331X456AAG01-G04

WARNING

Abstract

ALWAYS DISCONNECT ALL POWER TO THE DRIVE BEFORE REMOVNG OR INSERTING A PRINTED CIRCUIT CARD. FAILURE TO DO SO MAY CAUSE SERIOUS INJ URY TO PERSONNEL AND DAMAGE TO THE DRIVE OR DRIVEN MACHINERY.

These instructions do not purport to cover oll details or variafions in equipment nor to provide for every possible contingency fa be met in connection with installation, operation or moinfenance. Should further information be desined or should parficular pmbkms arise 'which ore not covered sufficrently for he percher's purposes, the motfer should be referred to General Electric Compony.

Introduction

The motor field control is a thyristor controlled power supply intended for use as an adjustable exciter for highly inductive loads. Its primary use is as a motor field supply for use in systems which require operation in the constant horsepower region where the armature voltage is maintained constant and the field is varied. The crossover circuitry that achieves this type of control is an integral portion of this sub-assembly.

The control circuitry includes a current regulator that will reduce the effects of field heating.

An alternate mode of operation is available that permits adjusting the output current (field current) with an external programming signal.

Another separate but related function is the "tachometer monitor" function which is used to reduce the possibilities of overspeed in the event of tachometer circuitry malfunctions, tachometer misconnections, or regulator misoperation.

Due to the flexibility of the circuit, it is necessary to check the elementary diagram of this sub-assembly with the elementary diagram of the system to determine the intended mode of operation. Some of the adjustment potentiometers may not be operative in some of the modes of operation.

Certain of the output points on the terminal board are not committed and they may be connected to various points in the circuit so referring to the actual unit and checking it with the various elementary diagrams is essential.

General Description
The input power terminals are at the top of the three fuses and should be connected to a proper source of three-phase alternating current. The nominal input voltage is as follows:

Sub-Assembly	Card No.	Input Voltage	Output Voltage	Amps
331X456AAG01	193X523ABG03	230 V	150	10/13
GO2	G04	460 V	300	10/13
G03	G05	230 V	150	22/25
G04	G0 6	460 V	300	22/25

Groups 2 and 4 may also be used at 230V. Range changing taps are provided to scale the crossover voltage properly for either 240 V or 500 V on each group.

The circuit is not phase sequence sensitive.

The circuits are designed for $50 \mathbf{H z} / 60 \mathrm{~Hz}$. If the input frequency $\mathbf{1 8} 60 \mathrm{~Hz}$ there should be a jumper between $Z A$ and $Z B$. This jumper should be removed for $50 \mathbf{H z}$ operation.

The field output terminals- are Fl end F2 and are located just below the fuse block with F1 being positive. The designations F1 and F2 are stamped on the printed circuit board for easy identification.

The output is achieved by "2/3 wave" rectification and controlled by a single thyristor. Therefore, the nominal maximum output voltage is 150 V or $\mathbf{3 0 0 V}$ depending on whether the input is $\mathbf{2 3 0 V}$ or $\mathbf{4 6 0 V}$ respectively.

The circuits are trimmed so that the output voltage cannot be turned fully off by the crossover voltage or an external field programming signal. The minimum voltage will be 1 to 8 volts for groups 1 and 3 and 1 to 16 volts for groups 2 and 4 , when they are operated at their nominal input voltage.

Control power for the sub-assembly is supplied through the finger connections at the bottom of the card. The power requirement is -

```
Positive 19.9 to 20.1 volts \(D C\) on \(\mathbf{+ 2 0}\) terminal with respect to COM. (approx. 70 ma )
Negative 19.9 to 20.1 volts \(D C\) on -20 terminal with respect to COM. (approx. 50 ma )
```

Adjustments
Frequency: $\quad 60 \mathrm{~Hz}$ ZA-ZB Jumper in
$50 \mathrm{~Hz} \quad \mathrm{ZA}-\mathrm{ZB}$ Jumper removed
Current range: For G01 and G02 sub-assemblies, the following jumper conbinations should be used. The current given is the range that may be adjusted by the FMAX potentiometer when below crossover and with no external programming input.

Jumper FMAX Range
Pin Connections

None
YB-YD
$Y A-Y B$
$Y A-Y B \& Y C-Y D$
YA-YC
Amperes
$.45-.90$
$.68-1.36$
$1.33-2.65$
$2.05-4.11$
$3.75-7.5$
$Y A-Y C$ \& $Y B-Y D \quad 6.52-13.0 *$

For group 3 and 4 sub-assemblies the ranges are ${ }^{-}$

Jumper	
None	FMAX Range
(Amperes)	
YB-YD	$.94-1.88$
YA-YB \& YA-YD	$1.43-2.87$
YA-YC	$2.73-5.45$
YA-YC \& YB-YD	$4.55-9.09$
* Upper values beyond thermal rating in normal ambients.	

When the jumpers are connected per the above tables, the desired field current may be set with the FMAX potentiometer.

Crossover Voltage: For use as a field supply with armature voltage causing the field to weaken for operation in the constant horsepower region, armature voltage may be brought in on MP and MN where the common mode is rejected by high impedance. Jumpers are provided to select two ranges as given below:

\[

\]

With the jumpers connected as given, the exact value of crossover may be set by the CROSS potentiometer.

Crossover action may be modified by a signal on the COMP terminal. Its normal use would be to make the crossover a function of CEMF rather than terminal voltage. A signal proportional to current (IR drop) would be applied to COMP. This signal should be with respect to COM. If COMP is net used, it should be connected to COM. An alternative input for crossover control is the MFB terminal point. Its input must be referenced to COM and the crossover range will be 4.40 to 6.25 volts.

When MFB is used, it may be necessary to connect pin CF1 to pin CF2 which provides a filtering effect. When MP and MN are used there is a filter already in the circuit,

Minimum field setting: The minimum field may be set with the FMIN potentiometer. It should be set with acrossover signal approximately 3% higher than the value needed to initiate field weakening. This potentiometer is inactive when external field programming is achieved by a signal applied to FCI. FMIN should be set after FMAX since the FMAX setting affects FMIN but not vice-versa.

Field loss setting: The FLOSS potentiometer may be used to adjust the field loss detector. (The field loss output is a voltage on the SYS terminal.) Turning FLOSS fully counter-clockwise will disable the field loss function. An output may still occur on SYS due to operation of the tachometer monitor function.

Tachometer monitor adjustments: The operation of. the tachometer monitor may be adjusted by the SLIM and SCAL potentiometers. See the description of the tachometer monitor function for their function.

Input and output points:

The following terminal board points are available on the 18 point terminal board:

Point	Nomenclature	Function
1		(no connection)
2	MN	Crossover input m see above
3		(no connection)
4	MP	Crossover input - see above
5		(no connection)
6	COMP	Crossover input compensation - see above
7	COM	Common for signal power
8	MFB	Alternate crossover input - see above
9	FP2	Connection to FP2 stab connector - see below
10	FCI	Current programming point - see below
11	-20	Negative signal power input
12	FCR	Diagnostic programming point
13	SFB	Speed feedback input for tach monitor
14	+20	Positive signal power input
15	SYS	Trip signal output
16	FC	Connection to. FC stab connector - see below
17	FCM	Connection to FCM pin connector
18	FP1	Connection to FP1 pin connector

Test Posts:

Four test posts are located below the potentiometers

Nomenclature
TA TACH ALIGN - see tachometer monitor
CM Signal proportional to field current
TF Tachometer monitor trip signal
COM

Function

COMMON

Pin connectors:
There are, a number of pin connectors on the printed circuit card, dome are used to make-connections to the power circuitry while others are for range selection, and operating mode modification.

Pin Nomenclature	Function
K12; K23	Synchronizing input to firing circuit (from power)
1G, 1C	Firing pulse output to SCR
$\mathrm{PL}, \mathrm{PH}, \mathrm{NL}, \mathrm{NH}$	Range adjustment for crossover inputs on MP \& MN (see above)
CF1, CF2	Connecting filter capacitor if MFB is used as crossover voltage input (see above)
$Y A, Y B, Y C, Y D$	Current range adjustments (see above)
FE	Modifies crossover range. Positive voltage increases crossover, negative decreases crossover, Could also be used as a field economy' input. Negative 20 volts would reduce current to the minimum field value.
Z 2 , ZB	Input frequency selection connected for 60 Hz, open for 50 Hz
FP2	Connects a signal to terminal board point FP2
FC	Connects a signal to terminal board point FC
FP1	Connects 'a signal to terminal board point FP1
FCM	Connects a signal to terminal board FCM
CM	Signal proportional to field current
FCO	Signal proportional to field current
TAX,TI , TN, TC	Used in selecting tach polarity for tachometer monitor operation
PC	Signal proportional to armature voltage or CEMF. Used to compare with speed feedback signal on SFB when a DC tach is , used
AC	Absoluted (negative) signal proportional to armature voltage or CEMF. Used to compare with speed feedback signal on SFB when an AC tach is used.
TS	Used to input a signal proportional to armature voltage or CEMF to compare with SFB for the tach monitor function. Connected to pin DC or pin AC
TA	Signal proportional to the scaled difference between tach and armature voltage or CEMF. Used to monitor the adjustment of the SCAL potentiometer when adjusting the tach-monitor function
SM	Modifies the overspeed adjustment range of the SLIM potentiometer. Normally no connection made

Operation with Crossovar Signal

Signals to initiate crossover may be brought in on MP, MN, COMP, MFB as described previously. If $\mathbb{M P}$ and $M N$ are used, range selection is made by connecting wires PW and NW to pins PH, PL, NH, and NL as previously described. Pins CF1 and CF2 may be connected to filter the signal if MFB is used. Pin FE could be used to introduce field economy or to modify the crossover range. Current range is scaled using pins YA, YB, YC and YD as previously described. Adjustment sequence is m

1) Adjust FMAX potentiometer with no crossover signals (or operating below crossover).
2) Adjust FMIN. A signal may be applied to FCR (negative) to weaken field. (motor not running) Use only about 3% more signal than required to initiate field weakening. FMIN should be set to allow field to weaken sufficiently to achieve desired top speed.
3) Adjust field loss point. Use a positive voltage on FCR to reduce field below value established by FMIN. Set at desired trip point. Turn FLOSS clockwise and monitor SYS point. If SYS has a voltage on it when FLOSS is fully counter-clockwise, check test post TF. If it has voltage on it, the source-is a tachometer-monitor circuit trip signal. Test post TF can be connected to. COM temporarily to eliminate this source of sYs voltage. Set FLOSA and remove connection from TF to COM.

Operation with External Field Programming Signal

In this mode of operation, there should be no connections to $\mathbf{M P}, \mathbb{M N}, \mathbf{C O M P}$ and MFB. The taahometer-monitor function would not be usable in this mode. The external programming signal is introduced at FCI. A reduction of one per unit in field current requires approximately 8.7 volts. The adjustment sequence is -

1) Adjust FMAX with no input on FCI.
2) Apply FCI signal and adjust to get proper field current reduction. The field loss function may be used in this mode. Adjust current to trip point with signal on FCI. Turn FLOSS clockwise until SYS voltage'goes high.

Tachometer-Monitor Disabling
Where the tachometer-monitor is not to be used in the system, the proper disabling connections are- connect pin TC to pin $T I_{\text {. }}$ No connections to pins TAX, TN and TS.

Tachometer-Monitor Operation
The tachometer-monitor causes a voltage to appear on SYS under the following conditions:

1) SFB input too high, Trip level adjusted by SLIM potentiometer,
2) Armature voltage or CEMF too high in comparison with SFB signal. Alignment is done by use of the SCAL potentiometer. This would also be initiated by a loss of SFB signal.
3) If a DC tachometer-is used and $T S$ is connected to DC, re.versing the polarity of $S F B$ without reversing the armature or CEMF signal will
cause a.trip signal.
With the system properly adjusted, the voltage on test post TA and for terminal board point connected by connecting a wire to pin $T A$, should be low when operating at steady state and below crossover. Above crossover a signal could appear on TA without causing a trip. This is normal operation since $S F B$ will continue to increase while armature voltage does not increase. The circuit is designed to accept this lack of equality as a normal operating mode.

If an AC tach is used, the rectified output is used as an input to SFB. In this case, $T S$ is connected to $A C$ which is a negative voltage proportional to armature voltage or CEMF. Other jumper connections are made depending on the polarity of SFB.

If the "TAX to TN connection is used, TI may be connected to TC to increase its gain.

For DC tachometer applications TS is connected to DC. Other connections are made to agree with the relative polarities;

External seaing -resistors or adjustments are provrdsd for the SFB mput. See the system elementary and instructions.

The adjustment of the SCAL potentiometer should be done with the drive operating at a reasonably high voltage but below crossover. A value of 75% is suggested. Monitor test post TA and adjust the SCAL potentiometer for a voltage of between +.1 and. .1 volts.

The overspeed trip setting is made with the SLIM potentiometer. The procedure varies with different systems and the specific system instructions or operating notes should be consulted.

Fault Indications

As previously described, the SYS point will have a voltage appear if the tach-monitor function is the source or if a-field loss is being indicated. In the power circuit there are two fuses. Failure of the right hand fuse would reduce the current to zero. However, failure of either the left or center fuse would not interrupt field current, but would reduce the maximum available output voltage, This is detected by the circuit and a voltage will appear on SYS.

Field Current Indication
Voltage proportional to field current appears on pins FCO and CM. The voltage should be within $\mathbf{\pm 1 5 \%}$ of the values given in the following table:

13
\qquad
\longrightarrow
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad L___
\qquad
\qquad
\qquad

\ldots

INSTRUCTIONS

SIGNAL LEVEL DETECTOR 193X277ACG01, GO2

[^0]
INSTRUCTION

SIGNAL LEVEL DETECTOR, 193X277ACG01, GO2

1.0 GENERAL

This instruction provides basic information regarding the subject card. Refer to the system elementary diagrams for information relating to the overall system operation.

2.0 DESCRIPTION

(Test point and tab references are made with respect to the GO1 card and channel A of the GO2 card only).
2.01 This card provides a relay operation and indication when the input voltage exceeds a preset positive and/or negative level.
2.02 Two card versions are available:

G01: one relay channel
G02: two identical relay channels
2.03 The input voltage level at tab 22 to produce a relay pick-up can be adjusted by the "level adj." potentiometer for a voltage range of .1 V to 10 V measured at test post "TP1." The pick-up level is fixed at $10 \mathrm{~V} \pm .15 \mathrm{~V}$ measured at "TP2." The input voltage at tab 22 should not exceed $\pm 40 \mathrm{~V}$.
2.04 The card may be connected for pick-up at either a positive input, a negative input or both:

Positive polarization: Standard
Negative polarization: Connect tab 19 to tab 24.

Non-polarized: Connect tab 19 to tab 21.
2.05 The dropout level is approximately 90% of the pick-up level. By connecting tab 20 to tab 31 $(+20 \mathrm{~V})$ the dropout level can be adjusted with the "hysteresis" potentiometor for a dropout level from 90% to 98% of the pick-up level.
2.06 The RC time constant of the input filter can be reduced from 20 to 2 milliseconds by connecting tab 23 to tab 22. Additional filtering can be obtained by connecting a capacitor between tab 23 and common (tab 15).

CAUTION

TO AVOID RELAY CHATTERING IT IS ESSENTIAL THAT THE PEAK-TO-PEAK RIPPLE VOLTAGE MEASURED AT "TP2" AT THE PICK-UP LEVEL IS LESS THAN THE HYSTERESIS VOLTAGE.

$\therefore 07$ The pilot duty rating of the relay interlocks are . 3 A holding and 1.5 A inrush at 115 VAC .

3.0 ADJUSTMENTS

3.01 Apply the desired pick-up voltage level at tab 22. Turn the "Level Adj." pot CCW until the relay picks up. Check reverse polarity for nonpolarized operation.
3.02 If less than the standard 10% hysteresis is required turn the "hysteresis" pot CW for maximum hysteresis with tab 20 connected to +20 V (tab 31). Repeat step 3.01. Reduce the input voltage at tab 22 to the desired dropout level. Turn the "hysteresis" pot CCW until the relay drops out. Increase input filtering to avoid relay chattering if necessary.

4.0 TROUBLESHOOTING

4.01 Check for:
a) Proper input connections.
b) Proper polarity jumpers if required.
c) Proper adjustments as described above.
d) Sufficient filtering at TP2.
4.02 Check for actual operation of the relay interlocks.
4.03 If card failures are experienced, check for:
a) Excessive voltage (above $\pm 40 \mathrm{~V}$) at tab 22 .
b) Excessive relay interlock duty.
c) Excessive voltage transients on relay interlock wires. If an interlock is used in another relay coil circuit, the coil should be suppressed. Long wire runs to the relay interlocks should be avoided.

FUNCTIONAL BLOCK DIAGRAM

SIGNAL LEVEL DETECTOR

GO2

GENERAL ELECTRIC

[^0]: These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be dewed or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to General Electric Company.

