PANEL MOUNTED MOTOR FIELD CONTROL CARD GENERAL DESCRIPTION - ADJUSTMENTS

[^0]
TABLE OF CONTENTS

Page
Introduction 3
Operation/Installation 3
General Description 3
Adjustments 4
Input and Output Points 6
Computing Adjustment Points 7
LIST OF ILLUSTRATIONS
Figure Page
1 bly Connection Diagram 9
2 Motor Field Control Block Diagram 10
Assembly Dimensions 11
Relationships 11
1/2 Wave Elementary Diagram 12
1/2 Wave Elementary Diagram 13
2/3 Wave Elementary Diagram 14
2/3 Wave Elementary Diagram 15,16
Synchronizing Card Diagram 17
Synchronizing Card Layout17
1/2 Wave MFC Layout 18
2/3 Wave MFC Layout 19.20
LIST OF TABLES
Table Page
1 Assembly Ratings 5
2 Motor Field Range Jumpers 6
3 FC Voltage Constants 6

WARNING

ALWAYS DISCONNECT ALL POWER TO THE DRIVE BEFORE REMOVING OR INSERTING A PRINTED circuit card. failure to do so may cause SERIOUS INIURY TO PERSONNEL AND DAMAGE TO THE DRIVE OR DRIVEN MACHINERY.

INTRODUCTION

The Motor Field Control card (MFC) is an SCR controlled power supply intended for use as an adjustable voltage exciter for highly inductive loads. It is used primarily as a motor field supply for use with drive systems that require operation in the constant horsepower region where the armature voltage is maintained constant and the motor field is varied. The crossover circuitry that achieves this type of control is an integral part of this card.

ASSEMBLY DESCRIPTION

This assembly consists of a standard Valutrol type Motor Field Control card and a Synchronizing card located on a sheet metal bracket suitable for panel mounting. The versions available correspond to the groups of MFC cards as listed in Table I.

OPERATION

The connection dagram, Fig. l, shows the wiring between the MFC and SYNC cards.

Note: On both 1 ph . and 3 ph . assemblies, the connector post X on the SYNC card is wired to the right hand side fuse closest to the board.

The synchronizing signal, SA, is resistance isolated from the AC power by 3 M ohm input resistors.

The SA signal is a square wave switching between approximately $\pm 18 \mathrm{~V}$.

For single-phase $A C$ input, $\mathrm{G} 01-\mathrm{G} 02$, the square wave has equal positive or negative portions, - each covering 180°.

For a three-phase AC input, G04-G07, the positive portion of SA has a 240° duration while the negative duration is 120°. Operation is phase sequence independent.

The MFC input signals CEMF, CRM and SFB are applied through RC noise filters on the SYNC card with inputs CMX, CRX and SFX respectively. The RC time constant is .2 msec.

INSTALLATION

Fig. 2 shows the assembly dimensions and the three-hole mounting arrangement. The assembly should be mounted with the MFC card in a vertical plane for proper cooling of the heatsink.

GENERAL DESCRIPTION

The basic elements of the motor field control card (MFC) are shown in the simplified block diagram, Fig. 2. Two technologies can be provided for the DC SCR power rectufier:

1. A half-wave unit for:

120V DC from a 266 VAC single-phase source
2. A two-thirds wave unit for:

150V DC from a 230 VAC threc-phase source or 300 V DC from a 460 VAC three-phase source

The control circuitry includes a current regulator designed to reduce the effects of motor field heating. Several ranges of motor field current can be selected by arranging the jumpers YA, YB, YC, YD and RFR as shown in Table II. Vernier adjustment of maximum motor field current can be achieved with potentiometer $F M A X$.

The motor field output terminals are F1 and F2 located just below the fuse block with F1 being positive. The designations F1 and F2 are clearly labeled for easy identification.

The circuits are designed for 50 hertz or 60 hertz operation. If the input frequency is 60 hertz, there should be a jumper between ZA and $Z B$. This jumper should be removed for 50 hertz operation.

Burst firing technıques provide protection against AC line disturbances and random electrical norse. A selection of jumpers at $Q A, Q B, P R$ and PJ provide adjustments for the response and stability of the field current regulator and the motor control loop when in the constant horsepower range.

Armature voltage can reduce field current only to a minımum value that is established by potentiometer FMIN. -4MIN should be set after FMAX since the FMAX setting affects FMIN but not visa versa.

The crossover adjustment (CROSS) establishes the point at which motor armature voltage or CEMF causes maximum field current to begin to decrease, thus, permitting moreased motor speed with limited increase in CEMF. By adding a jumper from CRS to COM, crossover will occur at zero armature volts with CROSS pot fully CCW.

The scaled SFB (Speed Feedback) signal proportional to tachometer voltage is compared to the motor CEMF signal. ALIGN adjustment scales the speed feedback signal to track the CEMF signal below crossover. Normal operation above crossover results in the SFB signal being higher than the CEMF signal and circuitry is provided to prevent trips in this mode. See Fig. 4. If the CEMF signal is greater than SFB signal or of the same polarity (indicating a reversed tachometer connection) a trip will be initiated.

The speed limit (SLIM) adjustment sets a limit on motor speed where operation is not desired. SLIM and ALIGN are tied in with the "tachometer monitor" function which is designed to reduce the possibilities of motor overspeed in the event of tachometer circuitry problems, (loss of feedback signal or reversed polarity) and control misoperation.

Finally, a motor field loss circuit (FLOSS) is provided. All of these malfunctions, field loss, tachometer problems and overspeed are connected to a common system loss trip circuit (SYS) which is usually used to provide an orderly shutdown of the drive system.

NOTE

A JUMPER FROM LPD - LPI MUST BE IN PLACE TO
ELIMINATE TRIPS CAUSED BY AN OUT-OF-RANGE
CONDITION ON $2 / 3$ WAVE MOTOR FIELD CARDS.

ADJUSTMENTS

The following description outlines adjustments procedures for a system with constant horsepower range. Some drive systems include a motor field control card (MFC) for:

1. Field current regulation
2. Motor field economy
3. Tachometer monitor
4. Motor field reversing
5. Special motor field voltages
or other functions when constant horsepower is not provided For such systems, adjust CROSS fully clockwise (5 o'clock). All other adjustments such as FMAX, FMIN, FLOSS, ALIGN and SLIM should be adjusted as if it were a constant horsepower drive. The settings described in this
manual are representative only and should be used only when Test Data Sheet values are not avalable.

It is assumed that the motor field control is properly installed with plus and minus power supplied.

Check that a jumper is connected between ZA and ZB if 60 Hz power is being used. The jumper is omitted for 50 Hz operation.

Install or check the current scaling jumpers using Table II as a guide.

Set the desired maximum field current with $\boldsymbol{F M A X}$ potentiometer. When making this adjustment there must be no voltage applied at FDR or WFR. Current may be monitored with an ammeter or if a precise setting is not required, the current may be read by measuring the voltage at FC and applying the proper proportionality constant from Table III.

Adjust the minimum field setting with the FMIN potentiometer. This must be set after setting the maximum field. Apply a negative voltage to FDR to initiate crossover. Apply only enough voltage to weaken the field. Applying too much voltage will force the clamp and result in an incorrect FMIN setting. The proper value for FMIN may be determined from the motor nameplate. A suitable value is 70% of the field required at top speed. Setting too high a value may prevent the motor from achieving top speed.
Monitoring field current with an ammeter or FC voltage, adjust the FMIN potentiometer to desired value.

Next adjust FLOSS the (field loss) trip level. A suitable value is 50% of the field current level at top speed. Turn the FLOSS potentiometer fully CCW and reduce the field with a positive voltage applied at FDR. Λ positive voltage will reduce the current below the level determined by FMIN. With the field held at the desired level as determined by an ammeter or FC voltage, turn the FLOSS potentiometer clockwise very slowly until a trip occurs. The trip may be monitored by measuring the voltage at SYS or observing the "Ready to Run" light. When using the diagnostic card, it is a good idea to have ALIGN turned fully CW so that trips will not be caused by the tachometer monitor function.

The overspeed limt may be set statically. A signal is applied to SFB at a desired value above the maximum normal value and SLIM is adjusted to cause a trip. Since the drive is normally scaled to have SFB equal to 10.0 volts at top speed, a value 15% higher or 11.5 volts is appropriate. When using the diagnostic card, a signal is also applied to FDR which can cause a field loss trip of FDR is positive. Turn the local reference pot (LOC REF) in the (-LR)
direction so that FDR will be negatıve and the field will be reduced to the value determined by the FMIN setting.

The tachometer monitor function must be aligned while running the drive below base speed. With the ALIGN potentiometer fully CW the TA point will be found to have a voltage of about 16 volts with polarity a function of direction of rotation. ALIGN should be turned CCW until TA voltage falls between ± 0.2 volts. Care must be taken that the drive is truly below base speed; however, for accuracy should be operating at a voltage at least 80% of crossover.

Crossover (CROSS) is adjusted best while running but may be set approximately statically. To set statically, calculate the value of CEMF at the desired level. This will be approximately 5 volts for most drives. Add 0.55 volts to this value of CEMF and apply to FDR. The additional 0.55 volts is an allowance for a diode drop in the FDR circuit. The voltages should be negative with respect to common. Turn the CROSS potentiometer fully CW and then turn it slowly CCW until the field starts to weaken. The field weakening may be monitored with an ammeter or by measuring the voltage on FC. During this adjustment there must be no signal applied to CEMF or CRM. For setting while running, normally, start with CROSS fully CCW and call for a speed sufficiently high enough to require field weakening. Turn CROSS clockwise until the operating voltage reaches the desired level. Make sure that the speed called for is sufficiently high for the drive to be above crossover at the new voltage.

TABLE I Assembly Ratings

Assembly 331 X367	MFC Card l93X532	AC Input Voltage	Max.DC Output Voltage	DC Output Current
AAG01	ADG01	$266 \mathrm{~V}, 1 \mathrm{Ph}$.	120 V	$.2-10 \mathrm{~A}$
AAG02	ADG02	$266 \mathrm{~V}, 1 \mathrm{Ph}$.	120 V	$10-20 \mathrm{~A}$
AAG04	ADG04	$230 / 460 \mathrm{~V}, 3 \mathrm{Ph}$.	$150 / 300 \mathrm{~V}$	$.2-10 \mathrm{~A}$
AAG06	ACG06	$230 / 460 \mathrm{~V}, 3 \mathrm{Ph}$.	$150 / 300 \mathrm{~V}$	$15-20 \mathrm{~A}$
AAGO7	BAGO6	$230 / 460 \mathrm{~V}, 3 \mathrm{Ph}$.	$150 / 300 \mathrm{~V}$	$10-15 \mathrm{~A}$

TABLE II
瓦Otor Fleld Ranges In amperes for MFC 193X532 _ _ by Jumper and FMAX Adjustment

	Half Wave		Two-Thirds Wave		
JUMPERS	ADG0-1	ADGO-2	ADG0-4	ACGO6	BAGO-6
None	$0.45-0.90$	$0.94-1.88$	$0.45-0.94$	$0.94-1.88$	$0.941-1.88$
YB-YD	$0.63-1.36$	$1.43-2.87$	$0.69-1.36$	$1.43-2.87$	$1.43-2.87$
YA-YB	$1.33-2.65$	$2.73-5.45$	$1.33-2.65$	$2.73-5.45$	$2.73-5.45$
YA-YB \& YC-YD	$2.05-4.11$	$4.55-9.09$	$2.05-4.11$	$4.55-9.09$	$4.55-9.09$
YA-YC	$3.75-7.5$	$6.02-13.6$	$3.75-7.5$	$6.82-13.6$	$6.82-13.6 \dagger$
YA-YC \& YB-YD	$6.52-13.0^{*}$	$12.9-25.7^{*}$	$6.52-13.0^{*}$	$12.9-25.7^{*}$	$12.9-25.7 \dagger$
RFR-COM, YB-YD	$.28-.56$	\cdots	$.28-.56$	\cdots	
RFR-COM	$.19-.38$	\cdots	$.19 . .38$	\cdots	

*Derates 30\% unless force ventilated
Stabilizing circuits for the field current regulator and the system are provided and normally require no modification or adjustment. However, for low time constant fields it may be necessary to modify the gain of the current regulator. Contact pins QA and QB may be connected. If further adjustment is required, the output and summing junction of the OP AMP in the current regulator are available at contact pins PR and PJ respectively.

TABLE III
FC Voltage Constant (Volts/Amp)

JUMPERS	G01, G04	G02, G06
NONE	10.0	4.79
YB-YD	6.6	3.14
YA-YB	3.39	1.65
YA-YB \& YC-YD	2.19	.99
YA-YC	1.20	.66
YA-YC \& YB-YD	.69	.35
RFR-COM	23.4	\cdots
RFR-COM. YB-YD	15.8	\cdots

INPUT AND OUTPUT POINTS

There are nineteen (19) terminal board points along the lower edge of the printed circuit card and four (4) or five (5) terminals for power near the top of the card with the $1 / 2$ wave version having (4) and the $2 / 3$ wave version having (5) connections.

The AC power input terminals are at the top of the fuse block. For a $1 / 2$ wave unit, the proper connections from left to right are Ll and XO. For a $2 / 3$ wave unit, the connections are L1, L2 and L3. Since synchronizing signals
\dagger Limit output current to 10 amps max convection cooled or 15 amps max force ventilated.
are from an external source, it is essential that the input connections are made as stated and that the phase sequence is $1-2-3$.

The DC output terminals are below the fuse block and are F1, F2 left to right with F1 being positive.

The control terminals are as follows:

1. SC Synchronizing signal
2. SA Synchronizing signal
3. SB Synchronizing signal
4. ZF "Zero Field" - connecting to common prevents the SCR from being fired.
5. RF "Reduce Field" - connecting this point to +20 V will reduce the output to a minimum voltage.
6. WFR "Weak Field Reference" an input for controlling the field or an output indicating that the field is being weakened by the action of the crossover control. A positive voltage of 8.7 volts $D C$ will reduce the field to the current value determined by the minimum output voltage and the field resistance. Normally used to establish field economy while not running and to signal weak field operation and modify speed regulator stability while running.
7. FDR "Field Diagnostic Reference" and input for adjusting the motor field control. A negative voltage will cause the field to go into
crossover and is used for setting minımum field, FMIN. It also may be used to approximately set CROSS (Crossover). A negative voltage 0.55 volts greater than the CEMF signal at crossover should be used. Applying positive voltage to FDR will weaken the field. The minimum mode is normally used to set field loss, FLOSS.
8. CRM "Crossover Modify" may be used to modify the crossover point. Applying a positive voltage to CRM will increase the CEMF level required for crossover by .48 volts/volt.
9. SYS This is the trip output and signals overspeed, tach loss or polarity, field loss or out-ofrange. The out-of-range feature is only included in $2 / 3$ wave versions. (+10 V to +17 V indicates a fault).
10. +20 V Input terminal for the positive power supply to the control circuitry of the MFC.
11. COM The common terminal of the control circuitry.
12. -20V Input terminal for the negative power supply to the control circuitry.
13. CEMF Input signal which initiates crossover. Normally, this will be a signal proportional to the counter EMF of a motor. It also is used in the tachometer monitor section.
14. FC An output whose average value is proportional to the average value of the field current. Proportionality constant is a function of current scaling jumper connections.
15. SFC An output whose average value is proportional to the average value of the field currents. The magnitude is scaled to 4.06 volts at full field as determined by the $\boldsymbol{M A X}$ potentiometer. This output should not be loaded by less than 100 K .
16. TA "Tach Align" is an output used in adjusting the tachometer monitor portion of the circuit.
17. DM21 This terminal is connected to a contact pin also labeled DM21 which may be connected to internal contact pins with a jumper wire.
18. DM22

Same as above except connected to contact pin DM22.
19. SFB This is an input point to the tachometer monitor portion of the circuit. The "Speed Feedback" should be proportional to the speed of the motor. (Normally 10 V at top speed).

COMPUTING ADJUSTMENT POINTS

In the event Test Data Sheet values are incorrect for the particular motor used in conjunction with this motor field control card, proceed as follows to establish new Test Data Sheet values:

1. Determine motor shunt field current requirements for base/top speed. (See motor nameplate or contact vendor).

Note: Do not attempt to run a motor above base speed without a feedback tachometer.
2. Determine and install motor field range jumpers per Table II on page 6.
3. Remove jumper ZA to ZB on the Motor Field card if this is a 50 hertz drive.
4. Determine FC Voltage Constant from Table III on page 6.
5. Multiply FC Voltage Constant times base speed field current to determine base speed FC voltage.
6. Multiply FC Voltage Constant times top speed field current times 0.6 to determine MIN FIELD FC voltage. (Only applies to motors which are to be run above base speed).
7. Preset FMAX, SLIM, and ALIGN potentiometers fully clockwise (CW). Preset FMIN, CROSS and FLOSS potentiometers fully counter-clockwise (CCW).

WARNING

THIS ADJUSTMENT OF FLOSS PREVENTS PROPER OPERATION OF THE FIELD LOSS MONITORING; CIRCUIT AND COULD ALLOW MOTOR OVERSPEED AND CONSEQUENT FAILURE IF ATTEMPTS TO RUN THE MOTOR ARE MADE AT THIS TIME.

NOTE

IF A DIAGNOSTIC CARD IS NOT AVAILABLE, REFER TO THE DRIVE SYSTEM INSTRUCTION BOOK FOR TEST CIRCUIT TO BE USED.
8. FMAX adjustment:
a. Select Diagnostic Static mode.
b. Verify output of LOC REF and CUR REF on Diagnostic are zero.
c. Adjust LOC REF for -1 volt at Main Control Card (MCC) test point LR.
d. Adjust FMAX to obtain the FC value calculated in step 5 above.
9. FMIN adjustment:
a. Select Diagnostic Static mode.
b. Adjust LOC REF for approximately - 6 volts (FWD) at LR on MCC.
c. Adjust FMIN to obtain the FC value calculated in step 6 above.
10. FLOSS adjustment:
a. Select Diagnostic Static mode.
b. Adjust LOC REF (REV) to obtain one half the FC value determined in step 6 above.
c. Slowly adjust FLOSS pot clockwise (CW) until the drive Ready to Run (RTR) light goes out.
d. Return LOC REF pot to zero.
e. Push RESET pushbutton to reset the drive.
11. SLIM adjustment:
a. Select Diagnostic Static mode.
b. Adjust LOC REF pot to obtain 11.5 volts on SFB test pin on MCC.
c. Slowly adjust SLIM pot counter-clockwise (CCW) until the drive Ready to Run (RTR) light goes out.
d. Return LOC REF pot to zero.
e. Push RESET pushbutton to reset drive.
12. ALIGN adjustment:
a. With LOCREF at 0 , select Diagnostic Run mode.

CAUTION

MOTOR WILL RUN IN THIS MODE.

b. Adjust LOC REF pot to obtain approximately 480% base speed rpm of the motor.
c. Adjust ALIGN pot to obtain 0 volts (± 0.2) at test point TA on the Main Control Card (MCC).
13. CROSS adjustment:

NOTE

TURN CROSS POTENTIOMETER FULLY CLOCKWISE (CW) IF MOTOR SPEED ABOVE BASE SPEED IS NOT REQUIRED.
a. Select Diagnostic Static mode.
b. Adjust LOC REF pot for -5.6 volt at LR test point on MCC.
c. Monitor FC voltage.
d. Slowly adjust the CROSS pot clockwise (CW) until the FC voltage just begins to decrease.
e. Return LOC REF pot to zero.

Normal running operation should now be checked. An adjustment of MAX SPEED, per the drive system instruction book should now be made.

TEST DATA SHEET VALUES $\pm 5 \%$

FIGURE I. ASSEMBLY CONNECTION DIAGRAM

FIGURE 4. RELATIONSHIPS BETWEEN CEMF,TACHOMETER VOLTS, MOTOR SPEED CROSS AND ALIGN ADJUSTMENTS

	$1 F U$	2 FU
GO1	15 AMP	15 AMP
GO2	30 AMP	30 AMP

FIG. 5 ELEMENTARY DIAGRAM - 1/2 WAVE

FIG. 6 ELEMENTARY DIAGRAM - $1 / 2$ WAVE

	1 FU	2 FU	$3 F \mathrm{C}$
GO4	15 AMP	15 AMP	15 AMP
GO6	30 AMP	30 AMP	30 AMP

FIGURE 7
ELEMENTARY DIAGRAM - $2 / 3$ WAVE

ELEMENTARY DIAGRAM - 2/3 WAVE

FIG. 9 SYNCHRONIZING CARD DIAGRAM

FIG. 10 SYNCHRONIZING CARD LAYOUT

FIGURE 11
$1 / 2$ WAVE MFC LAYOUT

GENERAL ELECTRIC COMPANY

 SPEED VARIATOR PRODUCTS OPERATION ERIE, PENNSYLVANIA 16531
[^0]: These instructions do not purport to cover all detals or variations in equipment nor to provde for every posstble contngency to be met in ronnection with installatoon, operatoon or maintenance. Should further information be desired or should partcular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to General Electric Company

