per volt, based on the relay operating input voltage. The maximum input current is 10 MA . The minimum resistance is 1 K , which must be an external resistor. Resistors R630 through R637 furnish two inputs with seven resistance combinations each.
3. CAUTION: IF 300 VOLTS INPUT IS APPLIED TO TAB 9, TAB 10 MUST NOT BE USED; OR IF 300 VOLTS INPUT IS APPLIED TO TAB 10, TAB 9 MUST NOT BE USED. THIS IS A PRECAUTION TO AVOID 300 VOLTS POTENTIAL BETWEEN TABS WHICH MAY DAMAGE THE RELAY CARD OR BLOW A FUSE.
4. The gain can be adjusted so that the relay pickup is obtained between 0.01 and 1.7 MA input current.
5. Refer to GEI-92016 instruction book for information about amplifier (AMPL 626).
6. The components and circuits shown in dashed lines are protective components and do not affect the relay function.
7. A G01 polarized relay card is equipped with RX626 whereas a G02 polarized relay card is equipped with RX626 and RX627.

Fig. 5. One- or two-polarized relay function schematic

SPECIFICATION

Input: 0 to $\pm 300 \mathrm{VDC}$
Output: ± 10 volts at 1 MA

NOTES

1. \square Indicates retaining spring
2. \qquad The sequence wiring of receptacles may require wires for both entering and leaving a terminal. This is accomplished by making the connections to the horizontally adjacent terminals and inserting a jumper spring between the terminals.
3. \qquad Number in circle at side of receptacle indicates space unit requirements
4. \qquad See Fig. 5, NOTES 2 and 3.

Fig. 6. One- or two-polarized relay function connection

NOTES

1. Refer to the instruction book for detailed operation.
2. Numbers inside the small rectangles indicate tab numbers which correspond to matching receptacle numbers.

TABI.E I

Card Catalog No.	Qty of Relays	Relay Nomenclature	Tab Connection
193×704 AAG01	1	RX626	See schematic above for tabs associated with relay nomenclature
193X704AAG02	2	RX626, RX627	

Fig. 7. Card schematic 193X704AAGO1, GO2

GEI-92015C Sensitive Relay Card

FRONT VIEW SHOWING LOCATION OF COMPONENTS

NOTES

1. Indicated tab numbers correspond to matching receptacle numbers.
2. Crosshatched tabs indicate tabs used.
3. Card size, $5.500_{-.015}^{+.000} \times 5.130_{-.008}^{+.002}$

VOLTAGE CHECK LIST
(With +20 volts DC between Tab 30 and Tab 13, and -20 volts DC between Tab and Tab 13)

Plus	Minus	Voltage
Tab 2	Tab 13	0 to ± 6.3 volts (depending on input)

Fig. 8. Card layout 193X704AAG01, G02
(for G01, RX627 is removed)
SPEED VARIATOR DEPARTMENT

ERIE, PENNSYLVANIA 16501

[^0]: These instructions do not purport to cover oll details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the General Electric Company.

[^1]: *Shorted out for the non-polarized relay function.

