

I NSTRUCTI ONS GEK-28673

SPEEDTRONIC*CONTROL

CALIBRATOR HANDBOOK

4th Edition June 23, 1978

PROPRIETARY INFORMATION OF THE GENERAL ELECTRIC COMPANY
 IS CONTAINED IN THESE INSTRUCTIONS

* Trademark of General Electric Company

GENERAL ELECTRIC

CONTENTS

Page
Introduction 3
I. Features 4
A. Physical 4
B. Signal Sources 4

1. Millivolt 4
2. Variable Frequency 5
3. Standard Voltage Source 6
4. Current/Voltage 6
5. Test Pot and Switches 6
6. Sequence Switches 7
C. Patchboard 8
II. Calibration 10
A. General 10
7. Connections 10
8. Instrumentation 10
9. References 11
10. Techniques 12
B. Signal Sources 16
11. Thermocouple Simulation 16
C. Sample Calibration Procedure 17
III. Revision Variation Definition 18
IV. DEVICE INFORMATION
A. Calibrator, IC4988A100, Shs. 3.1-3.23
B. IC3600EPSS, shs. 3.0-FI.
IC3600SCZA, Shs. 3.0-FI.
IC3600SVFA. Shs. 3.0-F1.
c. Patchboard Layout

The SPEEDTRONIC* Control calibrator provides a convenient method of accessing important variables within a SPEEDTRONIC* control system and supplying signals to t.he panel to simulate the input from sensors external to the panel. The calibrator patch board and the two connectors whichplug between the SPEEDTRONIC* control "page" and calibrator are the means for reading out and inputing signals to the control. The calibrator is dedicated to the SPEEDTRONIC* controls by its plug-in feature and by the fact that it is powered by the control to which it is connected. Its signal sources are universal types however; (such as millivolt, variable frequency, current and voltage) which may be used to calibrate special circuits that may be part of-a particular SPEEDTRONIC* control application. These instructions cover the calibrator and how it may be used to calibrate a SPEEDTRONIC* control system. The actual procedure for calibrating and the settings are contained in the Control Specifications. The System Elementary drawing is also needed for calibrating. The interconnection between the calibrator and the control system is shown on the 42 series sheets of the System Elementary. On the last sheet of this publication is a patchboard layout showing points on the patchboard which are generated within the calibrator. The System Instruction book will be useful for both general information about the system and specific information about each piece of equipment and should be referred to in the event trouble-shooting, changes, or repair need be accomplished. This calibrator may be used to calibrate any Mark I or Mark II Speedtronic* control panel. The calibrator is presently in its 3rd revision, but changes have been minor. For revision variations, refer to Section III, Revision Variation Definition.

[^0]

SPEEDTRONIC* CONTROL CALIBRATOR
See Revision Variations Section III
A. PHYSICAL

The calibrator is packaged in a carrying case with additional space available for a digital voltmeter and frequency counter. It is connected to the SPEEDTRONIC* control panel by means of 2 connector cables which plug into slots "A" and "B" in the calibrator and 2 slots on the "page" designated "CALIBRATOR TEST" and "AUX TEST" respectively. Each connector cable contains 51 wires.

The circuits for power supply, signal sources etc. are built on
DIRECTOMATIC* II cards and plugged into the card slot rack along with the connector cables A and B. Card Slot C contains SVFA on which the circuits for the 2 variable frequency oscillators are built. Card Slot D contains SCZA on which the 2 millivolt sources and voltage/current source are built. The EPSS card in slot E contain a-50VDC to -12VDC power supply.
B. SIGNAL SOURCES

1. The millivolt source is designed to simulate low level signals such as turbine exhaust thermocouples over a range 0-50MV with FINE adjustment of ± 3 MV.
a. There are two sources.
b. Their respective power is derived each from one of the 3 KHZ power oscillators in the SPEEDTRONIC* page.
c. Outputs are available on patchboard (MVA, C4 and C5; MVB, C6 and C7).

* Trade Mark of General Electric Co.

I. FEATURES - (continued)

B. SIGNAL SOURCES - (continued)

a. "SWF". switch can be used to switch each source to either position on the patchboard.

SWITCH DOWN MV\#I AT MVA; MV\#2 AT MVB
SWITCH UP MV\#2 AT MVA; MV\#1 AT MVB This allows the two sources to be set up at convenient end points, for instance, when calibrating gain and offset on the temperature amplifier.
e. Circuit details: IC3600SCZA
2. The two Variable Frequency sources are 10 to 11 volt peak to peak variable from 15 HZ to 12.5 KHZ Sine wave (66.7 millisec to 80.0 microsec). The sources may be used to simulate a speed signal from a"pulse tach" magnetic pick-up in order to calibrate pulse rate to analog circuit and speed control loop.
a. Fine adjustment $\pm 250 \mathrm{HZ}$.
b. Output available on patchboard
(FREQ \#I at Cl and FREQ \#2 at CIO with respect to ACOM)
c. Circuit is powered by IC3600EPSS MINUS 50V TO MUNUS 12 V converter unless MINUS 12 VOLT supply is available in SPEPDTRONIC* control in which case MINUS $50 \mathbb{V}$ is not available; it also requires plus 12V supply from SPEEDTRONIC* control.
d. Circuit details IC3600SVFA.
I. FEATURES = (Continued)
B. SIGNAL SOURCES - (Continued)
3. The Standard voltage sources are approximately 6 volts and 20 millivolts. The actual values will be recorded on the IC3600SCZA card on which the terminal binding posts are located. These standard sources may be used to calibrate instruments such as voltmeter or scope.
4. The combination CURRENT/VOLTAGE source makes available a current and a voltage to simulate pressure transmitters, etc.
a. With 50 volt bus available in control:
current, $0-50 \mathrm{ma}$ (500Ω MAX load); voltage $0-34 \mathrm{VDC}$ With only 12 volt bus available in control: current, 0-50ma (50 Ω MAX load); voltage 0-1IVDC
b. Sources are adjustable by coarse and fine pots marked "current".
c. On Patchboard:

Voltage source located D2
Current source located C2
To read current with voltmeter connect $C 2$, (positive) to $D 2$ across precision resistor (10 mv/ma).
d. Circuit details IC3600SCZA
5. There are two switches, a resistor pot configuration and a resistor configuration.
a. SW9 s.p.s.t. switch could be used as a logic level switch $D C O M=" O " ; P 12 V=" 1 "$; or contact closure to $P 28 V$. (patchboard points $F 9$ and $F 10$).
I. FRATURES - (Continued)
B. SIGNAL SOURCES - (Continued)
5. (Continued)
b. SWIO s.p.d.t. switch could be used to switch the voltmeter between the two overtemperature channels to facilitate simultaneous calibration. (patchboard points JI, J2, and J3).
c. Pot and resistor configuration may be used to set up a test voltage or with 3KHZ oscillator to make a test vibration signal.
d. Resistor configuration may be used to simulate flame and no flame condition of impedance expected from detectors to "Ball park" the detector sensitivity prior to starting. The 10K connected between P12V and "VERY FAST" counter rate will speed up the digital setpoint counter for calibrating purposes, on some panelv.
6. There are 7 sequence switches which may be used to simulate points in the start-up mode. Certain portions of the control are operable only when the turbine has come up to a given point during start-up. Some or all of these switches may be wired in a given application if they are needed in order to calibrate the unit. Refer to sheet 42_ of the elementary for switch usage.

IMPORTANT: These switches normally must be turned off \{down) when starting up or running the turbine with the calibrator connected.

FEATURES - (Continued)

C. PATCHBOABD

The patchboard layout is shown on the final sheet of this publication (fold out). Patchboard points are connected to circuitry within the calibrator such as sources, test switches, and components; or jacks along the right side of the calibrator to allow hook up of instruments; or through the connector cable to the SPEFDTRONIC* page. The points on the patchboard which are wired through the connector to the SPEFDIRONIC* page are shown in The System Elementary for the specific control on the 42 series sheets.

The 10×10 section of the patchboard, points Al by J10, are connected to the SPEFDTRONIC* page through "Conn A", the "calibrate test" connector, and the remaining 5×10 section, points All by J15, are connected by "Conn B", the "Aux test" connector.
1^{\prime} On the layout sheet the pin numbers to which the input/output are connected appear as the small number in the lower left hand corner of each block.
I. FEATURES - (Continued)
C. PATCHBOARD - (Continued)
2. The "calibrate test" connector and the "auxiliary test" connector Tis shown on the 42 series sheets of the system elementary for each unit. These sheets name and reference the point in the circuit to which the point is connected - if it is used.
3. To facilitate working from the system elementary to the calibrator for a particular point, the coordinates on the patchboard are given adjacent to each point in the system elementary.

11. TYPICALCALIBRATION

A. GENERAL

Once power is applied after preliminary checkout, the unit is
ready for calibration. Plug in the calibrator and check that proper
power is available at the patchboard points Al thru A6, and 3KHZ
power oscillators A9 and A10 (refer to patchboard layout - - - --...
of the turbine control elementary).

1. Necessary Connections for SPEßDTRONIC* Calibrator

Connector "A" from calibrator should be connected to "calibrate test
card slot" on SPEEDTRONIC* page.
Connector "B" should be connected to "Aux. Test Card Slot" on
SPEEDTRONIC* page.
Refer to job elementary to determine location of these two card slots

2. Additional Instrumentation

Other instruments that can be supplied with the calibrator are:
.- Digital Voltmeter 4 Digits ($3 \frac{1}{2}$ Digits)
Counter $20 \mathrm{~Hz}-80 \mathrm{MHz} 7$ Digits
In additional to the SPEEDTRONIC* calibrator, other devices that
can be used to calibrate or troubleshont are:
Multi Meter - 20,000 Ohms/Volt
Such as - Triplett Model 630
\square or Simpson Model 270
Oscilloscope - (for troubleshooting only)
Such as - Tektronix 453

SPEEDTRONIC* Protective Logic Test Aid Module - catalog \#277A6557G1.
II. TYPICAL CALIBRATION - (Continued
A. GENERAL - (Continued)
3. References:
a) Instruction Book - Comprehensive information, one lines, locations of adjustments.
b) Job elementary diagram - Circuit, pin numbers, card location, pot. identification.
c) Turbine Control Specifications - Design and application parameters, device settings, calibration procedure.
4. Techniques and Procedures
a) Use a voltmeter to determine logic level of signal.
" 0 " $=0 \mathrm{OV}$ to . 4 V (High threshold " 0 " up to 1.5v)
$" I "=4.75 \mathrm{~V}$ to 12 V
b) Definition of Range, Span, Zero, Offset, Gain

Given: Exhaust temperature variation of 3000 and 1000° which produces signals of 1.83 MV and 23.41 MV;
$\underline{\text { Signal } \operatorname{span}}=23.41 \mathrm{MV}-1.83 \mathrm{MV}=21.58 \mathrm{MV}$
Signal range $=1.83 \mathrm{MV}$ to 23.41 MV
Signal zero or offset $=1.83 \mathrm{mV}$
If this signal is amplified to 1.0 V and 4.5 V ,
. II. TYPICAL CALIBRATION - (Continued-
A. GENERAL - (Continued)
4. (Continued)

output $\operatorname{span}=4.5 \mathrm{~V}-1 . \mathrm{w}=3.5 \mathrm{~V}$

Output range $=1 . \mathrm{W} 4.5 \mathrm{~V}$
Output zero or offset = l.W
Amplifier gain $=$ Output span

Input span
$=\frac{3.5 \mathrm{~V}}{21.58 \mathrm{MV}}=.1624 \mathrm{~V}$
c) Adjusting "zero" and "gain" of an amplifier (ZERO: OFFSET) Theoretically you should adjust the gain first, then adjust the zero because gain affects zero and zero does not affect gain. However, since many amplifiers are not perfect and since you want to start in the right "ball park", an easier and more practical method is as follows:

Using the values in the example (b) above:

1. Apply $\mathbf{I .} 83 \mathrm{MV}$ to input.
2. Adjust zero for 1.OV output.
3. Apply 23.41 MV to input.
4. Adjust gain for 4.5 output.

II. TYPICAL CAITBRATION - (Continued)

A. GENERAL = (Continued)
4. (Continued)
c) (Continued)
5. Apply 1.83 MV to input.

Note : Because of the gain adjust, the zero has moved. .
6. Readjust zero for $\mathbf{\text { I.OV output. }}$
7. Apply 23.41 MV to input.
8. Readjust gain for 4.5 output.

Note : The amount of readjustment decreased with each adjustment.
9. Repeat 1 to 8 until no readjustment is necessary.
d) "Nulling" or "balancing" the summing junction.

1. Within the stable operating range of an operational amplifier, the sum of all currents to the summing junction is zero.
2. Many of the amplifiers used herein have integrating feedbacks. This means that, if the net current to the summing junction is negative, the output volts will continue to rise and conversely, a net positive summing junction current will cause the output volts to continue to decrease. When the summing junction current is zero, the output will stop integrating and the volts will remain constant.

II. TYPICAI CALIBRATION - (Continued)

A. GENERAL • (Continued)
4. (Continued)
d) (Continued)
3. A voltmeter on the output of the amplifier can be used to determine when the integration stops. However, an easier method is to use the function indicating lights. For example, consider the temperature control card STKA and we want to set the isothermal base reference to $1000^{\circ} \mathrm{F}$.
a) Input an exhaust temp. signal of $1000^{\circ} \mathrm{F} \cdot(4.5 \mathrm{~V} @ \mathrm{pin} 17)$
b) Quickly rotate and counter rotate base reference pot. R95 so that temperature control indicating light goes on and off. (Note: Pot. movement causes amplifier to integrate voltage up or down. Light driver is voltage sensitive; above $28 \mathrm{~V}=$ Light out and below $28 \mathrm{~V}=$ Light on). As you rotate and counter rotate and the light goes on and off, reduce the amount of excursion until the light just stays on. Set the pot. at the midpoint of this minimum excursion.
c) The summing junction is now "nulled" for this particular setting.

II. TYPICAL CALIBRATION - (Continued)

A. GENERAL - (Continued)
4. (Continued)
e) Inputs and Outputs

1. Frequently, the Control Specification will refer to pin numbers on various cards, for monitoring, logic forcing, or even signal insertion. This does not mean that you should work on that pin; on the contrary, you should avoid working on the pin itself. Rather, you should refer to the pin and the card on the Turbine Control elementary and, if possible, determine some more appropriate point, on the same point in the circuit as the pin, but physically more accessible. For example, the point may be available on the calibrator patchboard; it may be available on a card front; it may be an incoming signal with isolation LED indication; it may be the output of a STEH element which has LSD indication and is forcible from its front; it may be the output of a STDC element which has I.BD indication.
2. Logic Forcing

The SIMH element can be forced to a "I" or "O" from the front. All elements may be forced " 0 " on the outputs, but must never be forced to "I.".
i.e. You may jumper any logic signal to D-COM (to force "O") but must never jumper a signal to P12V or PSV to force "I".

II. TYPICAL CALIBRATION - (Continued)

B. SIGNAL SOURCES

The signal source outputs appear on the patchboard so that they may be connected to any other point on the patchboard by jumpering with the miniature plugs supplied with the calibrator. Sources may be accessed for use into points not on the patchboard by patching them to large jacks such as "SCOPE", "DVM", or "CTR". These jacks will accept standard "BANANA" plugs or may be wired to by clamping the wire under terminal binding post.

1. MILLIVOLT for thermocouple simulation may be accomplished 3 ways: a. If a cold junction compensation network is available for the particular type of thermocouple to be simulated (such a J type Iron-Constantan; K type Chromal-alumal), it may connected with the proper thermocouple wire between the source and the T. C. amplifier. Standard thermocouple tables can be used to convert from the temperature desired to the'millivolts which must be measured.
b. If the cold junction compensation network is not available the above method will work provided the ambient temperature is measured and difference between ambient and $32^{\circ} \mathrm{F}$ (which is the reference used in the tables) is subtracted from the table value of millivolts for the particular temperature desired to simulate.

II. TYPICAL CALIBRATION - (Continued)

B. SIGNAL SOURCES - (Continued)

1. c. If a temperature indicator such as the one on the SPEEDTRONIC* control panel is available the temperature may be read directly. The amplifiers and trips may then be set without measuring millivolts .
c. SAMPIF CALIBRATION PROCEDURE

The following is a brief description of the steps required to use the calibrator; as one example let us consider the case where the overspeed trip points are to be checked. The actual detail is defined in the Turbine Control Specification; the following is only a description of how to find your way around:

1. Calibrator must be plugged into the panel
2. The panel must be powered up.
3. Refer to the Turbine Control Elementary Index, sheet A00, and determine which sheet the "Overspeed Protection" is located on.
4. Refer to the Overspeed Protection circuit in the Turbine Control Elementary
5. Refer to the Turbine Control Specification for the details on settings and procedure.
6. The control specification will typically say "insert a speed signal of X frequency to the Overspeed Protection Card, pins y, z."
7. Refer to the elementary Overspeed Protection circuit and look for a cross reference to sheet 42 B or 42 C .
8. Follow the cross reference to sheet $42 B$ or $42 C$ and determine the corresponding calibrator patchboard location; one position
per Overspeed Protection card. The return is via A-COM on
Patchboard GI thru G-10.
9. Refer to sheet 42D of the elementary, the patchboard layout. Pick out a frequency source - Cl or ClO.
10. Jumper the frequency source to the patchboard position of step 8. The return (COM) is taken care of internally.
11. For monitoring, jumper $E l$ to the frequency source and $\mathbb{F l}$ to $A-C O M$ (ie. G1). This puts the frequency signal on test jacks CIR (+) and (-); These test jacks will accept a standard plug for frequency monitoring with a counter.
12. Adjust the frequency with the "COURSE" and "FINE" Frequency adjusting Potentiometer on the Calibrator; The potentiometers are clearly labeled.
13. Cheek the Overspeed Protection function as defined in the Turbine Control Specification.

III.

REVISION VARIATION DEFINITION

The calibrator is presently in its 4th revision. Changes have been minor and have been made to make the calibrator more versatile. The revision number is not on the nameplate, but the revision of any particular calibrator is readily apparent from the following:

REVISION 1: The original form used nomenclature on the switches as illustrated on sheet 3. Also it has seven test jacks on the right hand side of sheet 3.REVISION 2: Added two test jacks, AUX (+), (-), wired to patchboard points E2, F2 respectively and spaced all test jacks to take a standard size plug. REVISION 3: The switch designations were changed from names to switch numbers, i.e. SW1,2 etc. Note that the switch numbers on the calibrator drawings were chanqed to facilitate_ a_left to right flow of switch numbers. This change_allows
any one switch to be used for different functions from one panel to another. The switch's function is defined on sheet 42 of the panel elementary. The switch numbering is as follows:

SWI SW2 SW3 SW4 | SW | SW5 | SW6 |
| :---: | :---: | :---: | :---: | :---: |

SW7
0

SW9
SW10

0

In addition to the change in switch nomenclature, 12 additional wire runs from the panel to the patchboard have been added as follows:
connector $A:$ pins 49, 51
connector B: pins $1,2,23,24,27,28,29,30,50,51$
This further increases the capability of the calibrator. Your calibrator will have these extra runs if it has switch numbers on the nameplate; it will not have these runs if the switches have names as illustrated on sheet 3. Any panel may be calibrated with any calibrator with the following reservations limitations:
(a) Switch designation may be confusing, but are defined above.
(b) The 3.2 interconnecting wires defined above will not be on revisions 1 and 2 and may be a problem when a Mark II Industrial panel is to be calibrated with a revision 1 and 2 calibrator. This limitation may be identified by referring to the 42 series sheets of the panel elementary.
A modification kit is available to take care of limitations (a) and
(b) where needed.
(c) The voltage/current source on IC3600SCZA, Rev. A is not capable of providing a 50 MA pressure signal when used on a Mark 11 panel. (It's O.K. on Mark I). If this signal is required for
a Mark II panel, a Revision B must be obttained.
REVISION 4: The "TEST" pat RH11 was changed from a 1 turn 100R to a 10 turn 10 K .

S IGINAL DEF IT: If I ON A:HO LOCAT ION

05	SYIIEOL STO, ALT.	NNME	COMN A PIN_IN,	PATCH BOARD LOCAF1ON
	COUER SUPPLIES			
07	DCOM	DIGITAL COMMON	1	14
09	$\begin{aligned} & \text { ACOM } \\ & \text { P5O } \end{aligned}$	ANALOG COMMON	2	G1-G10
		POSITIVE 50 VOLTS	24	AI
	P28	POSItIVE 28 Volts	23	A2
11	P12	POSITIVE 12 VOLTS	27	A3
13	N12	NEGATIVE 12 volts	2930	AS
	N50	NEGATIVE 50 VOLTS		A6
15	OSCA	OSC ILLATOR A 3KC	8. 4 RTMS (LVDT.) 26	A9
	OSCB	OSC ILLATOR B 3K	8. 4 RIAS (LVDT) 28	AlO
17	Calierator signals			
		Variable frequency ou	TPUT 1	a
19		VARIABLE FREQUENCY 1	- EXTERNAL CONTROL (SIMULATION)	11
		Variable frequency out	TPUT 2	c10
21		VARIABLE FREQUENCY 2 - EXTERNAL CONTROL (SIMULAT ION)		12
23	PSIM	CURRENT SOURCE (0-50Ma)		c2
		VOLTAGE SOURCE ($0-34 \mathrm{~V}$, SUPPLY 50v; 0-8, supply 12\%		$\underline{12}$
25		CURRENT SOURCE-EXTERN CONTROL (S MMULATION)		14
	MVA+	MILLIVOLT SOURCE		$\begin{aligned} & \text { C4 } \\ & \text { C5 } \\ & \text { C6 } \end{aligned}$
17.	MVA	MI LL IVOLT SOURCE		
	NVB+			
29	MVE	MI LL IVOLT SOURCE		c7
31	NOTE	MVA $=$ RMVI WITH SWITCH SW- 1 DOWN		
		MVB = MV2 WITH SWITCH SW-1 DOWN		
		MVA = MV2 WITH SWITCH SW-1 UP		
33		MVB=.MV1 WITH SWITCH SW-1 UP		
15	MVIC	MI LITYOLT SOURCE 1.	(ternal control (SIMULATION)	13

APPLICATION NOTES
THIS C IRCU IT CONVERTS -30^{*} D .C. TO -12^{*} D. C. 8 Y MEANS OF A VOLTAGE CCITTROLLED SHUNT REGULATOR. A Stutit TRans istor is Controlled by A Voltage sensing m icroelicctronic operational AMFLIFIER. A ZENER SUPPLY CAPABLE OF 60 MA . PROV IDES 5.3 FOR INTEGRATED C IRCU I IS.
this card must be mounted in the last usable cart) slot in me card row or leave space for 2 cards IN THE CARD ROW.

```
INPUTS: + 12` O.C. PIN 27 70 MA. MAX
```

INPUTS: + 12` O.C. PIN 27 70 MA. MAX - 50}\mathrm{ D.C. PIN 30 300 MA. MAX - 50}\mathrm{ D.C. PIN 30 300 MA. MAX OUTPUTS: -12**.IV PIN 29 250 MA, MAX OUTPUTS: -12**.IV PIN 29 250 MA, MAX +5.3 +5.3 RECULATION: -12v D.C. }\pm.0\mp@subsup{3}{}{v}\mathrm{ FROM 10 MA. TO 250 MA. RECULATION: -12v D.C. }\pm.0\mp@subsup{3}{}{v}\mathrm{ FROM 10 MA. TO 250 MA. RIPPLE' LESS THAN IOMV P-P ON =12`

```
RIPPLE' LESS THAN IOMV P-P ON =12`
```

PROPRIETARY ImFORMATION OF THE GENERAL EIEGRIC COMPANY

3. SINe wave output:

VOLTAGE - 10V P.P OR 3.53 RMS.
CURRENT - 140 MAP-P OR 49.5 MA RMS
(without change in output voltage level)
frequency-continuously variable from 0 tol2 khz lowest useable frequency - 15 Hz .

'DRIVE SYSTEMS PRODUCT DEPARTMENT SALEM, VA. 24153

GENERAL ELECTRIC

[^0]: * Trademark of General Electric Company

