

N60 Network Stability and Security Relay

UR Series Instruction Manual

N60 Revision: 4.4x

Manual P/N: 1601-0125-**J2** (GEK-112996A) Copyright © 2005 GE Multilin

215 Anderson Avenue, Markham, Ontario

Canada L6E 1B3

Tel: (905) 294-6222 Fax: (905) 201-2098 Internet: http://www.GEindustrial.com/multilin

GE Multilin's Quality Management System is registered to ISO9001:2000 QMI # 005094 UL # A3775

ADDENDUM

This Addendum contains information that relates to the N60 Network Stability and Security Relay relay, version 4.4x. This addendum lists a number of information items that appear in the instruction manual GEK-112996A (revision **J2**) but are not included in the current N60 operations.

The following functions/items are not yet available with the current version of the N60 relay:

N/A

Version 4.0x and higher releases of the N60 relay includes new hardware (CPU and CT/VT modules).

- The new CPU modules are specified with the following order codes: 9E, 9G, and 9H.
- The new CT/VT modules are specified with the following order codes: 8F, 8G, 8H, 8J.

The following table maps the relationship between the old CPU and CT/VT modules to the newer versions:

MODULE	OLD	NEW	DESCRIPTION
CPU	9A	9E	RS485 and RS485 (Modbus RTU, DNP)
	9C	9G	RS485 and 10Base-F (MMS/UCA2, Modbus TCP/IP, DNP)
	9D	9H	RS485 and Redundant 10Base-F (MMS/UCA2, Modbus TCP/IP, DNP)
CT/VT	8A	8F	Standard 4CT/4VT
	8B	8G	Sensitive Ground 4CT/4VT
	8C	8H	Standard 8CT
	8D	8J	Sensitive Ground 8CT/8VT

The new CT/VT modules can only be used with the new CPUs (9E, 9G, 9H), and the old CT/VT modules can only be used with the old CPU modules (9A, 9C, 9D). To prevent any hardware mismatches, the new CPU and CT/VT modules have blue labels and a warning sticker stating "Attn.: Ensure CPU and DSP module label colors are the same!". In the event that there is a mismatch between the CPU and CT/VT module, the relay will not function and a DSP ERROR or HARDWARE MISMATCH error will be displayed.

All other input/output modules are compatible with the new hardware.

With respect to the firmware, firmware versions 4.0x and higher are only compatible with the new CPU and CT/VT modules. Previous versions of the firmware (3.4x and earlier) are only compatible with the older CPU and CT/VT modules.

1.	GETTING STARTED	1.1 IMPOF 1.1.1 1.1.2	RTANT PROCEDURES CAUTIONS AND WARNINGSINSPECTION CHECKLIST	
		1.2 UR OV 1.2.1 1.2.2 1.2.3 1.2.4	INTRODUCTION TO THE UR	1-2 1-3 1-4
		1.3 ENER ¹ 1.3.1 1.3.2 1.3.3	VISTA UR SETUP SOFTWARE PC REQUIREMENTSINSTALLATION	1-5
		1.4 UR HA	ARDWARE	
		1.4.1 1.4.2 1.4.3	MOUNTING AND WIRING COMMUNICATIONS FACEPLATE DISPLAY	1-10
		1.5 USING	THE RELAY	
		1.5.1 1.5.2 1.5.3	FACEPLATE KEYPAD MENU NAVIGATION MENU HIERARCHY	1-11
		1.5.4 1.5.5	RELAY ACTIVATIONRELAY PASSWORDS	1-12 1-12
		1.5.6 1.5.7	FLEXLOGIC™ CUSTOMIZATIONCOMMISSIONING	
 2.	PRODUCT DESCRIPTION		DDUCTION	
		2.1.1 2.1.2	OVERVIEW	
			FICATIONS	
		2.2.1	PROTECTION ELEMENTS	2-5
		2.2.2	USER-PROGRAMMABLE ELEMENTS	
		2.2.3 2.2.4	MONITORINGMETERING	
		2.2.5	INPUTS	
		2.2.6	POWER SUPPLY	2-9
		2.2.7	OUTPUTS	
		2.2.8 2.2.9	COMMUNICATIONSINTER-RELAY COMMUNICATIONS	
		2.2.10	ENVIRONMENTAL	
		2.2.11	TYPE TESTS	2-12
			PRODUCTION TESTSAPPROVALS	
			MAINTENANCE	
3.	HARDWARE	3.1 DESC		
		3.1.1 3.1.2	PANEL CUTOUT MODULE WITHDRAWAL AND INSERTION	
		3.1.3	REAR TERMINAL LAYOUT	
		3.2 WIRIN		
		3.2.1 3.2.2	TYPICAL WIRING DIELECTRIC STRENGTH	
		3.2.2 3.2.3	CONTROL POWER	
		3.2.4	CT/VT MODULES	3-8
		3.2.5	CONTACT INPUTS/OUTPUTS	
		3.2.6 3.2.7	TRANSDUCER INPUTS/OUTPUTSRS232 FACEPLATE PORT	
		3.2.8	CPU COMMUNICATION PORTS	
		3.2.9	IRIG-B	3-20

		3.3 DIREC	T I/O COMMUNICATIONS	
		3.3.1	DESCRIPTION	3-21
		3.3.2	FIBER: LED AND ELED TRANSMITTERS	3-23
		3.3.3	FIBER-LASER TRANSMITTERS	3-23
		3.3.4	G.703 INTERFACE	3-24
		3.3.5	RS422 INTERFACE	3-26
		3.3.6	RS422 AND FIBER INTERFACE	3-29
		3.3.7	G.703 AND FIBER INTERFACE	3-29
		3.3.8	IEEE C37.94 INTERFACE	3-30
	HUMAN INTERFACES	4.4 ENED	VISTA UR SETUP SOFTWARE INTERFACE	
٠.	HOWAN INTERIACES	4.1 ENER 4.1.1	INTRODUCTION	4.4
		4.1.2	CREATING A SITE LIST	
		4.1.3	ENERVISTA UR SETUP SOFTWARE OVERVIEW	
		4.1.4	ENERVISTA OR SETUP SOFTWARE OVERVIEW	
			PLATE INTERFACE	
		4.2.1	FACEPLATE	
		4.2.2	LED INDICATORS	
		4.2.3	DISPLAY	• • • • • • • • • • • • • • • • • • • •
		4.2.4	KEYPAD MENUS	• • • • • • • • • • • • • • • • • • • •
		4.2.5 4.2.6	CHANGING SETTINGS	
		4.2.0	CHANGING SETTINGS	4-10
— 5.	SETTINGS	5.1 OVER		
		5.1.1	SETTINGS MAIN MENU	
		5.1.2	INTRODUCTION TO ELEMENTS	
		5.1.3	INTRODUCTION TO AC SOURCES	5-5
		5.2 PROD	UCT SETUP	
		5.2.1	PASSWORD SECURITY	5-8
		5.2.2	DISPLAY PROPERTIES	5-9
		5.2.3	CLEAR RELAY RECORDS	5-11
		5.2.4	COMMUNICATIONS	
		5.2.5	MODBUS USER MAP	
		5.2.6	REAL TIME CLOCK	5-20
		5.2.7	OSCILLOGRAPHY	
		5.2.8	DATA LOGGER	
		5.2.9	DEMAND	
			USER-PROGRAMMABLE LEDS	
			USER-PROGRAMMABLE SELF TESTS	
			CONTROL PUSHBUTTONS	
			USER-PROGRAMMABLE PUSHBUTTONS	
			FLEX STATE PARAMETERS	
			USER-DEFINABLE DISPLAYS	
			DIRECT INPUTS/OUTPUTS	
			INSTALLATION	5-37
			EM SETUP	5.00
		5.3.1	AC INPUTS	
		5.3.2	POWER SYSTEM	
		5.3.3 5.3.4	SIGNAL SOURCESBREAKERS	
		5.4 FLEXL	.OGIC™	
		5.4.1	INTRODUCTION TO FLEXLOGIC™	
		5.4.2	FLEXLOGIC™ RULES	
		5.4.3	FLEXLOGIC™ EVALUATION	
		5.4.4	FLEXLOGIC™ EXAMPLE	
		5.4.5	FLEXLOGIC™ EQUATION EDITOR	
		5.4.6	FLEXLOGIC™ TIMERS	
		5.4.7	FLEXELEMENTS™	5-60 5-64
		5 4 ጸ	NUM-VULATILE LATUHES	h_64

	5.5 GROU	PED ELEMENTS	
	5.5.1	OVERVIEW	5-65
	5.5.2	SETTING GROUP	
	5.5.3	POWER SWING DETECT	
	5.5.4	PHASE CURRENT	
	5.5.5	VOLTAGE ELEMENTSSUPERVISING ELEMENTS	
	5.5.6	SENSITIVE DIRECTIONAL POWER	
	5.5.7		5-80
		ROL ELEMENTS	5.00
	5.6.1 5.6.2	OVERVIEW SETTING GROUPS	
	5.6.3	SELECTOR SWITCH	
	5.6.4	UNDERFREQUENCY	
	5.6.5	OVERFREQUENCY	
	5.6.6	SYNCHROCHECK	
	5.6.7	DIGITAL ELEMENTS	
	5.6.8	DIGITAL COUNTERS	
	5.6.9	MONITORING ELEMENTS	
	5.6.10		
	5.6.11	DIGITIZERS	5-103
	5.6.12	8-BIT COMPARATORS	5-106
	5.6.13	8-BIT SWITCHES	5-112
	5 7 INPLIT	S/OUTPUTS	
	5.7 INFO	CONTACT INPUTS	5-114
	5.7.2	VIRTUAL INPUTS	
	5.7.3	CONTACT OUTPUTS	5-117
	5.7.4	LATCHING OUTPUTS	5-117
	5.7.5	VIRTUAL OUTPUTS	5-119
	5.7.6	REMOTE DEVICES	5-120
	5.7.7	REMOTE INPUTS	5-121
	5.7.8	REMOTE OUTPUTS	5-122
	5.7.9	RESETTING	
	5.7.10	DIRECT INPUTS/OUTPUTS	5-123
	5.8 TRAN	SDUCER I/O	
	5.8.1	DCMA INPUTS	5-127
	5.8.2	RTD INPUTS	5-128
	5.8.3	DCMA OUTPUTS	5-128
	5.9 TESTI	NG	
	5.9.1	TEST MODE	5-132
	5.9.2	FORCE CONTACT INPUTS	
	5.9.3	FORCE CONTACT OUTPUTS	5-133
6. ACTUAL VALUES	6.1 OVER		
	6.1.1	ACTUAL VALUES MAIN MENU	6-1
	6.2 STATU	JS	
	6.2.1	CONTACT INPUTS	6-3
	6.2.2	VIRTUAL INPUTS	6-3
	6.2.3	REMOTE INPUTS	6-3
	6.2.4	CONTACT OUTPUTS	6-4
	6.2.5	VIRTUAL OUTPUTS	6-4
	6.2.6	REMOTE DEVICES	
	6.2.7	DIGITAL COUNTERS	6-5
	6.2.8	SELECTOR SWITCHES	
	6.2.9	FLEX STATES	
	6.2.10		
		DIRECT INPUTS	
		DIRECT DEVICES STATUS	6-7
	6.3 METE		
	6.3.1	METERING CONVENTIONS	6-8
	6.3.2	SOURCES	6-11
			6-11

	6.3.4	SYNCHROCHECK	6-15
	6.3.5	TRACKING FREQUENCY	6-15
	6.3.6	FLEXELEMENTS™	6-15
	6.3.7	DIGITIZERS	6-16
	6.3.8	8-BIT COMPARATORS	6-16
	6.3.9	TRANSDUCER I/O	6-16
	6.4 RECO		
	6.4.1	EVENT RECORDS	6-17
	6.4.2	OSCILLOGRAPHY	6-17
	6.4.3	DATA LOGGER	6-17
	6.4.4	BREAKER MAINTENANCE	6-18
	6.5 PROD	JCT INFORMATION	
	6.5.1	MODEL INFORMATION	6-19
	6.5.2	FIRMWARE REVISIONS	6-19
7. COMMANDS AND	7.1 COMM	ANDS	
TARGETS	7.1.1	COMMANDS MENU	7-1
	7.1.2	VIRTUAL INPUTS	7-1
	7.1.3	CLEAR RECORDS	7-2
	7.1.4	SET DATE AND TIME	7-2
	7.1.5	RELAY MAINTENANCE	7-2
	7.2 TARGI	=T9	
	7.2 TARO	TARGETS MENU	7 2
	7.2.1	TARGET MESSAGES	
	7.2.3	RELAY SELF-TESTS	
A. FLEXANALOG PARAMETERS	ALLANA	METER LIST	
B. MODBUS	B.1 MODE	US RTU PROTOCOL	
COMMUNICATIONS	B.1.1	INTRODUCTION	B-1
	B.1.2	PHYSICAL LAYER	B-1
	B.1.3	DATA LINK LAYER	B-1
	B.1.4	CRC-16 ALGORITHM	B-2
	B.2 FUNC	TION CODES	
	B.2.1	SUPPORTED FUNCTION CODES	B-3
	B.2.2	READ ACTUAL VALUES OR SETTINGS (FUNCTION CODE 03/04H).	
	B.2.3	EXECUTE OPERATION (FUNCTION CODE 05H)	
	B.2.4	STORE SINGLE SETTING (FUNCTION CODE 06H)	B-4
	B.2.5	STORE MULTIPLE SETTINGS (FUNCTION CODE 10H)	
	B.2.6	EXCEPTION RESPONSES	B-5
	B.3 FILE T	RANSFERS	
	B.3.1	OBTAINING RELAY FILES VIA MODBUS	B-6
	B.3.2	MODBUS PASSWORD OPERATION	B-7
	B.4 MEMC	RY MAPPING	
	B.4.1	MODBUS MEMORY MAP	B-8
	B.4.2	DATA FORMATS	
C. IEC 60870-5-104 COMMS.			_
	C.1 IEC 60	870-5-104 PROTOCOL	
	C.1 IEC 60 C.1.1	870-5-104 PROTOCOL INTEROPERABILITY DOCUMENT	

D. DNP COMMUNICATIONS	D.1 DNP PROTOCOL D.1.1 DEVICE PROFILE DOCUMENT D.1.2 IMPLEMENTATION TABLE	
	D.2 DNP POINT LISTS D.2.1 BINARY INPUTS D.2.2 BINARY AND CONTROL RELAY OUTPUTS D.2.3 COUNTERS D.2.4 ANALOG INPUTS	D-14
E. MISCELLANEOUS	E.1 CHANGE NOTES E.1.1 REVISION HISTORY	
	E.2 ABBREVIATIONS E.2.1 STANDARD ABBREVIATIONS	
	E.3 WARRANTY E.3.1 GE MULTILIN WARRANTY	E-6

INDEX

Please read this chapter to help guide you through the initial setup of your new relay.

1.1.1 CAUTIONS AND WARNINGS

Before attempting to install or use the relay, it is imperative that all WARNINGS and CAU-TIONS in this manual are reviewed to help prevent personal injury, equipment damage, and/ or downtime.

1.1.2 INSPECTION CHECKLIST

- · Open the relay packaging and inspect the unit for physical damage.
- View the rear nameplate and verify that the correct model has been ordered.

847701A1-X1.CDR

Figure 1-1: REAR NAMEPLATE (EXAMPLE)

- Ensure that the following items are included:
 - Instruction Manual
 - GE enerVista CD (includes the enerVista UR Setup software and manuals in PDF format)
 - · mounting screws
 - · registration card (attached as the last page of the manual)
- Fill out the registration form and return to GE Multilin (include the serial number located on the rear nameplate).
- For product information, instruction manual updates, and the latest software updates, please visit the GE Multilin website at http://www.GEindustrial.com/multilin.

If there is any noticeable physical damage, or any of the contents listed are missing, please contact GE Multilin immediately.

GE MULTILIN CONTACT INFORMATION AND CALL CENTER FOR PRODUCT SUPPORT:

GE Multilin 215 Anderson Avenue Markham, Ontario Canada L6E 1B3

TELEPHONE: (905) 294-6222, 1-800-547-8629 (North America only)

FAX: (905) 201-2098

E-MAIL: gemultilin@indsys.ge.com

HOME PAGE: http://www.GEindustrial.com/multilin

1.2.1 INTRODUCTION TO THE UR

Historically, substation protection, control, and metering functions were performed with electromechanical equipment. This first generation of equipment was gradually replaced by analog electronic equipment, most of which emulated the single-function approach of their electromechanical precursors. Both of these technologies required expensive cabling and auxiliary equipment to produce functioning systems.

Recently, digital electronic equipment has begun to provide protection, control, and metering functions. Initially, this equipment was either single function or had very limited multi-function capability, and did not significantly reduce the cabling and auxiliary equipment required. However, recent digital relays have become quite multi-functional, reducing cabling and auxiliaries significantly. These devices also transfer data to central control facilities and Human Machine Interfaces using electronic communications. The functions performed by these products have become so broad that many users now prefer the term IED (Intelligent Electronic Device).

It is obvious to station designers that the amount of cabling and auxiliary equipment installed in stations can be even further reduced, to 20% to 70% of the levels common in 1990, to achieve large cost reductions. This requires placing even more functions within the IEDs.

Users of power equipment are also interested in reducing cost by improving power quality and personnel productivity, and as always, in increasing system reliability and efficiency. These objectives are realized through software which is used to perform functions at both the station and supervisory levels. The use of these systems is growing rapidly.

High speed communications are required to meet the data transfer rates required by modern automatic control and monitoring systems. In the near future, very high speed communications will be required to perform protection signaling with a performance target response time for a command signal between two IEDs, from transmission to reception, of less than 5 milliseconds. This has been established by the Electric Power Research Institute, a collective body of many American and Canadian power utilities, in their IEC 61850 project. In late 1998, some European utilities began to show an interest in this ongoing initiative.

IEDs with the capabilities outlined above will also provide significantly more power system data than is presently available, enhance operations and maintenance, and permit the use of adaptive system configuration for protection and control systems. This new generation of equipment must also be easily incorporated into automation systems, at both the station and enterprise levels. The GE Multilin Universal Relay (UR) has been developed to meet these goals.

a) UR BASIC DESIGN

The UR is a digital-based device containing a central processing unit (CPU) that handles multiple types of input and output signals. The UR can communicate over a local area network (LAN) with an operator interface, a programming device, or another UR device.

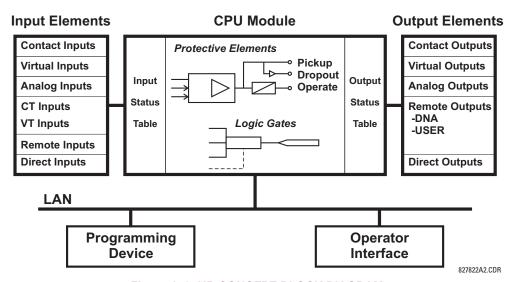


Figure 1-2: UR CONCEPT BLOCK DIAGRAM

The **CPU module** contains firmware that provides protection elements in the form of logic algorithms, as well as programmable logic gates, timers, and latches for control features.

Input elements accept a variety of analog or digital signals from the field. The UR isolates and converts these signals into logic signals used by the relay.

Output elements convert and isolate the logic signals generated by the relay into digital or analog signals that can be used to control field devices.

b) UR SIGNAL TYPES

The **contact inputs** and **outputs** are digital signals associated with connections to hard-wired contacts. Both 'wet' and 'dry' contacts are supported.

The **virtual inputs and outputs** are digital signals associated with UR-series internal logic signals. Virtual inputs include signals generated by the local user interface. The virtual outputs are outputs of FlexLogic[™] equations used to customize the device. Virtual outputs can also serve as virtual inputs to FlexLogic[™] equations.

The **analog inputs and outputs** are signals that are associated with transducers, such as Resistance Temperature Detectors (RTDs).

The **CT and VT inputs** refer to analog current transformer and voltage transformer signals used to monitor AC power lines. The UR-series relays support 1 A and 5 A CTs.

The **remote inputs and outputs** provide a means of sharing digital point state information between remote UR-series devices. The remote outputs interface to the remote inputs of other UR-series devices. Remote outputs are FlexLogic™ operands inserted into IEC 61850 GSSE messages and are of two assignment types: DNA standard functions and user-defined (UserSt) functions.

The **direct inputs and outputs** provide a means of sharing digital point states between a number of UR-series IEDs over a dedicated fiber (single or multimode), RS422, or G.703 interface. No switching equipment is required as the IEDs are connected directly in a ring or redundant (dual) ring configuration. This feature is optimized for speed and intended for pilotaided schemes, distributed logic applications, or the extension of the input/output capabilities of a single relay chassis.

c) UR SCAN OPERATION

The UR-series devices operate in a cyclic scan fashion. The device reads the inputs into an input status table, solves the logic program (FlexLogic™ equation), and then sets each output to the appropriate state in an output status table. Any resulting task execution is priority interrupt-driven.

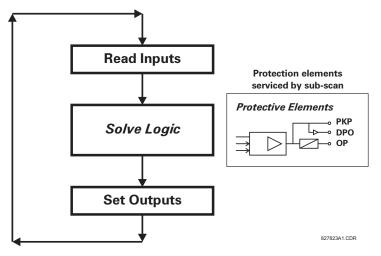


Figure 1-3: UR-SERIES SCAN OPERATION

1.2.3 SOFTWARE ARCHITECTURE

The firmware (software embedded in the relay) is designed in functional modules which can be installed in any relay as required. This is achieved with Object-Oriented Design and Programming (OOD/OOP) techniques.

Object-Oriented techniques involve the use of 'objects' and 'classes'. An 'object' is defined as "a logical entity that contains both data and code that manipulates that data". A 'class' is the generalized form of similar objects. By using this concept, one can create a Protection Class with the Protection Elements as objects of the class such as Time Overcurrent, Instantaneous Overcurrent, Current Differential, Undervoltage, Overvoltage, Underfrequency, and Distance. These objects represent completely self-contained software modules. The same object-class concept can be used for Metering, Input/Output Control, HMI, Communications, or any functional entity in the system.

Employing OOD/OOP in the software architecture of the Universal Relay achieves the same features as the hardware architecture: modularity, scalability, and flexibility. The application software for any Universal Relay (e.g. Feeder Protection, Transformer Protection, Distance Protection) is constructed by combining objects from the various functionality classes. This results in a 'common look and feel' across the entire family of UR-series platform-based applications.

1.2.4 IMPORTANT CONCEPTS

As described above, the architecture of the UR-series relays differ from previous devices. To achieve a general understanding of this device, some sections of Chapter 5 are quite helpful. The most important functions of the relay are contained in "elements". A description of the UR-series elements can be found in the *Introduction to Elements* section in Chapter 5. An example of a simple element, and some of the organization of this manual, can be found in the *Digital Elements* section. A description of how digital signals are used and routed within the relay is contained in the *Introduction to FlexLogic*™ section in Chapter 5.

1.3.1 PC REQUIREMENTS

The faceplate keypad and display or the enerVista UR Setup software interface can be used to communicate with the relay. The enerVista UR Setup software interface is the preferred method to edit settings and view actual values because the PC monitor can display more information in a simple comprehensible format.

The following minimum requirements must be met for the enerVista UR Setup software to properly operate on a PC.

- Pentium class or higher processor (Pentium II 300 MHz or higher recommended)
- Windows 95, 98, 98SE, ME, NT 4.0 (Service Pack 4 or higher), 2000, XP
- · Internet Explorer 4.0 or higher
- 128 MB of RAM (256 MB recommended)
- 200 MB of available space on system drive and 200 MB of available space on installation drive
- Video capable of displaying 800 x 600 or higher in high-color mode (16-bit color)
- RS232 and/or Ethernet port for communications to the relay

The following qualified modems have been tested to be compliant with the N60 and the enerVista UR Setup software.

- US Robotics external 56K FaxModem 5686
- US Robotics external Sportster 56K X2
- PCTEL 2304WT V.92 MDC internal modem

1.3.2 INSTALLATION

After ensuring the minimum requirements for using enerVista UR Setup are met (see previous section), use the following procedure to install the enerVista UR Setup from the enclosed GE enerVista CD.

- 1. Insert the GE enerVista CD into your CD-ROM drive.
- 2. Click the Install Now button and follow the installation instructions to install the no-charge enerVista software.
- 3. When installation is complete, start the enerVista Launchpad application.
- 4. Click the **IED Setup** section of the **Launch Pad** window.

In the enerVista Launch Pad window, click the Install Software button and select the "N60 Network Stability and Security Relay" from the Install Software window as shown below. Select the "Web" option to ensure the most recent soft-

ware release, or select "CD" if you do not have a web connection, then click the **Check Now** button to list software items for the N60.

Select the N60 software program and release notes (if desired) from the list and click the **Download Now** button to obtain the installation program.

- enerVista Launchpad will obtain the installation program from the Web or CD. Once the download is complete, doubleclick the installation program to install the enerVista UR Setup software.
- 8. Select the complete path, including the new directory name, where the enerVista UR Setup will be installed.
- 9. Click on **Next** to begin the installation. The files will be installed in the directory indicated and the installation program will automatically create icons and add enerVista UR Setup to the Windows start menu.

10. Click **Finish** to end the installation. The N60 device will be added to the list of installed IEDs in the enerVista Launchpad window, as shown below.

1.3.3 CONNECTING ENERVISTA UR SETUP WITH THE N60

This section is intended as a quick start guide to using the enerVista UR Setup software. Please refer to the enerVista UR Setup Help File and Chapter 4 of this manual for more information.

a) CONFIGURING AN ETHERNET CONNECTION

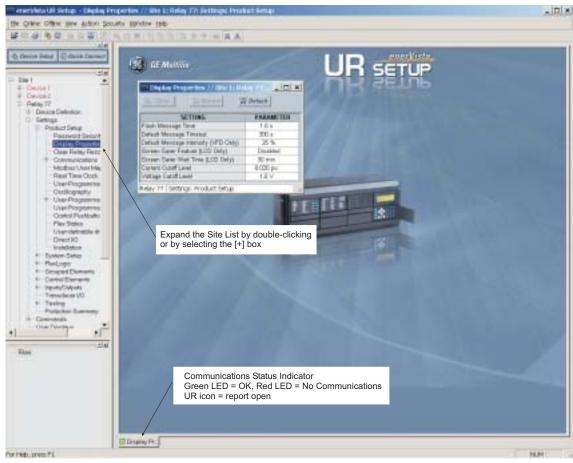
Before starting, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay. To setup the relay for Ethernet communications, it will be necessary to define a Site, then add the relay as a Device at that site.

- 1. Install and start the latest version of the enerVista UR Setup software (available from the GE enerVista CD or online from http://www.GEindustrial.com/multilin (see previous section for installation instructions).
- 2. Select the "UR" device from the enerVista Launchpad to start enerVista UR Setup.
- 3. Click the **Device Setup** button to open the Device Setup window, then click the **Add Site** button to define a new site.
- 4. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. Click the **OK** button when complete.
- 5. The new site will appear in the upper-left list in the enerVista UR Setup window. Click on the new site name and then click the **Device Setup** button to re-open the Device Setup window.
- Click the Add Device button to define the new device.
- 7. Enter the desired name in the "Device Name" field and a description (optional) of the site.
- 8. Select "Ethernet" from the **Interface** drop-down list. This will display a number of interface parameters that must be entered for proper Ethernet functionality.
 - Enter the relay IP address (from SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ NETWORK ⇒ IP ADDRESS) in the "IP Address" field.
 - Enter the relay Modbus address (from the PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ MODBUS PROTOCOL ⇒ MODBUS SLAVE ADDRESS setting) in the "Slave Address" field.
 - Enter the Modbus port address (from the PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ MODBUS PROTOCOL ⇒ ⊕ MODBUS TCP PORT NUMBER setting) in the "Modbus Port" field.
- Click the Read Order Code button to connect to the N60 device and upload the order code. If an communications error occurs, ensure that the three enerVista UR Setup values entered in the previous step correspond to the relay setting values.

10. Click **OK** when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main enerVista UR Setup window.

The Site Device has now been configured for Ethernet communications. Proceed to Section c) below to begin communications.

b) CONFIGURING AN RS232 CONNECTION


Before starting, verify that the RS232 serial cable is properly connected to the RS232 port on the front panel of the relay.

- Install and start the latest version of the enerVista UR Setup software (available from the GE enerVista CD or online from http://www.GEindustrial.com/multilin.
- 2. Select the **Device Setup** button to open the Device Setup window and click the **Add Site** button to define a new site.
- 3. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. Click the **OK** button when complete.
- 4. The new site will appear in the upper-left list in the enerVista UR Setup window. Click on the new site name and then click the **Device Setup** button to re-open the Device Setup window.
- 5. Click the Add Device button to define the new device.
- 6. Enter the desired name in the "Device Name" field and a description (optional) of the site.
- 7. Select "Serial" from the **Interface** drop-down list. This will display a number of interface parameters that must be entered for proper serial communications.
 - Enter the relay slave address and COM port values (from the SETTINGS ⇒ PRODUCT SETUP ⇒ ♣ COMMUNICATIONS ⇒ ♣ SERIAL PORTS menu) in the "Slave Address" and "COM Port" fields.
 - Enter the physical communications parameters (baud rate and parity settings) in their respective fields.
- Click the Read Order Code button to connect to the N60 device and upload the order code. If an communications
 error occurs, ensure that the enerVista UR Setup serial communications values entered in the previous step correspond to the relay setting values.
- Click "OK" when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main enerVista UR Setup window.

The Site Device has now been configured for RS232 communications. Proceed to Section c) Connecting to the Relay below to begin communications.

c) CONNECTING TO THE RELAY

1. Open the Display Properties window through the Site List tree as shown below:

842743A1.CDR

- 2. The Display Properties window will open with a status indicator on the lower left of the enerVista UR Setup window.
- 3. If the status indicator is red, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay and that the relay has been properly setup for communications (steps A and B earlier).

If a relay icon appears in place of the status indicator, than a report (such as an oscillography or event record) is open. Close the report to re-display the green status indicator.

4. The Display Properties settings can now be edited, printed, or changed according to user specifications.

Refer to Chapter 4 in this manual and the enerVista UR Setup Help File for more information about the using the enerVista UR Setup software interface.

1.4 UR HARDWARE

1.4.1 MOUNTING AND WIRING

Please refer to Chapter 3: Hardware for detailed mounting and wiring instructions. Review all **WARNINGS** and **CAUTIONS** carefully.

1.4.2 COMMUNICATIONS

The enerVista UR Setup software communicates to the relay via the faceplate RS232 port or the rear panel RS485 / Ethernet ports. To communicate via the faceplate RS232 port, a standard "straight-through" serial cable is used. The DB-9 male end is connected to the relay and the DB-9 or DB-25 female end is connected to the PC COM1 or COM2 port as described in the CPU Communications Ports section of Chapter 3.

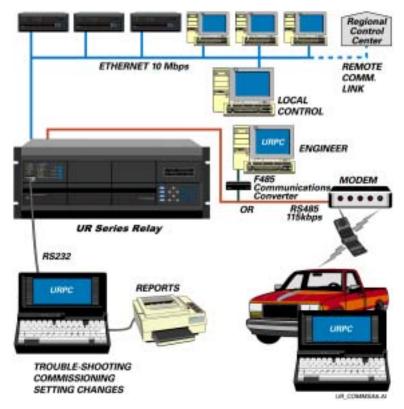
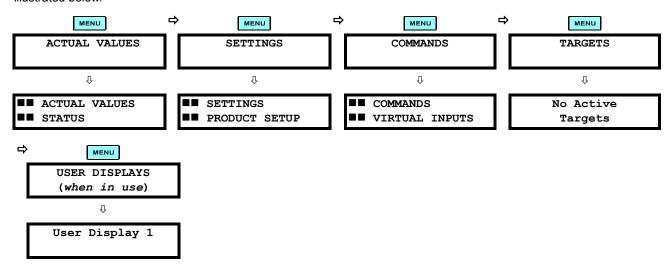


Figure 1–4: RELAY COMMUNICATIONS OPTIONS

To communicate through the N60 rear RS485 port from a PC RS232 port, the GE Multilin RS232/RS485 converter box is required. This device (catalog number F485) connects to the computer using a "straight-through" serial cable. A shielded twisted-pair (20, 22, or 24 AWG) connects the F485 converter to the N60 rear communications port. The converter terminals (+, -, GND) are connected to the N60 communication module (+, -, COM) terminals. Refer to the *CPU Communications Ports* section in Chapter 3 for option details. The line should be terminated with an R-C network (i.e. 120Ω , 1 nF) as described in the Chapter 3.

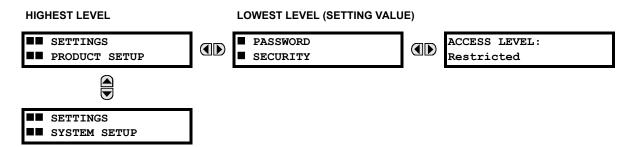
1.4.3 FACEPLATE DISPLAY

All messages are displayed on a 2×20 character vacuum fluorescent display to make them visible under poor lighting conditions. An optional liquid crystal display (LCD) is also available. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.


Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The **MENU** key navigates through these pages. Each heading page is broken down further into logical subgroups.

The MESSAGE keys navigate through the subgroups. The VALUE keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.

The key initiates and advance to the next character in text edit mode or enters a decimal point. The pressed at any time for context sensitive help messages. The key stores altered setting values.


1.5.2 MENU NAVIGATION

Press the key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the key advances through the main heading pages as illustrated below.

1.5.3 MENU HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (\blacksquare), while sub-header pages are indicated by single scroll bar characters (\blacksquare). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE and keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE key from a setting value or actual value display returns to the header display.

1.5.4 RELAY ACTIVATION

The relay is defaulted to the "Not Programmed" state when it leaves the factory. This safeguards against the installation of a relay whose settings have not been entered. When powered up successfully, the Trouble LED will be on and the In Service LED off. The relay in the "Not Programmed" state will block signaling of any output relay. These conditions will remain until the relay is explicitly put in the "Programmed" state.

Select the menu message SETTINGS

→ PRODUCT SETUP

→

□ INSTALLATION

→ RELAY SETTINGS

RELAY SETTINGS: Not Programmed

To put the relay in the "Programmed" state, press either of the AVALUE we keys once and then press Interest. The face-plate Trouble LED will turn off and the In Service LED will turn on. The settings for the relay can be programmed manually (refer to Chapter 5) via the face-plate keypad or remotely (refer to the enerVista UR Setup Help file) via the enerVista UR Setup software interface.

1.5.5 RELAY PASSWORDS

It is recommended that passwords be set up for each security level and assigned to specific personnel. There are two user password security access levels, COMMAND and SETTING:

1. COMMAND

The COMMAND access level restricts the user from making any settings changes, but allows the user to perform the following operations:

- · change state of virtual inputs
- · clear event records
- · clear oscillography records
- · operate user-programmable pushbuttons

2. SETTING

The SETTING access level allows the user to make any changes to any of the setting values.

Refer to the *Changing Settings* section in Chapter 4 for complete instructions on setting up security level passwords.

1.5.6 FLEXLOGIC™ CUSTOMIZATION

FlexLogic™ equation editing is required for setting up user-defined logic for customizing the relay operations. See the *Flex-Logic*™ section in Chapter 5 for additional details.

1.5.7 COMMISSIONING

Templated tables for charting all the required settings before entering them via the keypad are available from the GE Multi-lin website at http://www.GEindustrial.com/multilin.

The N60 requires a minimum amount of maintenance when it is commissioned into service. The N60 is a microprocessor-based relay and its characteristics do not change over time. As such no further functional tests are required.

Furthermore the N60 performs a number of ongoing self-tests and takes the necessary action in case of any major errors (see the *Relay Self-Test* section in Chapter 7 for details). However, it is recommended that maintenance on the N60 be scheduled with other system maintenance. This maintenance may involve the following.

In-service maintenance:

- 1. Visual verification of the analog values integrity such as voltage and current (in comparison to other devices on the corresponding system).
- 2. Visual verification of active alarms, relay display messages, and LED indications.
- 3. LED test.
- 4. Visual inspection for any damage, corrosion, dust, or loose wires.
- Event recorder file download with further events analysis.

Out-of-service maintenance:

- 1. Check wiring connections for firmness.
- 2. Analog values (currents, voltages, RTDs, analog inputs) injection test and metering accuracy verification. Calibrated test equipment is required.
- 3. Protection elements setpoints verification (analog values injection or visual verification of setting file entries against relay settings schedule).
- 4. Contact inputs and outputs verification. This test can be conducted by direct change of state forcing or as part of the system functional testing.
- 5. Visual inspection for any damage, corrosion, or dust.
- 6. Event recorder file download with further events analysis.
- 7. LED Test and pushbutton continuity check.

Unscheduled maintenance such as during a disturbance causing system interruption:

1. View the event recorder and oscillography or fault report for correct operation of inputs, outputs, and elements.

If it is concluded that the relay or one of its modules is of concern, contact GE Multilin or one of its representatives for prompt service.

The N60 Network Stability and Security Relay is a flexible microprocessor-based device intended for development of load shedding and special protection schemes.

Owing to its modular architecture, the N60 can be configured to monitor from one through five three-phase power circuits. The relay provides for variety of metering functions, including: active, reactive and apparent power on a per-phase and three-phase basis; true RMS value, phasors and symmetrical components of currents and voltages; and power factor and frequency. The latter could be measured independently and simultaneously from up to six different signals.

The N60 allows interfacing other analog signals via optional transducer modules to monitor equipment temperature, transformer tap positions, weather data, and other information.

In addition to a standard collection of communications protocols that can be exercised simultaneously and independently over a range of communication ports, including the redundant Ethernet port, the relay supports an independent mechanism for direct, fast and secure digital inter-IED communications. This allows both reducing wiring and development time for all the local connections in a substation, as well as building wide-area protection and control schemes.

Up to 64 on/off signals can be exchanged between any two N60 devices via digital communications. The relays could be configured in rings with up to 16 devices each using direct fiber (C37.94), G.704 and RS422 interfaces. An optional redundant (dual-channel) communication card supports combinations of the three interfaces allowing different physical connections in each channel. Dual-ring communication architecture could be selected for redundancy. Open ring or crossover configurations could be utilized to increase the number of devices in the scheme.

The effective message delivery time depends of number of other N60 devices located between the sending and receiving IEDs. A two-cycle or one-cycle worst-case message delivery times could be comfortably achieved for comparatively large N60 schemes.

Sophisticated self-monitoring and diagnostic functions are incorporated such as the 32-bit CRC, unreturned messages count or lost packets counts. The N60 supports both multiplexed and direct fiber (up to 100km) inter-substation connections.

The N60 allows sending and receiving any analog value measured by the relay using the dedicated inter-IED communication mechanisms. Power, voltage and current magnitudes, frequency, transducer inputs and other values can be freely configured for the inter-IED exchanges. The analog values are transmitted with the 8-bit resolution. Upon reception, any remote analog value could be re-sent, compared with another value or a constant threshold, added to or subtracted from other local or remote analog value, subjected to the rate-of-change monitoring, etc. This powerful feature allows advanced applications such as balancing power over wide areas, or adding extra security by comparing local and remote measurements for consistency. It also facilitates simple telemetry.

Diagnostic features include an Event Recorder capable of storing 1024 time-tagged events, oscillography capable of storing up to 64 records with programmable trigger, content and sampling rate, and Data Logger acquisition of up to 16 channels, with programmable content and sampling rate. The internal clock used for time-tagging can be synchronized with an IRIG-B signal or via the SNTP protocol over the Ethernet port. This precise time stamping allows the sequence of events to be determined throughout the system. Events can also be programmed (via FlexLogic™ equations) to trigger oscillography data capture which may be set to record the measured parameters before and after the event for viewing on a personal computer (PC). These tools significantly reduce troubleshooting time and simplify report generation in the event of a system fault.

A faceplate RS232 port may be used to connect to a PC for the programming of settings and the monitoring of actual values. A variety of communications modules are available. Two rear RS485 ports allow independent access by operating and engineering staff. All serial ports use the Modbus[®] RTU protocol. The RS485 ports may be connected to system computers with baud rates up to 115.2 kbps. The RS232 port has a fixed baud rate of 19.2 kbps. Optional communications modules include a 10BaseF Ethernet interface which can be used to provide fast, reliable communications in noisy environments. Another option provides two 10BaseF fiber optic ports for redundancy. The Ethernet port supports MMS/UCA2, Modbus[®]/TCP, and TFTP protocols, and allows access to the relay via any standard web browser (UR web pages). The IEC 60870-5-104 protocol is supported on the Ethernet port. DNP 3.0 and IEC 60870-5-104 cannot be enabled at the same time.

The N60 IEDs use flash memory technology which allows field upgrading as new features are added. The following Single Line Diagram illustrates the relay functionality using ANSI (American National Standards Institute) device numbers.

Table 2-1: ANSI DEVICE NUMBERS AND FUNCTIONS

DEVICE	FUNCTION
25	Synchrocheck
27P	Phase undervoltage
32	Sensitive directional power
50DD	Disturbance detector
50P	Phase instantaneous overcurrent

DEVICE	FUNCTION
59P	Phase overvoltage
68	Power swing blocking
810	Overfrequency
81U	Underfrequency

Table 2-2: OTHER DEVICE FUNCTIONS

FUNCTION
8-bit switch
Breaker control
Contact inputs (up to 96)
Contact outputs (up to 64)
Control pushbuttons
Data logger
Digital counters (8)
Digital elements (16)
Digitizer
Direct inputs/outputs (64)
DNP 3.0 or IEC 60870-5-104 comms
Event recorder

FlexElements™ (16) FlexLogic™ equations Generic comparator Metering: current, demand, energy, frequency, power, power factor, voltage MMS/UCA communications MMS/UCA remote inputs/outputs ("GOOSE") Modbus communications Modbus user map Non-volatile latches Non-volatile selector switch	FUNCTION
Generic comparator Metering: current, demand, energy, frequency, power, power factor, voltage MMS/UCA communications MMS/UCA remote inputs/outputs ("GOOSE") Modbus communications Modbus user map Non-volatile latches	FlexElements™ (16)
Metering: current, demand, energy, frequency, power, power factor, voltage MMS/UCA communications MMS/UCA remote inputs/outputs ("GOOSE") Modbus communications Modbus user map Non-volatile latches	FlexLogic™ equations
frequency, power, power factor, voltage MMS/UCA communications MMS/UCA remote inputs/outputs ("GOOSE") Modbus communications Modbus user map Non-volatile latches	Generic comparator
MMS/UCA remote inputs/outputs ("GOOSE") Modbus communications Modbus user map Non-volatile latches	frequency, power, power
("GOOSE") Modbus communications Modbus user map Non-volatile latches	MMS/UCA communications
Modbus user map Non-volatile latches	
Non-volatile latches	Modbus communications
	Modbus user map
Non-volatile selector switch	Non-volatile latches
	Non-volatile selector switch

FUNCTION
Open pole detect
Oscillography
Setting groups (6)
Time synchronization over SNTP
Transducer inputs/outputs
User-definable displays
User-programmable LEDs
User-programmable pushbuttons
User-programmable self-tests
Virtual inputs (32)
Virtual Outputs (64)
VT fuse failure

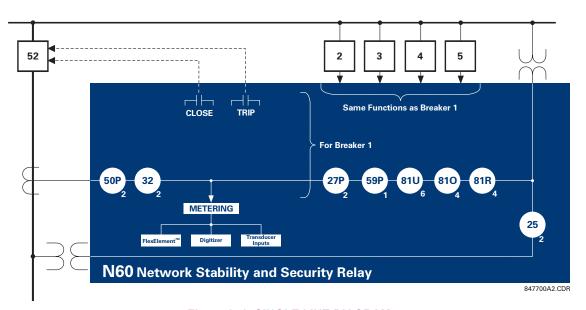


Figure 2-1: SINGLE LINE DIAGRAM

2.1.2 ORDERING

The relay is available as a 19-inch rack horizontal mount unit or as a reduced size (¾) vertical mount unit, and consists of the following UR module functions: power supply, CPU, CT/VT modules, digital input/output, transducer input/output, and inter-relay communications. Each of these modules can be supplied in a number of configurations which must be specified at the time of ordering. The information required to completely specify the relay is provided in the following table (full details of available relay modules are contained in Chapter 3: Hardware).

Table 2-3: N60 ORDER CODES

	N60 - *	00) <u>-</u> I	н •	* -	F ¹	** - H	l ** - N	- ** -	P ** - U	** =1	W **	Full Size Horizontal Mount
	N60 - *	00	۱ - ۱	٧ *	* =	F ¹	** - H	I ** - N	**		- 3	# **	Reduced Size Vertical Mount (see note below for value of slot #)
ASE UNIT	N60			П			I						Base Unit
PU	E	- 1		1 1			1	- 1	- 1		- 1		RS485 + RS485 (ModBus RTU, DNP)
	G	;		1 1	- 1		1	- 1	- 1	- 1	- 1		RS485 + 10BaseF (MMS/UCA2, Modbus TCP/IP, DNP)
	Н	1		1 1			1	- 1	- 1	- 1	- 1	- 1	RS485 + Redundant 10BaseF (MMS/UCA2, Modbus TCP/IP, DNP)
OFTWARE		00)	П	1		I	1	1	- 1	1	- 1	No Software Options
OUNT/			H	H C	; [İ	i	i	i	i	Ĺ	Horizontal (19" rack)
ACEPLATE			H	н Р	ı İ		Ĺ	i	i	i	i	Ĺ	Horizontal (19" rack) with User-Programmable Pushbuttons
			١	V F	i i		İ	i	i	İ	Ĺ	Ĺ	Vertical (3/4 rack)
OWER SUPP					Н		Ì	i	i	i	i	Ĺ	125 / 250 V AC/DC power supply
edundant po					Н		ĺ	i	i	i	Ĺ	RH	125 / 250 V AC/DC with redundant 125 / 250 V AC/DC power supply
apply only a orizontal mo	vallable in unt units)				L		i	i	i	i	i	- 1	24 to 48 V (DC only) power supply
)	unit unito,				L		i	i	i	i	i	, RL	24 to 48 V (DC only) with redunant 24 to 48 V DC power supply
T/VT MODUL	_ES					8	3F	i	8F	i	8F	- 1	Standard 4CT/4VT
						8	3G	i	8G	i	8G	i.	Sensitive Ground 4CT/4VT
							3H	i	8H	i	8H	i	Standard 8CT
							3J	i	8J	i	8J	i	Sensitive Ground 8CT
GITAL							I	- i	XX	XX	XX	XX	No Module
PUTS/OUTP	PUTS						IA	4A	4A	4A	4A		4 Solid-State (No Monitoring) MOSFET Outputs
							1B	4B	4B	4B	4B		4 Solid-State (Voltage w/ opt Current) MOSFET Outputs
							1C	4C	4C	4C	4C		4 Solid-State (Current w/ opt Voltage) MOSFET Outputs
							4L	4L	4L	4L	4L		14 Form-A (No Monitoring) Latchable Outputs
							37	67	67	67	67		8 Form-A (No Monitoring) outputs
							6A	6A	6A	6A	6A		2 Form-A (Volt w/ opt Curr) & 2 Form-C outputs, 8 Digital Inputs
							BB	6B	6B	6B	6B		2 Form-A (Volt w/ opt Curr) & 4 Form-C Outputs, 4 Digital Inputs
							SC	6C	6C	6C	6C		8 Form-C Outputs
							SD	6D	6D	6D	6D		16 Digital Inputs
							SE	6E	6E	6E	6E		4 Form-C Outputs, 8 Digital Inputs
							SF	6F	6F	6F	6F		8 Fast Form-C Outputs
							SG	6G	6G	6G	6G		4 Form-A (Voltage w/ opt Current) Outputs, 8 Digital Inputs
							BH	6H	6H	6H	6H		6 Form-A (Voltage w/ opt Current) Outputs, 4 Digital Inputs
							SK	6K	6K	6K	6K		, , , , , , , , , , , , , , , , , , , ,
									6L	6L	6L		4 Form-C & 4 Fast Form-C Outputs 2 Form-A (Curr w/ opt Volt) & 2 Form-C Outputs, 8 Digital Inputs
							SL SM	6L 6M	6M				
						-				6M	6M		2 Form-A (Curr w/ opt Volt) & 4 Form-C Outputs, 4 Digital Inputs
							SN SD	6N	6N	6N 6P	6N 6P		4 Form-A (Current w/ opt Voltage) Outputs, 8 Digital Inputs
							SP SP	6P	6P				6 Form-A (Current w/ opt Voltage) Outputs, 4 Digital Inputs
							SR	6R	6R	6R	6R		2 Form-A (No Monitoring) & 2 Form-C Outputs, 8 Digital Inputs
							SS	6S	6S	6S	6S		2 Form-A (No Monitoring) & 4 Form-C Outputs, 4 Digital Inputs
							ST.	6T	6T	6T	6T		4 Form-A (No Monitoring) Outputs, 8 Digital Inputs
							SU .	6U	6U	6U	6U		6 Form-A (No Monitoring) Outputs, 4 Digital Inputs
RANSDUCEI IPUTS/OUTP							5A	5A	5A	5A	5A		4 dcmA Inputs, 4 dcmA Outputs (only one 5A module is allowed)
naximum of)					SC	5C	5C	5C	5C		8 RTD Inputs
							5D	5D	5D	5D	5D		4 RTD Inputs, 4 dcmA Outputs (only one 5D module is allowed)
							5E	5E	5E	5E	5E		4 RTD Inputs, 4 dcmA Inputs
						5	5F	5F	5F	5F	5F		8 dcmA Inputs
NTER-RELAY COMMUNICATIONS													820 nm, multi-mode, LED, 1 Channel
CHINORICA													1300 nm, multi-mode, LED, 1 Channel
													1300 nm, single-mode, ELED, 1 Channel
													1300 nm, single-mode, LASER, 1 Channel
													820 nm, multi-mode, LED, 2 Channels
												71	1300 nm, multi-mode, LED, 2 Channels
													1300 nm, single-mode, ELED, 2 Channels
												7K	1300 nm, single-mode, LASER, 2 Channels
												71	Channel 1 BS422: Channel 2 920 nm multi mode LED

For vertical mounting units, # = slot P for digital and transducer input/output modules; # = slot R for inter-relay communications modules

7L Channel 1 - RS422; Channel 2 - 820 nm, multi-mode, LED

7M Channel 1 - RS422; Channel 2 - 1300 nm, multi-mode, LED 7N Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, ELED

7P Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, LASER

7R G.703, 1 Channel

7S G.703, 2 Channels

7T RS422, 1 Channel

7W RS422, 2 Channels

72 1550 nm, single-mode, LASER, 1 Channel

73 1550 nm, single-mode, LASER, 2 Channel 76 IEEE C37.94, 820 nm, multi-mode, LED, 1 Channel

77 IEEE C37.94, 820 nm, multi-mode, LED, 2 Channels

The order codes for replacement modules to be ordered separately are shown in the following table. When ordering a replacement CPU module or Faceplate, please provide the serial number of your existing unit.

Table 2-4: ORDER CODES FOR REPLACEMENT MODULES

Table 2-4. ORDER CODES I	UR - ** -	CEMENT MODULES
POWER SUPPLY	UR - ** -	125 / 250 V AC/DC
(redundant power	1 1L	24 to 48 V (DC only)
supply only available in	I RH	redundant 125 / 250 V AC/DC
horizontal mount units)	i RH	redundant 24 to 48 V (DC only)
CPU	9E	RS485 and RS485 (ModBus RTU, DNP 3.0)
	9G	RS485 and 10Base-F (MMS/UCA2, Modbus TCP/IP, DNP 3.0)
	9H	RS485 and Redundant 10Base-F (MMS/UCA2, ModBus TCP/IP, DNP 3.0)
FACEPLATE	3C	Horizontal faceplate with display and keypad
	3P	Horizontal faceplate with display, keypad, and user-programmable pushbuttons
DIGITAL INPUTS/OUTPUTS	4A	4 Solid-State (no monitoring) MOSFET Outputs
III 010/0011 010	4B 4C	Solid-State (voltage with optional current) MOSFET Outputs Solid-State (current with optional voltage) MOSFET Outputs
	1 4L	14 Form-A (no monitoring) Latching Outputs
	67	8 Form-A (no monitoring) Outputs
	i 6A	2 Form-A (voltage with optional current) and 2 Form-C Outputs, 8 Digital Inputs
	6B	2 Form-A (voltage with optional current) and 4 Form-C Outputs, 4 Digital Inputs
	6C	8 Form-C Outputs
	6D	16 Digital Inputs
	6E	4 Form-C Outputs, 8 Digital Inputs
	6F	8 Fast Form-C Outputs
	6G	4 Form-A (voltage with optional current) Outputs, 8 Digital Inputs
	6H	6 Form-A (voltage with optional current) Outputs, 4 Digital Inputs
	6K 6L	4 Form-C & 4 Fast Form-C Outputs 2 Form-A (current with optional voltage) and 2 Form-C Outputs, 8 Digital Inputs
	l 6M	2 Form-A (current with optional voltage) and 4 Form-C Outputs, 4 Digital Inputs
	6N	4 Form-A (current with optional voltage) Outputs, 8 Digital Inputs
	i 6P	6 Form-A (current with optional voltage) Outputs, 4 Digital Inputs
	j 6R	2 Form-A (no monitoring) and 2 Form-C Outputs, 8 Digital Inputs
	6S	2 Form-A (no monitoring) and 4 Form-C Outputs, 4 Digital Inputs
	6T	4 Form-A (no monitoring) Outputs, 8 Digital Inputs
	[6U	6 Form-A (no monitoring) Outputs, 4 Digital Inputs
CT/VT MODULES	8F	Standard 4CT/4VT
(NOT AVAILABLE FOR THE C30)	8G	Sensitive Ground 4CT/4VT
	8H	Standard 8CT
UR INTER-RELAY COMMUNICATIONS	8J	Sensitive Ground 8CT
UK INTER-RELAT COMMUNICATIONS	2A 2B	C37.94SM, 1300nm single-mode, ELED, 1 channel single-mode
	1 72	C37.94SM, 1300nm single-mode, ELED, 2 channel single-mode 1550 nm, single-mode, LASER, 1 Channel
	72	1550 nm, single-mode, LASER, 2 Channel
	1 74	Channel 1 - RS422; Channel 2 - 1550 nm, single-mode, LASER
	75	Channel 1 - G.703; Channel 2 - 1550 nm, Single-mode LASER
	1 76	IEEE C37.94, 820 nm, multimode, LED, 1 Channel
	77	IEEE C37.94, 820 nm, multimode, LED, 2 Channels
	i 7A	820 nm, multi-mode, LED, 1 Channel
	7B	1300 nm, multi-mode, LED, 1 Channel
	7C	1300 nm, single-mode, ELED, 1 Channel
	, 7D	1300 nm, single-mode, LASER, 1 Channel
	7E	Channel 1 - G.703; Channel 2 - 820 nm, multi-mode
	7F	Channel 1 - G.703; Channel 2 - 1300 nm, multi-mode
	7G	Channel 1 - G.703; Channel 2 - 1300 nm, single-mode ELED
	7H	820 nm, multi-mode, LED, 2 Channels
	7	1300 nm, multi-mode, LED, 2 Channels
	7J	1300 nm, single-mode, ELED, 2 Channels
	7K	1300 nm, single-mode, LASER, 2 Channels
	7L	Channel 1 - RS422; Channel 2 - 820 nm, multi-mode, LED
	7M	Channel 1 - RS422; Channel 2 - 1300 nm, multi-mode, LED
	7N	Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, ELED Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, LASER
	7P 7Q	Channel 1 - R5422; Channel 2 - 1300 nm, single-mode, LASER Channel 1 - G.703; Channel 2 - 1300 nm, single-mode LASER
	7Q 7R	G.703, 1 Channel
	7K	G.703, 2 Channels
	75 7T	RS422, 1 Channel
	7 V	RS422, 2 Channels
TRANSDUCER	5A	4 dcmA Inputs, 4 dcmA Outputs (only one 5A module is allowed)
INPUTS/OUTPUTS	5C	8 RTD Inputs
	5D	4 RTD Inputs, 4 dcmA Outputs (only one 5D module is allowed)
	j 5E	4 dcmA Inputs, 4 RTD Inputs
	5F	8 dcmA Inputs

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

2.2.1 PROTECTION ELEMENTS

The operating times below include the activation time of a trip rated Form-A output contact unless otherwise indicated. FlexLogic™ operands of a given element are 4 ms faster. This should be taken into account when using FlexLogic™ to interconnect with other protection or control elements of the relay, building FlexLogic™ equations, or interfacing with other IEDs or power system devices via communications or different output contacts.

PHASE IOC

Pickup level: 0.000 to 30.000 pu in steps of 0.001

Dropout level: 97 to 98% of pickup

Level accuracy:

0.1 to 2.0 \times CT rating: $\pm 0.5\%$ of reading or $\pm 1\%$ of rated

(whichever is greater)

 $> 2.0 \times CT$ rating $\pm 1.5\%$ of reading

Overreach: <2%

Pickup delay: 0.00 to 600.00 s in steps of 0.01 Reset delay: 0.00 to 600.00 s in steps of 0.01 Operate time: <16 ms at $3 \times Pickup$ at 60 Hz

(Phase/Ground IOC)

<20 ms at 3 × Pickup at 60 Hz

(Neutral IOC)

Timing accuracy: Operate at $1.5 \times Pickup$

±3% or ±4 ms (whichever is greater)

SENSITIVE DIRECTIONAL POWER

Measured power: 3-phase, true RMS

Number of stages: 2

Characteristic angle: 0 to 359° in steps of 1
Calibration angle: 0.00 to 0.95° in steps of 0.05

Minimum power: -1.200 to 1.200 pu in steps of 0.001Pickup level accuracy: $\pm 1\%$ or ± 0.001 pu, whichever is greater Hysteresis: 2% or 0.001 pu, whichever is greater

Pickup delay: 0 to 600.00 s in steps of 0.01
Time accuracy: ±3% or ±4 ms, whichever is greater

Operate time: 50 ms

PHASE UNDERVOLTAGE

Pickup level: 0.000 to 3.000 pu in steps of 0.001

Dropout level: 102 to 103% of Pickup

Level accuracy: ±0.5% of reading from 10 to 208 V

Curve shapes: GE IAV Inverse;

Definite Time (0.1s base curve)

Curve multiplier: Time Dial = 0.00 to 600.00 in steps of

0.01

Timing accuracy: Operate at $< 0.90 \times Pickup$

±3.5% of operate time or ±4 ms (which-

ever is greater)

PHASE OVERVOLTAGE

Voltage: Phasor only

Pickup level: 0.000 to 3.000 pu in steps of 0.001

Dropout level: 97 to 98% of Pickup

Level accuracy: ±0.5% of reading from 10 to 208 V
Pickup delay: 0.00 to 600.00 in steps of 0.01 s
Operate time: <30 ms at 1.10 × Pickup at 60 Hz
Timing accuracy: ±3% or ±4 ms (whichever is greater)

UNDERFREQUENCY

Minimum signal: 0.10 to 1.25 pu in steps of 0.01
Pickup level: 20.00 to 65.00 Hz in steps of 0.01

Dropout level: Pickup + 0.03 Hz

Level accuracy: ±0.01 Hz

Time delay: 0 to 65.535 s in steps of 0.001
Timer accuracy: ±3% or 4 ms, whichever is greater

OVERFREQUENCY

Pickup level: 20.00 to 65.00 Hz in steps of 0.01

Dropout level: Pickup – 0.03 Hz

Level accuracy: ±0.01 Hz

Time delay: 0 to 65.535 s in steps of 0.001
Timer accuracy: ±3% or 4 ms, whichever is greater

RATE OF CHANGE OF FREQUENCY

df/dt trend: increasing, decreasing, bi-directional df/dt pickup level: 0.10 to 15.00 Hz/s in steps of 0.01

df/dt dropout level: 96% of pickup

df/dt level accuracy:

80 mHz/s or 3.5%, whichever is greater

0.100 to 3.000 pu in steps of 0.001

0.000 to 30.000 pu in steps of 0.001

Pickup delay:

0 to 65.535 s in steps of 0.001

Reset delay:

0 to 65.535 s in steps of 0.001

Time accuracy:

43% or ±4 ms, whichever is greater

95% settling time for df/dt: < 24 cycles

Operate time: at 2 × pickup: 12 cycles

at $3 \times$ pickup: 8 cycles at $5 \times$ pickup: 6 cycles

SYNCHROCHECK

Max voltage difference: 0 to 100000 V in steps of 1 Max angle difference: 0 to 100° in steps of 1

Max freq. difference: 0.00 to 2.00 Hz in steps of 0.01

Hysteresis for max. freq. diff.: 0.00 to 0.10 Hz in steps of 0.01

Dead source function: None, LV1 & DV2, DV1 & LV2, DV1 or

DV2, DV1 xor DV2, DV1 & DV2

(L = Live, D = Dead)

POWER SWING DETECT

Functions: Power swing block, Out-of-step trip

Characteristic: Mho or Quad
Measured impedance: Positive-sequence
Blocking / tripping modes: 2-step or 3-step
Tripping mode: Early or Delayed

Current supervision:

Pickup level: 0.050 to 30.000 pu in steps of 0.001

Dropout level: 97 to 98% of Pickup

Fwd / reverse reach (sec. Ω): 0.10 to 500.00 Ω in steps of 0.01 Left and right blinders (sec. Ω): 0.10 to 500.00 Ω in steps of 0.01

Impedance accuracy: ±5%

Fwd / reverse angle impedances: 40 to 90° in steps of 1

Angle accuracy: ±2°

Characteristic limit angles: 40 to 140° in steps of 1

Timers: 0.000 to 65.535 s in steps of 0.001
Timing accuracy: ±3% or 4 ms, whichever is greater

OPEN POLE DETECTOR

Detects an open pole condition, monitoring breaker auxiliary contacts, the current in each phase and optional voltages on the line

Current pickup level: 0.000 to 30.000 pu in steps of 0.001

Current dropout level: Pickup + 3%, not less than 0.05 pu

2.2.2 USER-PROGRAMMABLE ELEMENTS

FLEXLOGIC™

Programming language: Reverse Polish Notation with graphical

visualization (keypad programmable)

Lines of code: 512 Internal variables: 64

Supported operations: NOT, XOR, OR (2 to 16 inputs), AND (2

to 16 inputs), NOR (2 to 16 inputs), NAND (2 to 16 inputs), Latch (Reset dominant), Edge Detectors, Timers

Inputs: any logical variable, contact, or virtual

input

Number of timers: 32

Pickup delay: 0 to 60000 (ms, sec., min.) in steps of 1
Dropout delay: 0 to 60000 (ms, sec., min.) in steps of 1

FLEXCURVES™

Number: 4 (A through D)

Reset points: 40 (0 through 1 of pickup)
Operate points: 80 (1 through 20 of pickup)
Time delay: 0 to 65535 ms in steps of 1

FLEX STATES

Number: up to 256 logical variables grouped

under 16 Modbus addresses

Programmability: any logical variable, contact, or virtual

input

FLEXELEMENTS™

Number of elements: 16

Operating signal: any analog actual value, or two values in

differential mode

Operating signal mode: Signed or Absolute Value

Operating mode: Level, Delta Comparator direction: Over, Under

Pickup Level: -30.000 to 30.000 pu in steps of 0.001

Hysteresis: 0.1 to 50.0% in steps of 0.1

Delta dt: 20 ms to 60 days

Pickup & dropout delay: 0.000 to 65.535 s in steps of 0.001

NON-VOLATILE LATCHES

Type: Set-dominant or Reset-dominant
Number: 16 (individually programmed)
Output: Stored in non-volatile memory

Execution sequence: As input prior to protection, control, and

FlexLogic™

USER-PROGRAMMABLE LEDs

Number: 48 plus Trip and Alarm

Programmability: from any logical variable, contact, or vir-

tual input

Reset mode: Self-reset or Latched

LED TEST

Initiation: from any digital input or user-program-

mable condition

Number of tests: 3, interruptible at any time Duration of full test: approximately 3 minutes

Test sequence 1: all LEDs on

Test sequence 2: all LEDs off, one LED at a time on for 1 s Test sequence 3: all LEDs on, one LED at a time off for 1 s

USER-DEFINABLE DISPLAYS

Number of displays: 16

Lines of display: 2 × 20 alphanumeric characters

Parameters: up to 5, any Modbus register addresses Invoking and scrolling: keypad, or any user-programmable con-

dition, including pushbuttons

CONTROL PUSHBUTTONS

Number of pushbuttons: 7

Operation: drive FlexLogic™ operands

USER-PROGRAMMABLE PUSHBUTTONS (OPTIONAL)

Number of pushbuttons: 12

Mode: Self-Reset, Latched

Display message: 2 lines of 20 characters each

SELECTOR SWITCH

Number of elements: 2

Upper position limit: 1 to 7 in steps of 1
Selecting mode: Time-out or Acknowledge
Time-out timer: 3.0 to 60.0 s in steps of 0.1

Control inputs: step-up and 3-bit

Power-up mode: restore from non-volatile memory or syn-

chronize to a 3-bit control input

DIGITIZER

Input signal: any FlexAnalog parameter

Independent elements: 1 per CT bank, to a maximum of 5

Independent elements: 5

Response time: < 8 ms at 60 Hz, < 10 ms at 50 Hz Upper / lower limit for input signal: 0.050 to 90 pu in steps of 0.001

Resolution: 8 bits / full-scale
Maximum error: ±0.6% of full-scale

Rounding method: nearest with a one-count dead-band

8-BIT COMPARATOR

Number of elements: 6

Operating signal: up to two 8-bit integers via FlexLogic™

operands

Operating mode: add or subtract, controlled from any

FlexLogic™ operand

Operating signal mode: Signed, Absolute Value

Comparator direction: Over, Under

Pickup level: -25400 to 25400 in steps of 1

Hysteresis: 0 to 5000 in steps of 1

Pickup/Dropout delay: 0 to 65.535 s in steps of 0.01

Scaling factor for display: 0.01 to 100.00 in steps of 0.01

8-BIT SWITCH

Number of elements: 6

Input signals: two 8-bit integers via FlexLogic™ oper-

ands

Control signal: any FlexLogic™ operand

Response time: < 8 ms at 60 Hz, < 10 ms at 50 Hz

2.2.3 MONITORING

OSCILLOGRAPHY

Maximum records: 64

Sampling rate: 64 samples per power cycle

Triggers: Any element pickup, dropout or operate

Digital input change of state Digital output change of state

FlexLogic™ equation

Data: AC input channels

Element state
Digital input state
Digital output state

Data storage: In non-volatile memory

EVENT RECORDER

Capacity: 1024 events
Time-tag: to 1 microsecond

Triggers: Any element pickup, dropout or operate

Digital input change of state Digital output change of state

Self-test events

Data storage: In non-volatile memory

DATA LOGGER

Number of channels: 1 to 16

Parameters: Any available analog actual value
Sampling rate: 1 sec.; 1, 5, 10, 15, 20, 30, 60 min.
Storage capacity: (NN is dependent on memory)
1-second rate: 01 channel for NN days

16 channels for NN days

60-minute rate: 01 channel for NN days

16 channels for NN days

2.2.4 METERING

RMS CURRENT: PHASE, NEUTRAL, AND GROUND

Accuracy at

0.1 to 2.0 \times CT rating: $\pm 0.25\%$ of reading or $\pm 0.1\%$ of rated

(whichever is greater)

 $> 2.0 \times CT$ rating: $\pm 1.0\%$ of reading

RMS VOLTAGE

Accuracy: ±0.5% of reading from 10 to 208 V

REAL POWER (WATTS)

Accuracy: ±1.0% of reading at

 $-0.8 < PF \le -1.0$ and $0.8 < PF \le 1.0$

REACTIVE POWER (VARS)

Accuracy: $\pm 1.0\%$ of reading at $-0.2 \le PF \le 0.2$

APPARENT POWER (VA)

Accuracy: ±1.0% of reading

WATT-HOURS (POSITIVE AND NEGATIVE)

Accuracy: $\pm 2.0\%$ of reading Range: ± 0 to 2×10^9 MWh Parameters: 3-phase only

Update rate: 50 ms

VAR-HOURS (POSITIVE AND NEGATIVE)

Accuracy: $\pm 2.0\%$ of reading Range: ± 0 to 2×10^9 Mvarh

Parameters: 3-phase only Update rate: 50 ms

FREQUENCY

Accuracy at

V = 0.8 to 1.2 pu: ± 0.01 Hz (when voltage signal is used

for frequency measurement)

I = 0.1 to 0.25 pu: $\pm 0.05 \text{ Hz}$

I > 0.25 pu: ± 0.02 Hz (when current signal is used for

frequency measurement)

DEMAND

Measurements: Phases A, B, and C present and maxi-

mum measured currents

3-Phase Power (P, Q, and S) present and maximum measured currents

Accuracy: ±2.0%

2.2.5 INPUTS

AC CURRENT

CT rated primary: 1 to 50000 A

CT rated secondary: 1 A or 5 A by connection

Nominal frequency: 20 to 65 Hz

Relay burden: < 0.2 VA at rated secondary

Conversion range:

Standard CT: 0.02 to 46 × CT rating RMS symmetrical

Sensitive Ground module:

0.002 to 4.6 × CT rating RMS symmetrical

Current withstand: 20 ms at 250 times rated

1 sec. at 100 times rated continuous at 3 times rated

AC VOLTAGE

VT rated secondary: 50.0 to 240.0 V
VT ratio: 1.00 to 24000.00
Nominal frequency: 20 to 65 Hz
Relay burden: < 0.25 VA at 120 V

Conversion range: 1 to 275 V

Voltage withstand: continuous at 260 V to neutral 1 min./hr at 420 V to neutral

CONTACT INPUTS

Dry contacts: 1000Ω maximum Wet contacts: 300 V DC maximum Selectable thresholds: 17 V, 33 V, 84 V, 166 V

Tolerance: $\pm 10\%$ Recognition time: < 1 ms

Debounce timer: 0.0 to 16.0 ms in steps of 0.5

DCMA INPUTS

Current input (mA DC): 0 to -1, 0 to +1, -1 to +1, 0 to 5, 0 to 10,

0 to 20, 4 to 20 (programmable)

Input impedance: $379 \Omega \pm 10\%$ Conversion range: -1 to + 20 mA DCAccuracy: $\pm 0.2\%$ of full scale

Type: Passive

RTD INPUTS

Types (3-wire): 100Ω Platinum, $100 \& 120 \Omega$ Nickel, 10

 Ω Copper

Sensing current: 5 mA

Range: -50 to +250°C

Accuracy: ±2°C lsolation: 36 V pk-pk

IRIG-B INPUT

Amplitude modulation: 1 to 10 V pk-pk

 $\begin{array}{lll} \text{DC shift:} & & \text{TTL} \\ \text{Input impedance:} & & 22 \text{ k}\Omega \\ \text{Isolation:} & & 2 \text{ kV} \end{array}$

REMOTE INPUTS (MMS GOOSE)

Number of input points: 64, configured from 64 incoming bit pairs

Number of remote devices:16

Default states on loss of comms.: On, Off, Latest/Off, Latest/On

DIRECT INPUTS

Number of input points: 64 No. of remote devices: 16

Default states on loss of comms.: On, Off, Latest/Off, Latest/On

Ring configuration: Yes, No
Data rate: 64 or 128 kbps

CRC: 32-bit

CRC alarm:

Responding to: Rate of messages failing the CRC Monitoring message count: 10 to 10000 in steps of 1 Alarm threshold: 1 to 1000 in steps of 1

Unreturned message alarm:

Responding to: Rate of unreturned messages in the ring

configuration

Monitoring message count: 10 to 10000 in steps of 1 Alarm threshold: 1 to 1000 in steps of 1

2.2.6 POWER SUPPLY

LOW RANGE

Nominal DC voltage: 24 to 48 V at 3 A Min/max DC voltage: 20 / 60 V NOTE: Low range is DC only.

HIGH RANGE

Nominal DC voltage: 125 to 250 V at 0.7 A

Min/max DC voltage: 88 / 300 V

Nominal AC voltage: 100 to 240 V at 50/60 Hz, 0.7 A Min/max AC voltage: 88 / 265 V at 48 to 62 Hz **ALL RANGES**

Volt withstand: 2 × Highest Nominal Voltage for 10 ms

Voltage loss hold-up: 50 ms duration at nominal Power consumption: Typical = 15 VA; Max. = 30 VA

INTERNAL FUSE

RATINGS

Low range power supply: 7.5 A / 600 V High range power supply: 5 A / 600 V

INTERRUPTING CAPACITY

AC: 100 000 A RMS symmetrical

DC: 10 000 A

2.2.7 OUTPUTS

FORM-A RELAY

Make and carry for 0.2 s: 30 A as per ANSI C37.90

Carry continuous: 6 A

Break at L/R of 40 ms: 0.25 A DC max. at 48 V

0.10 A DC max. at 125 V

Operate time: < 4 ms
Contact material: Silver alloy

LATCHING RELAY

Make and carry for 0.2 s: 30 A as per ANSI C37.90

Carry continuous: 6 A

Break at L/R of 40 ms: 0.25 A DC max. Operate time: < 4 ms

Contact material: Silver alloy

Control: separate op

Control: separate operate and reset inputs
Control mode: operate-dominant or reset-dominant

FORM-A VOLTAGE MONITOR

Applicable voltage: approx. 15 to 250 V DC Trickle current: approx. 1 to 2.5 mA

FORM-A CURRENT MONITOR

Threshold current: approx. 80 to 100 mA

FORM-C AND CRITICAL FAILURE RELAY

Make and carry for 0.2 s: 10 A Carry continuous: 6 A

Break at L/R of 40 ms: 0.25 A DC max. at 48 V

0.10 A DC max. at 125 V

Operate time: < 8 ms
Contact material: Silver alloy

FAST FORM-C RELAY

Make and carry: 0.1 A max. (resistive load)

Minimum load impedance:

INPUT VOLTAGE	IMPEDANCE			
VOLTAGE	2 W RESISTOR	1 W RESISTOR		
250 V DC	20 ΚΩ	50 KΩ		
120 V DC	5 ΚΩ	2 ΚΩ		
48 V DC	2 ΚΩ	2 ΚΩ		
24 V DC	2 ΚΩ	2 ΚΩ		

Note: values for 24 V and 48 V are the same due to a required 95% voltage drop across the load impedance.

Operate time: < 0.6 ms Internal Limiting Resistor: 100 Ω , 2 W

SOLID-STATE OUTPUT RELAY

Operate and release time: <100 µs Maximum voltage: 265 V DC

Maximum continuous current: 5 A at 45°C; 4 A at 65°C

Make and carry for 0.2 s: as per ANSI C37.90

Breaking capacity:

	IEC 647-5 / UL508	Utility application (autoreclose scheme)	Industrial application
Operations/ interval	5000 ops / 1 s-On, 9 s-Off	5 ops / 0.2 s-On, 0.2 s-Off	10000 ops / 0.2 s-On,
	1000 ops / 0.5 s-On, 0.5 s-Off	within 1 minute	30 s-Off
Break capability (0 to 250 V	3.2 A L/R = 10 ms		
DC)	1.6 A L/R = 20 ms	10 A L/R = 40 ms	10 A L/R = 40 ms
	0.8 A L/R = 40 ms		

IRIG-B OUTPUT

Amplitude: 10 V peak-peak RS485 level

100 ohms Maximum load:

Time delay: 1 ms for AM input

40 μs for DC-shift input

Isolation: 2 kV

CONTROL POWER EXTERNAL OUTPUT (FOR DRY CONTACT INPUT)

Capacity: 100 mA DC at 48 V DC

Isolation: ±300 Vpk

REMOTE OUTPUTS (IEC 61850 GSSE)

Standard output points: 32 User output points: 32 **DIRECT OUTPUTS** 64

DCMA OUTPUTS

Output points:

Range: -1 to 1 mA, 0 to 1 mA, 4 to 20 mA

12 k Ω for -1 to 1 mA range Max. load resistance:

> 12 $k\Omega$ for 0 to 1 mA range 600 Ω for 4 to 20 mA range

±0.75% of full-scale for 0 to 1 mA range Accuracy:

> ±0.5% of full-scale for -1 to 1 mA range ±0.75% of full-scale for 0 to 20 mA range

99% Settling time to a step change: 100 ms

Isolation: 1.5 kV

Driving signal: any FlexAnalog quantity

Upper and lower limit for the driving signal: -90 to 90 pu in steps of

0.001

2.2.8 COMMUNICATIONS

RS232

Front port: 19.2 kbps, Modbus® RTU

RS485

Up to 115 kbps, Modbus® RTU, isolated 1 or 2 rear ports:

together at 36 Vpk

Typical distance: 1200 m Isolation: 2 kV

ETHERNET PORT

10Base-F: 820 nm, multi-mode, supports half-

duplex/full-duplex fiber optic with ST

connector

Redundant 10Base-F: 820 nm. multi-mode. half-duplex/full-

duplex fiber optic with ST connector

10Base-T: RJ45 connector

10 db Power budget: Max optical input power: -7.6 dBm Max optical output power: -20 dBm Receiver sensitivity: -30 dBm Typical distance: 1.65 km

SNTP clock synchronization error: <10 ms (typical)

2.2.9 INTER-RELAY COMMUNICATIONS

SHIELDED TWISTED-PAIR INTERFACE OPTIONS

INTERFACE TYPE	TYPICAL DISTANCE		
RS422	1200 m		
G.703	100 m		

RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.

LINK POWER BUDGET

EMITTER, FIBER TYPE	TRANSMIT POWER	RECEIVED SENSITIVITY	POWER BUDGET
820 nm LED, Multimode	–20 dBm	-30 dBm	10 dB
1300 nm LED, Multimode	–21 dBm	-30 dBm	9 dB
1300 nm ELED, Singlemode	–21 dBm	–30 dBm	9 dB
1300 nm Laser, Singlemode	–1 dBm	-30 dBm	29 dB
1550 nm Laser, Singlemode	+5 dBm	-30 dBm	35 dB

These Power Budgets are calculated from the manufacturer's worst-case transmitter power and worst case receiver sensitivity.

MAXIMUM OPTICAL INPUT POWER

EMITTER, FIBER TYPE	MAX. OPTICAL INPUT POWER
820 nm LED, Multimode	–7.6 dBm
1300 nm LED, Multimode	–11 dBm
1300 nm ELED, Singlemode	-14 dBm
1300 nm Laser, Singlemode	-14 dBm
1550 nm Laser, Singlemode	–14 dBm

TYPICAL LINK DISTANCE

EMITTER TYPE	FIBER TYPE	CONNECTOR TYPE	TYPICAL DISTANCE
820 nm LED	Multimode	ST	1.65 km
1300 nm LED	Multimode	ST	3.8 km
1300 nm ELED	Singlemode	ST	11.4 km
1300 nm Laser	Singlemode	ST	64 km
1550 nm Laser	Singlemode	ST	105 km

NOTE

Typical distances listed are based on the following assumptions for system loss. As actual losses will vary from one installation to another, the distance covered by your system may vary.

CONNECTOR LOSSES (TOTAL OF BOTH ENDS)

ST connector 2 dB

FIBER LOSSES

820 nm multimode 3 dB/km 1300 nm multimode 1 dB/km 0.35 dB/km 1300 nm singlemode 1550 nm singlemode 0.25 dB/km

One splice every 2 km, Splice losses:

at 0.05 dB loss per splice.

SYSTEM MARGIN

3 dB additional loss added to calculations to compensate for all other losses.

Compensated difference in transmitting and receiving (channel asymmetry) channel delays using GPS satellite clock: 10 ms

2.2.10 ENVIRONMENTAL

OPERATING TEMPERATURES

IEC 60028-2-1, 16 h at -40°C Cold: Dry Heat: IEC 60028-2-2, 16 h at +85°C

OTHER

Humidity (noncondensing): IEC 60068-2-30, 95%, Variant 1, 6

days

Altitude: Up to 2000 m

Installation Category:

2.2.11 TYPE TESTS

Electrical fast transient: ANSI/IEEE C37.90.1

IEC 61000-4-4 IEC 60255-22-4

Oscillatory transient: ANSI/IEEE C37.90.1

IEC 61000-4-12

Insulation resistance: IEC 60255-5
Dielectric strength: IEC 60255-6

ANSI/IEEE C37.90

Electrostatic discharge: EN 61000-4-2
Surge immunity: EN 61000-4-5
RFI susceptibility: ANSI/IEEE C37.90.2

IEC 61000-4-3 IEC 60255-22-3

Ontario Hydro C-5047-77

Conducted RFI: IEC 61000-4-6

Voltage dips/interruptions/variations:

IEC 61000-4-11 IEC 60255-11

Power frequency magnetic field immunity:

IEC 61000-4-8

Vibration test (sinusoidal): IEC 60255-21-1 Shock and bump: IEC 60255-21-2

NOTE

Type test report available upon request.

2.2.12 PRODUCTION TESTS

THERMAL

Products go through an environmental test based upon an Accepted Quality Level (AQL) sampling process.

2.2.13 APPROVALS

APPROVALS

UL Listed for the USA and Canada

CE:

LVD 73/23/EEC: IEC 1010-1

EMC 81/336/EEC: EN 50081-2, EN 50082-2

2.2.14 MAINTENANCE

MOUNTING

Attach mounting brackets using 20 inch-pounds (± 2 inch-pounds) of torque.

CLEANING

Normally, cleaning is not required; but for situations where dust has accumulated on the faceplate display, a dry cloth can be used.

3.1.1 PANEL CUTOUT

The relay is available as a 19-inch rack horizontal mount unit or as a reduced size (%) vertical mount unit, with a removable faceplate. The modular design allows the relay to be easily upgraded or repaired by a qualified service person. The faceplate is hinged to allow easy access to the removable modules, and is itself removable to allow mounting on doors with limited rear depth. There is also a removable dust cover that fits over the faceplate, which must be removed when attempting to access the keypad or RS232 communications port.

The vertical and horizontal case dimensions are shown below, along with panel cutout details for panel mounting. When planning the location of your panel cutout, ensure that provision is made for the faceplate to swing open without interference to or from adjacent equipment.

The relay must be mounted such that the faceplate sits semi-flush with the panel or switchgear door, allowing the operator access to the keypad and the RS232 communications port. The relay is secured to the panel with the use of four screws supplied with the relay.

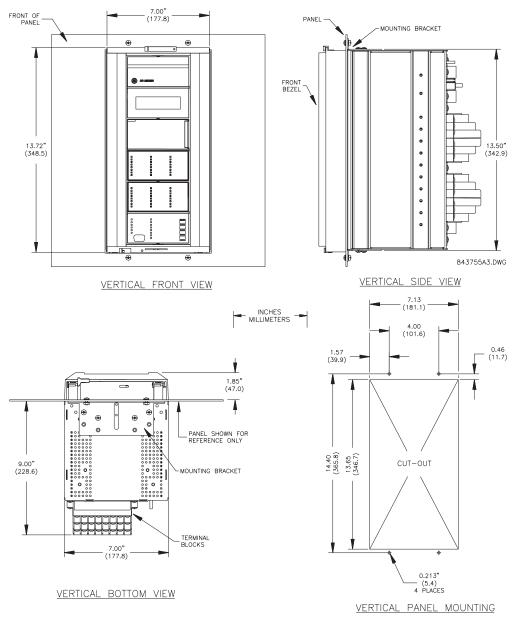


Figure 3-1: N60 VERTICAL MOUNTING AND DIMENSIONS

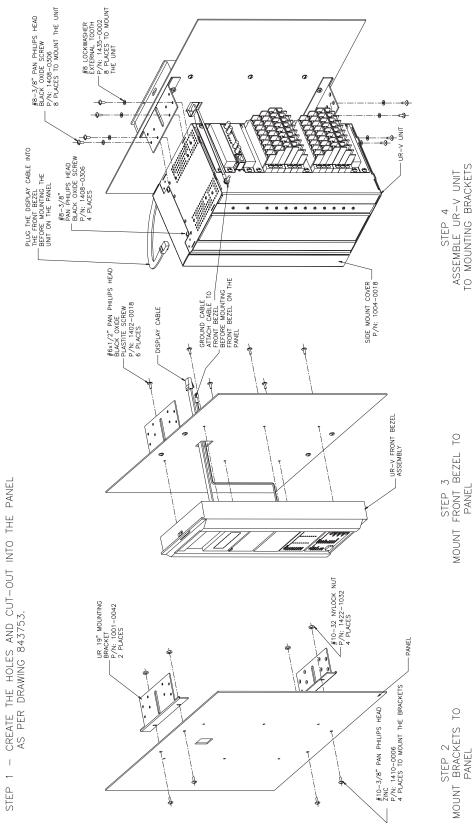


Figure 3-2: N60 VERTICAL SIDE MOUNTING INSTALLATION

3 HARDWARE 3.1 DESCRIPTION

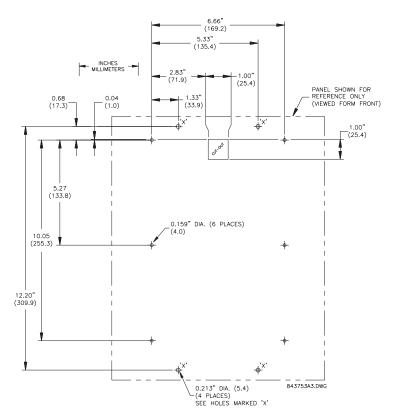


Figure 3-3: N60 VERTICAL SIDE MOUNTING REAR DIMENSIONS

REMOTE MOUNTING

VIEW FROM THE REAR OF THE PANEL BEZEL OUTLINE HORIZONTAL TOP VIEW (19" 4RU) 8x0.156 ø 8.97" 10.90" 0.375 (9.5) – 4.785 (121.5) (227.8) (276.8) 9.80" (248.9) 0.375 (9.5) Brackets repositioned for switchgear mtg. 17.52" (445.0) HORIZONTAL PANEL MOUNTING 4x0.28" Dia. NCHES (mm) HORIZONTAL FRONT VIEW (7.1)18.37" (466.6)4.00" (101.6) 7.00" (177.8) 7.13" (181.1) CUTOUT 19.00" (482.6) 1.57" (39.8) 17.75" (450.8) 827704B4.DWG

Figure 3-4: N60 HORIZONTAL MOUNTING AND DIMENSIONS

3.1.2 MODULE WITHDRAWAL AND INSERTION

Module withdrawal and insertion may only be performed when control power has been removed from the unit. Inserting an incorrect module type into a slot may result in personal injury, damage to the unit or connected equipment, or undesired operation!

Proper electrostatic discharge protection (i.e. a static strap) must be used when coming in contact with modules while the relay is energized!

The relay, being modular in design, allows for the withdrawal and insertion of modules. Modules must only be replaced with like modules in their original factory configured slots. The faceplate can be opened to the left, once the sliding latch on the right side has been pushed up, as shown below. This allows for easy accessibility of the modules for withdrawal.

Figure 3-5: UR MODULE WITHDRAWAL/INSERTION

- MODULE WITHDRAWAL: The ejector/inserter clips, located at the top and bottom of each module, must be pulled simultaneously to release the module for removal. Before performing this action, control power must be removed from the relay. Record the original location of the module to ensure that the same or replacement module is inserted into the correct slot. Modules with current input provide automatic shorting of external CT circuits.
- MODULE INSERTION: Ensure that the correct module type is inserted into the correct slot position. The ejector/
 inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is
 smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Type 9G and 9H CPU modules are equipped with 10Base-T and 10Base-F Ethernet connectors. These connectors must be individually disconnected from the module before the it can be removed from the chassis.



The version 4.0 release of the N60 relay includes new hardware (CPU and CT/VT modules). The new CPU modules are specified with the following order codes: 9E, 9G, and 9H. The new CT/VT modules are specified with the following order codes: 8F, 8G, 8H, 8J.

The new CT/VT modules (8F, 8G, 8H, 8J) can only be used with the new CPUs (9E, 9G, 9H); similarly, the old CT/VT modules (8A, 8B, 8C, 8D) can only be used with the old CPUs (9A, 9C, 9D). To prevent hardware mismatches, the new CPU and CT/VT modules have blue labels and a warning sticker stating "Attn.: Ensure CPU and DSP module label colors are the same!". In the event that there is a mismatch between the CPU and CT/VT module, the relay will not function and a DSP ERROR or HARDWARE MISMATCH error will be displayed.

All other input/output modules are compatible with the new hardware. Firmware versions 4.0x and higher are only compatible with the new CPU and CT/VT modules. Previous versions of the firmware (3.4x and earlier) are only compatible with the older CPU and CT/VT modules.

3.1.3 REAR TERMINAL LAYOUT

847701A1.CDR

Figure 3-6: REAR TERMINAL VIEW

Do not touch any rear terminals while the relay is energized!

The relay follows a convention with respect to terminal number assignments which are three characters long assigned in order by module slot position, row number, and column letter. Two-slot wide modules take their slot designation from the first slot position (nearest to CPU module) which is indicated by an arrow marker on the terminal block. See the following figure for an example of rear terminal assignments.

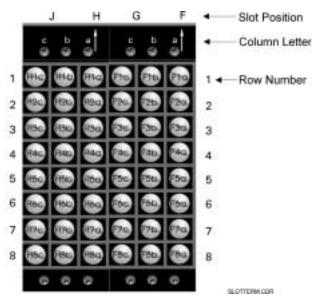


Figure 3-7: EXAMPLE OF MODULES IN F AND H SLOTS

3.2.1 TYPICAL WIRING

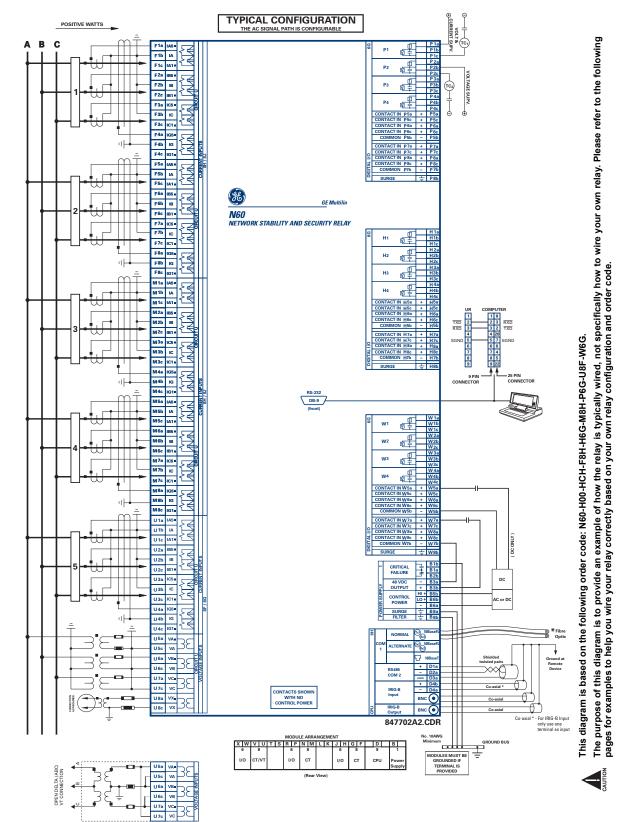


Figure 3-8: TYPICAL WIRING DIAGRAM

3.2.2 DIELECTRIC STRENGTH

The dielectric strength of the UR-series module hardware is shown in the following table:

Table 3-1: DIELECTRIC STRENGTH OF UR-SERIES MODULE HARDWARE

MODULE MODULE FUNCTION		TERMINALS		DIELECTRIC STRENGTH
TYPE		FROM	ТО	(AC)
1	Power Supply	High (+); Low (+); (-)	Chassis	2000 V AC for 1 minute
1	Power Supply	48 V DC (+) and (-)	Chassis	2000 V AC for 1 minute
1	Power Supply	Relay Terminals	Chassis	2000 V AC for 1 minute
2	Reserved	N/A	N/A	N/A
3	Reserved	N/A	N/A	N/A
4	Reserved	N/A	N/A	N/A
5	Analog Inputs/Outputs	All except 8b	Chassis	< 50 V DC
6	Digital Inputs/Outputs	All (See Precaution 2)	Chassis	2000 V AC for 1 minute
7	G.703	All except 2b, 3a, 7b, 8a	Chassis	2000 V AC for 1 minute
/	RS422	All except 6a, 7b, 8a	Chassis	< 50 V DC
8	CT/VT	All	Chassis	2000 V AC for 1 minute
9	CPU	All	Chassis	2000 V AC for 1 minute

Filter networks and transient protection clamps are used in module hardware to prevent damage caused by high peak voltage transients, radio frequency interference (RFI) and electromagnetic interference (EMI). These protective components can be damaged by application of the ANSI/IEEE C37.90 specified test voltage for a period longer than the specified one minute.

3.2.3 CONTROL POWER

CONTROL POWER SUPPLIED TO THE RELAY MUST BE CONNECTED TO THE MATCHING POWER SUPPLY RANGE OF THE RELAY. IF THE VOLTAGE IS APPLIED TO THE WRONG TERMINALS, DAMAGE MAY OCCUR!

The N60 relay, like almost all electronic relays, contains electrolytic capacitors. These capacitors are well known to be subject to deterioration over time if voltage is not applied periodically. Deterioration can be avoided by powering the relays up once a year.

The power supply module can be ordered for two possible voltage ranges. Each range has a dedicated input connection for proper operation. The ranges are as shown below (see the Technical Specifications section for additional details):

- LO range: 24 to 48 V (DC only) nominal
- HI range: 125 to 250 V nominal

The power supply module provides power to the relay and supplies power for dry contact input connections.

The power supply module provides 48 V DC power for dry contact input connections and a critical failure relay (see the Typical Wiring Diagram earlier). The critical failure relay is a Form-C that will be energized once control power is applied and the relay has successfully booted up with no critical self-test failures. If on-going self-test diagnostic checks detect a critical failure (see the Self-Test Errors table in Chapter 7) or control power is lost, the relay will de-energize.

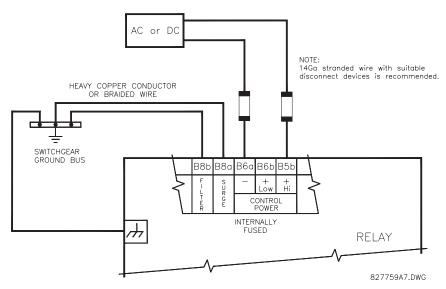


Figure 3-9: CONTROL POWER CONNECTION

3.2.4 CT/VT MODULES

A CT/VT module may have voltage inputs on Channels 1 through 4 inclusive, or Channels 5 through 8 inclusive. Channels 1 and 5 are intended for connection to Phase A, and are labeled as such in the relay. Channels 2 and 6 are intended for connection to Phase B, and are labeled as such in the relay. Channels 3 and 7 are intended for connection to Phase C and are labeled as such in the relay. Channels 4 and 8 are intended for connection to a single phase source. If voltage, this channel is labelled the auxiliary voltage (VX). If current, this channel is intended for connection to a CT between a system neutral and ground, and is labelled the ground current (IG).

a) CT INPUTS

VERIFY THAT THE CONNECTION MADE TO THE RELAY NOMINAL CURRENT OF 1 A OR 5 A MATCHES THE SECONDARY RATING OF THE CONNECTED CTs. UNMATCHED CTs MAY RESULT IN EQUIPMENT DAMAGE OR INADEQUATE PROTECTION.

The CT/VT module may be ordered with a standard ground current input that is the same as the phase current inputs (Type 8F) or with a sensitive ground input (Type 8G) which is 10 times more sensitive (see the Technical Specifications section for additional details). Each AC current input has an isolating transformer and an automatic shorting mechanism that shorts the input when the module is withdrawn from the chassis. There are no internal ground connections on the current inputs. Current transformers with 1 to 50000 A primaries and 1 A or 5 A secondaries may be used.

CT connections for both ABC and ACB phase rotations are identical as shown in the Typical Wiring Diagram.

The exact placement of a zero-sequence CT so that ground fault current will be detected is shown below. Twisted pair cabling on the zero-sequence CT is recommended.

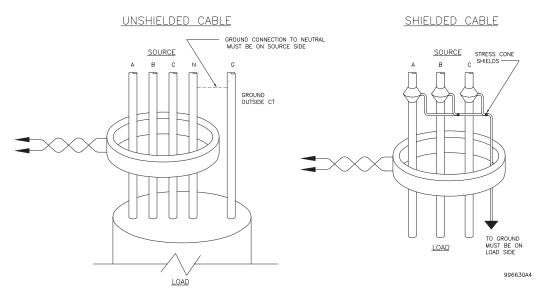


Figure 3-10: ZERO-SEQUENCE CORE BALANCE CT INSTALLATION

b) VT INPUTS

The phase voltage channels are used for most metering and protection purposes. The auxiliary voltage channel is used as input for the Synchrocheck and Volts/Hertz features.

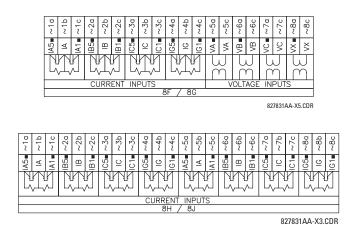


Figure 3-11: CT/VT MODULE WIRING

Wherever a tilde "~" symbol appears, substitute with the Slot Position of the module.

3.2.5 CONTACT INPUTS/OUTPUTS

Every digital input/output module has 24 terminal connections. They are arranged as 3 terminals per row, with 8 rows in total. A given row of three terminals may be used for the outputs of one relay. For example, for Form-C relay outputs, the terminals connect to the normally open (NO), normally closed (NC), and common contacts of the relay. For a Form-A output, there are options of using current or voltage detection for feature supervision, depending on the module ordered. The terminal configuration for contact inputs is different for the two applications. When a digital input/output module is ordered with contact inputs, they are arranged in groups of four and use two rows of three terminals. Ideally, each input would be totally isolated from any other input. However, this would require that every input have two dedicated terminals and limit the available number of contacts based on the available number of terminals. So, although each input is individually optically isolated, each group of four inputs uses a single common as a reasonable compromise. This allows each group of four outputs to be supplied by wet contacts from different voltage sources (if required) or a mix of wet and dry contacts.

The tables and diagrams on the following pages illustrate the module types (6A, etc.) and contact arrangements that may be ordered for the relay. Since an entire row is used for a single contact output, the name is assigned using the module slot position and row number. However, since there are two contact inputs per row, these names are assigned by module slot position, row number, and column position.

UR-SERIES FORM-A / SOLID STATE (SSR) OUTPUT CONTACTS:

Some Form-A/SSR outputs include circuits to monitor the DC voltage across the output contact when it is open, and the DC current through the output contact when it is closed. Each of the monitors contains a level detector whose output is set to logic "On = 1" when the current in the circuit is above the threshold setting. The voltage monitor is set to "On = 1" when the current is above about 1 to 2.5 mA, and the current monitor is set to "On = 1" when the current exceeds about 80 to 100 mA. The voltage monitor is intended to check the health of the overall trip circuit, and the current monitor can be used to seal-in the output contact until an external contact has interrupted current flow. The block diagrams of the circuits are below above for the Form-A outputs with:

- a) optional voltage monitor
- b) optional current monitor
- c) with no monitoring

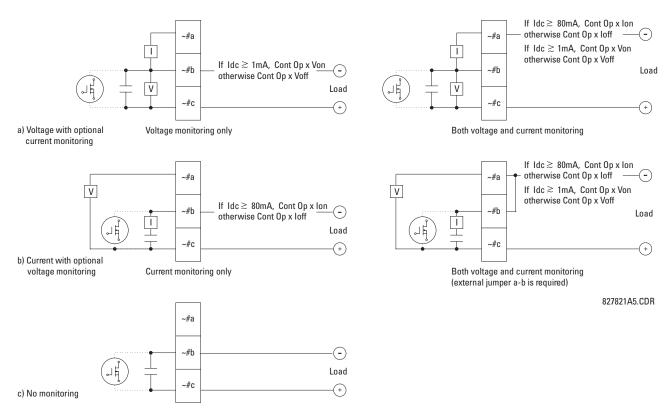


Figure 3-12: FORM-A /SOLID STATE CONTACT FUNCTIONS

3 HARDWARE 3.2 WIRING

The operation of voltage and current monitors is reflected with the corresponding FlexLogic™ operands (Cont Op # Von, Cont Op # Voff, Cont Op # Ion, and Cont Op # Ioff) which can be used in protection, control and alarm logic. The typical application of the voltage monitor is breaker trip circuit integrity monitoring; a typical application of the current monitor is seal-in of the control command. Refer to the *Digital Elements* section of Chapter 5 for an example of how Form-A/SSR contacts can be applied for breaker trip circuit integrity monitoring.

Relay contacts must be considered unsafe to touch when the unit is energized! If the relay contacts need to be used for low voltage accessible applications, it is the customer's responsibility to ensure proper insulation levels!

USE OF FORM-A/SSR OUTPUTS IN HIGH IMPEDANCE CIRCUITS

For Form-A/SSR output contacts internally equipped with a voltage measuring clrcuit across the contact, the circuit has an impedance that can cause a problem when used in conjunction with external high input impedance monitoring equipment such as modern relay test set trigger circuits. These monitoring circuits may continue to read the Form-A contact as being closed after it has closed and subsequently opened, when measured as an impedance.

The solution to this problem is to use the voltage measuring trigger input of the relay test set, and connect the Form-A contact through a voltage-dropping resistor to a DC voltage source. If the 48 V DC output of the power supply is used as a source, a 500 Ω , 10 W resistor is appropriate. In this configuration, the voltage across either the Form-A contact or the resistor can be used to monitor the state of the output.

Wherever a tilde "~" symbol appears, substitute with the Slot Position of the module; wherever a number sign "#" appears, substitute the contact number

When current monitoring is used to seal-in the Form-A/SSR contact outputs, the FlexLogic™ operand driving the contact output should be given a reset delay of 10 ms to prevent damage of the output contact (in situations when the element initiating the contact output is bouncing, at values in the region of the pickup value).

Table 3-2: DIGITAL INPUT/OUTPUT MODULE ASSIGNMENTS

~6A I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-C	
~4	Form-C	
~5a, ~5c	2 Inputs	
~6a, ~6c	2 Inputs	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6B I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-C	
~4	Form-C	
~5	Form-C	
~6	Form-C	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6C I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT	
~1	Form-C	
~2	Form-C	
~3	Form-C	
~4	Form-C	
~5	Form-C	
~6	Form-C	
~7	Form-C	
~8	Form-C	

~6D I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT	
~1a, ~1c	2 Inputs	
~2a, ~2c	2 Inputs	
~3a, ~3c	2 Inputs	
~4a, ~4c	2 Inputs	
~5a, ~5c	2 Inputs	
~6a, ~6c	2 Inputs	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6E I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-C	
~2	Form-C	
~3	Form-C	
~4	Form-C	
~5a, ~5c	2 Inputs	
~6a, ~6c	2 Inputs	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6F I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT	
~1	Fast Form-C	
~2	Fast Form-C	
~3	Fast Form-C	
~4	Fast Form-C	
~5	Fast Form-C	
~6	Fast Form-C	
~7	Fast Form-C	
~8	Fast Form-C	

~6G I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-A	
~4	Form-A	
~5a, ~5c	2 Inputs	
~6a, ~6c	2 Inputs	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6H I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-A	
~4	Form-A	
~5	Form-A	
~6	Form-A	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6K I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT	
~1	Form-C	
~2	Form-C	
~3	Form-C	
~4	Form-C	
~5	Fast Form-C	
~6	Fast Form-C	
~7	Fast Form-C	
~8	Fast Form-C	

~6L I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-C	
~4	Form-C	
~5a, ~5c	2 Inputs	
~6a, ~6c	2 Inputs	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6M I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-C	
~4	Form-C	
~5	Form-C	
~6	Form-C	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6N I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-A	
~4	Form-A	
~5a, ~5c	2 Inputs	
~6a, ~6c	2 Inputs	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6P I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-A	
~4	Form-A	
~5	Form-A	
~6	Form-A	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6R I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-C	
~4	Form-C	
~5a, ~5c	2 Inputs	
~6a, ~6c	2 Inputs	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6S I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-C	
~4	Form-C	
~5	Form-C	
~6	Form-C	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6T I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-A	
~4	Form-A	
~5a, ~5c	2 Inputs	
~6a, ~6c	2 Inputs	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~6U I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT OR INPUT	
~1	Form-A	
~2	Form-A	
~3	Form-A	
~4	Form-A	
~5	Form-A	
~6	Form-A	
~7a, ~7c	2 Inputs	
~8a, ~8c	2 Inputs	

~67 I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT	
~1	Form-A	
~2	Form-A	
~3	Form-A	
~4	Form-A	
~5	Form-A	
~6	Form-A	
~7	Form-A	
~8	Form-A	

~4A I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT	
~1	Not Used	
~2	Solid-State	
~3	Not Used	
~4	Solid-State	
~5	Not Used	
~6	Solid-State	
~7	Not Used	
~8	Solid-State	

~4B I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT	
~1	Not Used	
~2	Solid-State	
~3	Not Used	
~4	Solid-State	
~5	Not Used	
~6	Solid-State	
~7	Not Used	
~8	Solid-State	

~4C I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT	
~1	Not Used	
~2	Solid-State	
~3	Not Used	
~4	Solid-State	
~5	Not Used	
~6	Solid-State	
~7	Not Used	
~8	Solid-State	

~4L I/O MODULE		
TERMINAL ASSIGNMENT	OUTPUT	
~1	2 Outputs	
~2	2 Outputs	
~3	2 Outputs	
~4	2 Outputs	
~5	2 Outputs	
~6	2 Outputs	
~7	2 Outputs	
~8	Not Used	

3 HARDWARE 3.2 WIRING

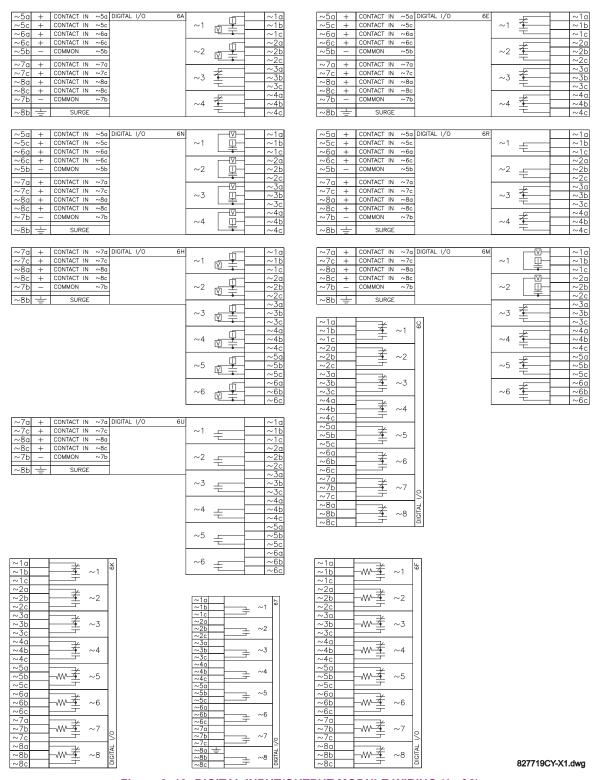


Figure 3–13: DIGITAL INPUT/OUTPUT MODULE WIRING (1 of 2)

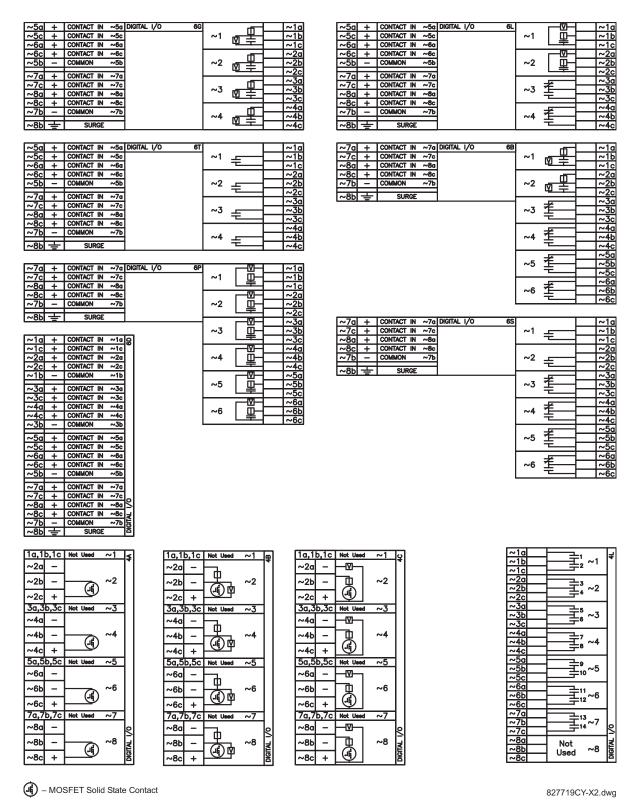


Figure 3-14: DIGITAL INPUT/OUTPUT MODULE WIRING (2 of 2)

A

CORRECT POLARITY MUST BE OBSERVED FOR ALL CONTACT INPUT AND SOLID STATE OUTPUT CONNECTIONS FOR PROPER FUNCTIONALITY.

3 HARDWARE 3.2 WIRING

A dry contact has one side connected to Terminal B3b. This is the positive 48 V DC voltage rail supplied by the power supply module. The other side of the dry contact is connected to the required contact input terminal. Each contact input group has its own common (negative) terminal which must be connected to the DC negative terminal (B3a) of the power supply module. When a dry contact closes, a current of 1 to 3 mA will flow through the associated circuit.

A wet contact has one side connected to the positive terminal of an external DC power supply. The other side of this contact is connected to the required contact input terminal. In addition, the negative side of the external source must be connected to the relay common (negative) terminal of each contact input group. The maximum external source voltage for this arrangement is 300 V DC.

The voltage threshold at which each group of four contact inputs will detect a closed contact input is programmable as 17 V DC for 24 V sources, 33 V DC for 48 V sources, 84 V DC for 110 to 125 V sources, and 166 V DC for 250 V sources.

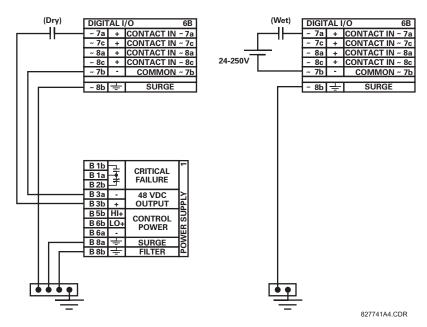


Figure 3-15: DRY AND WET CONTACT INPUT CONNECTIONS

Wherever a tilde "~" symbol appears, substitute with the Slot Position of the module.

Contact outputs may be ordered as Form-A or Form-C. The Form A contacts may be connected for external circuit supervision. These contacts are provided with voltage and current monitoring circuits used to detect the loss of DC voltage in the circuit, and the presence of DC current flowing through the contacts when the Form-A contact closes. If enabled, the current monitoring can be used as a seal-in signal to ensure that the Form-A contact does not attempt to break the energized inductive coil circuit and weld the output contacts.

There is no provision in the relay to detect a DC ground fault on 48 V DC control power external output. We recommend using an external DC supply.

3.2.6 TRANSDUCER INPUTS/OUTPUTS

Transducer input modules can receive input signals from external dcmA output transducers (dcmA In) or resistance temperature detectors (RTD). Hardware and software is provided to receive signals from these external transducers and convert these signals into a digital format for use as required.

Transducer output modules provide DC current outputs in several standard dcmA ranges. Software is provided to configure virtually any analog quantity used in the relay to drive the analog outputs.

Every transducer input/output module has a total of 24 terminal connections. These connections are arranged as three terminals per row with a total of eight rows. A given row may be used for either inputs or outputs, with terminals in column "a" having positive polarity and terminals in column "c" having negative polarity. Since an entire row is used for a single input/output channel, the name of the channel is assigned using the module slot position and row number.

Each module also requires that a connection from an external ground bus be made to Terminal 8b. The current outputs require a twisted-pair shielded cable, where the shield is grounded at one end only. The figure below illustrates the transducer module types (5A, 5C, 5D, 5E, and 5F) and channel arrangements that may be ordered for the relay.

Wherever a tilde "~" symbol appears, substitute with the Slot Position of the module.

~1a	+	dcmA In ~1	5A
~1c	_	uchia ili 191	
~2a	+	dcmA In ~2	
~2c	_	dema in 192	╛
			_
~3a	+	dcmA In ∼3	1
~3c	_	ucma in ~3	
~4a	+	dcmA In ∼4	1
~4c	_	ucma in ~4	
			_
~5a	+	dcmA Out ~5	1
~5c	_	dcma out ~5	
~6a	+	dcmA Out ~6	0
~6c	_	demia out ~6	
~7a	+	dcmA Out ∼7	
~7c	-	dcma out ∼7	_ 0
~8a	+	dcmA Out ∼8	٦.,
~8c	_	uchia Out ~6	ANALOG
			⊐₹
~8b	Ŧ	SURGE	7₹

~1a	-		RTD		~1	22
~1c	Comp Return	for	RTD	~1&:	~2	1
~2a	Hot		RTD		~2	1
~2c	Comp	<u> </u>	IXID			
~3a	Hot		RTD		~3	
~3c	Comp Return	for	DTD	~3&	4	
~4a	Hot	101		1~J&		1
~4c	Comp	<u> </u>	RTD		~4	
~5a	Hot		RTD		~5	
~5c	Comp					
~5b	Return Hot	for	RTD	~5&	~6	H
~6a ~6c	Comp		RTD		~6	
~7a	Hot Comp		RTD		~7	
~7b	Return	for	RTD	~7&	~8	0
~8a ~8c	Hot Comp		RTD		~8	ANALOG 1/0
~8b	Ŧ		SU	RGE		ANA

~1a	Hot	RTD ~1	22
~1c			47
~1b	Return	for RTD ~1& ~2	
~2a	Hot	RTD ∼2	
~2c	Comp	RID ~2	
			- 1
~3a	Hot	RTD ~3	
~3c	Comp	~3 U	
~3b	Return	for RTD ~3& ~4	
~4a	Hot	DTD 4	
~4c	Comp	RTD ~4	
			- 1
~5a	+	dcmA Out ~5	
~5c	_	dema out ~5	
~6a	+	dcmA Out ~6	
~6c	_	dcmA ∪ut ~6	
			- 1
~7a	+	dcmA Out ~7	
~7c	_	dema out ~/	શ
~8a	+	dcmA Out ~8	ANALOG 1/0
~8c	_	GCITIA OUT ~8	ğΙ
			ا≱
~8b	1	SURGE	₹

~1a	+	dcmA In ∼1	SE.
~1c	_	uchia ili 701	
~2a	+	dcmA In ∼2	
~2c	-	ucma in ~2	
~3a	+		
~3c	_	dcmA ln ∼3	
~4a	+	dcmA In ∼4	
~4c	_	uchia ili 704	
~5a		RTD ~5	
~5c	Comp	1110	
~5b	Return	for RTD ~5& ~6	
~6a	Hot	RTD ∼6	
~6c	Comp	KID 140	
_			
~7a	Hot	RTD ∼7	
~7c			_
~7b	Return	for RTD ~7& ~8	2
~8a	Hot	RTD ~8	8
~8c	Comp	NID 190	A C
			ż
∼8b	-	SURGE	⋖

+	domA In	1	5F
_	dema in	70]"′
+	domA In	0	1
-	dema in	,~z	
			1
+	dcmA In	~3	
_]
+	domA in		
_	GCITIA III	,04	
]
+	dom A In	6	1
_	dema in	~5	
+	James A. Ja	_	1
_	dema in	~6	
			1
+	d	. 7	1
_	dcma in	~/	0
+	dama A. Im]_`
-	demA in	~6	ANALOG 1/0
]₹
÷	SURGE		¥
	- + - + - + - + - + - +	- dcmA in + dcmA in + dcmA in + dcmA in + dcmA in - dcmA in - dcmA in + dcmA in - dcmA in + dcmA in - dcmA in - dcmA in - dcmA in - dcmA in	- dcmA in ~1 + dcmA in ~2 + dcmA in ~3 + dcmA in ~4 - dcmA in ~4 - dcmA in ~5 + dcmA in ~6 + dcmA in ~6 + dcmA in ~7 - dcmA in ~7

827831AB-X1.CDR

Figure 3-16: TRANSDUCER INPUT/OUTPUT MODULE WIRING

3.2.7 RS232 FACEPLATE PORT

A 9-pin RS232C serial port is located on the relay's faceplate for programming with a portable (personal) computer. All that is required to use this interface is a personal computer running the enerVista UR Setup software provided with the relay. Cabling for the RS232 port is shown in the following figure for both 9 pin and 25 pin connectors.

The baud rate for this port is fixed at 19200 bps.

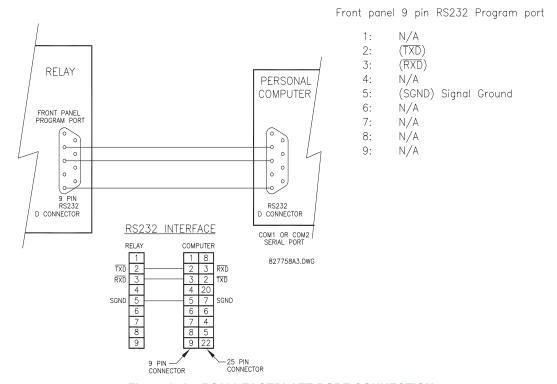
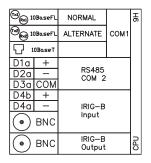


Figure 3-17: RS232 FACEPLATE PORT CONNECTION

3.2.8 CPU COMMUNICATION PORTS

a) OPTIONS

In addition to the RS232 port on the faceplate, the relay provides the user with two additional communication port(s) depending on the CPU module installed.



The 9E, 9G, and 9H CPU modules do not require a surge ground connection.

CPU TYPE	COM1	COM2
9E	RS485	RS485
9G	10Base-F and 10Base-T	RS485
9H	Redundant 10Base-F	RS485

		<u>B</u>
+	RS485	
_		
СОМ	COM I	
+	50.405	
_		
СОМ	COW Z	
+		
-	IRIG-B	1
BNC	Input	
BNC	IRIG-B Output	CPU
	+ - COM + - BNC	- COM 1 + RS485 COM 2 + IRIG-B BNC IRIG-B

10BaseFL		NORMAL	сом1	96
10BaseT			COMIT	
D1a	+			
D2a	_	RS485 COM 2		
D3a	СОМ	CON		
D4b	+			
D4a	ı	IRIG-B		
igodot	BNC	Input		
BNC		IRIG-B Output		S P

827831AB-X6.DWG

Figure 3-18: CPU MODULE COMMUNICATIONS WIRING

b) RS485 PORTS

RS485 data transmission and reception are accomplished over a single twisted pair with transmit and receive data alternating over the same two wires. Through the use of these port(s), continuous monitoring and control from a remote computer, SCADA system or PLC is possible.

To minimize errors from noise, the use of shielded twisted pair wire is recommended. Correct polarity must also be observed. For instance, the relays must be connected with all RS485 "+" terminals connected together, and all RS485 "-" terminals connected together. The COM terminal should be connected to the common wire inside the shield, when provided. To avoid loop currents, the shield should be grounded at one point only. Each relay should also be daisy chained to the next one in the link. A maximum of 32 relays can be connected in this manner without exceeding driver capability. For larger systems, additional serial channels must be added. It is also possible to use commercially available repeaters to increase the number of relays on a single channel to more than 32. Star or stub connections should be avoided entirely.

Lightning strikes and ground surge currents can cause large momentary voltage differences between remote ends of the communication link. For this reason, surge protection devices are internally provided at both communication ports. An isolated power supply with an optocoupled data interface also acts to reduce noise coupling. To ensure maximum reliability, all equipment should have similar transient protection devices installed.

Both ends of the RS485 circuit should also be terminated with an impedance as shown below.

3 HARDWARE 3.2 WIRING

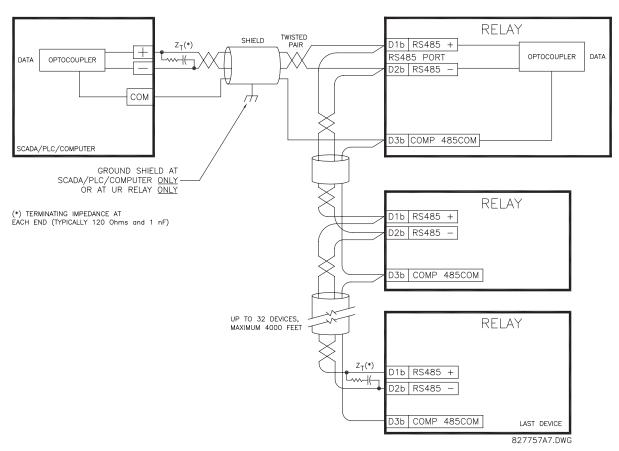


Figure 3-19: RS485 SERIAL CONNECTION

c) 10BASE-F FIBER OPTIC PORT

ENSURE THE DUST COVERS ARE INSTALLED WHEN THE FIBER IS NOT IN USE. DIRTY OR SCRATCHED CONNECTORS CAN LEAD TO HIGH LOSSES ON A FIBER LINK.

OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

The fiber optic communication ports allow for fast and efficient communications between relays at 10 Mbps. Optical fiber may be connected to the relay supporting a wavelength of 820 nanometers in multimode. Optical fiber is only available for CPU types 9G and 9H. The 9H CPU has a 10BaseF transmitter and receiver for optical fiber communications and a second pair of identical optical fiber transmitter and receiver for redundancy.

The optical fiber sizes supported include $50/125 \, \mu m$, $62.5/125 \, \mu m$ and $100/140 \, \mu m$. The fiber optic port is designed such that the response times will not vary for any core that is $100 \, \mu m$ or less in diameter. For optical power budgeting, splices are required every 1 km for the transmitter/receiver pair (the ST type connector contributes for a connector loss of $0.2 \, dB$). When splicing optical fibers, the diameter and numerical aperture of each fiber must be the same. In order to engage or disengage the ST type connector, only a quarter turn of the coupling is required.

3.2.9 IRIG-B

IRIG-B is a standard time code format that allows stamping of events to be synchronized among connected devices within 1 millisecond. The IRIG time code formats are serial, width-modulated codes which can be either DC level shifted or amplitude modulated (AM). Third party equipment is available for generating the IRIG-B signal; this equipment may use a GPS satellite system to obtain the time reference so that devices at different geographic locations can also be synchronized.

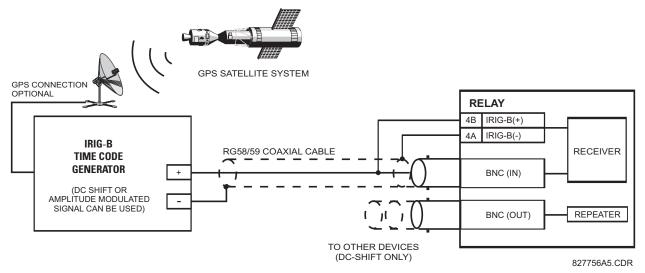


Figure 3-20: IRIG-B CONNECTION

The IRIG-B repeater provides an amplified DC-shift IRIG-B signal to other equipment. By using one IRIG-B serial connection, several UR-series relays can be synchronized. The IRIG-B repeater has a bypass function to maintain the time signal even when a relay in the series is powered down.

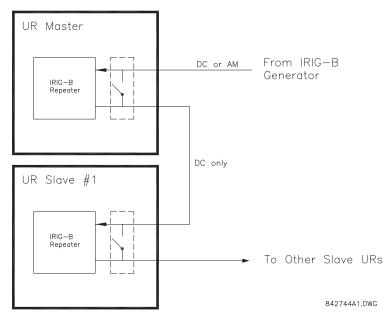


Figure 3-21: IRIG-B REPEATER

3.3.1 DESCRIPTION

The N60 direct inputs/outputs feature makes use of the Type 7 series of communications modules. These modules are also used by the L90 Line Differential Relay for inter-relay communications. The direct input/output feature uses the communications channel(s) provided by these modules to exchange digital state information between relays. This feature is available on all UR-series relay models except for the L90 Line Differential relay.

The communications channels are normally connected in a ring configuration as shown below. The transmitter of one module is connected to the receiver of the next module. The transmitter of this second module is then connected to the receiver of the next module in the ring. This is continued to form a communications ring. The figure below illustrates a ring of four UR-series relays with the following connections: UR1-Tx to UR2-Rx, UR2-Tx to UR3-Rx, UR3-Tx to UR4-Rx, and UR4-Tx to UR1-Rx. A maximum of eight (8) UR-series relays can be connected in a single ring

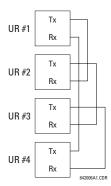


Figure 3-22: DIRECT INPUT/OUTPUT SINGLE CHANNEL CONNECTION

The interconnection for dual-channel Type 7 communications modules is shown below. Two channel modules allow for a redundant ring configuration. That is, two rings can be created to provide an additional independent data path. The required connections are: UR1-Tx1 to UR2-Rx1, UR2-Tx1 to UR3-Rx1, UR3-Tx1 to UR4-Rx1, and UR4-Tx1 to UR1-Rx1 for the first ring; and UR1-Tx2 to UR2-Rx2, UR2-Tx2 to UR3-Rx2, UR3-Tx2 to UR4-Rx2, and UR4-Tx2 to UR1-Rx2 for the second ring.

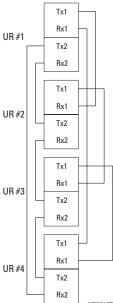


Figure 3-23: DIRECT INPUT/OUTPUT DUAL CHANNEL CONNECTION

The following diagram shows the connection for three UR-series relays using two independent communication channels. UR1 and UR3 have single Type 7 communication modules; UR2 has a dual-channel module. The two communication channels can be of different types, depending on the Type 7 modules used. To allow the direct input/output data to 'cross-over' from Channel 1 to Channel 2 on UR2, the **DIRECT I/O CHANNEL CROSSOVER** setting should be "Enabled" on UR2. This forces UR2 to forward messages received on Rx1 out Tx2, and messages received on Rx2 out Tx1.

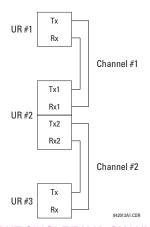


Figure 3-24: DIRECT INPUT/OUTPUT SINGLE/DUAL CHANNEL COMBINATION CONNECTION

The interconnection requirements are described in further detail in this section for each specific variation of Type 7 communications module. These modules are listed in the following table. All fiber modules use ST type connectors.

Table 3-3: CHANNEL COMMUNICATION OPTIONS

MODULE	SPECIFICATION
2A	C37.94SM, 1300 nm, single-mode, ELED, 1 channel single-mode
2B	C37.94SM, 1300 nm, single-mode, ELED, 2 channel single-mode
7A	820 nm, multi-mode, LED, 1 channel
7B	1300 nm, multi-mode, LED, 1 channel
7C	1300 nm, single-mode, ELED, 1 channel
7D	1300 nm, single-mode, LASER, 1 channel
7E	Channel 1: G.703, Channel 2: 820 nm, multi-mode
7F	Channel 1: G.703, Channel 2: 1300 nm, multi-mode
7G	Channel 1: G.703, Channel 2: 1300 nm, single-mode ELED
7H	820 nm, multi-mode, LED, 2 channels
71	1300 nm, multi-mode, LED, 2 channels
7J	1300 nm, single-mode, ELED, 2 channels
7K	1300 nm, single-mode, LASER, 2 channels
7L	Channel 1: RS422, Channel: 820 nm, multi-mode, LED
7M	Channel 1: RS422, Channel 2: 1300 nm, multi-mode, LED
7N	Channel 1: RS422, Channel 2: 1300 nm, single-mode, ELED
7P	Channel 1: RS422, Channel 2: 1300 nm, single-mode, LASER
7Q	Channel 1: G.703, Channel 2: 1300 nm, single-mode, LASER
7R	G.703, 1 channel
7S	G.703, 2 channels
7T	RS422, 1 channel
7W	RS422, 2 channels
72	1550 nm, single-mode, LASER, 1 channel
73	1550 nm, single-mode, LASER, 2 channels
74	Channel 1 - RS422; Channel 2 - 1550 nm, single-mode, LASER
75	Channel 1 - G.703; Channel 2 - 1550 nm, single-mode, LASER
76	IEEE C37.94, 820 nm, multi-mode, LED, 1 channel
77	IEEE C37.94, 820 nm, multi-mode, LED, 2 channels

OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

3.3.2 FIBER: LED AND ELED TRANSMITTERS

The following figure shows the configuration for the 7A, 7B, 7C, 7H, 7I, and 7J fiber-only modules.

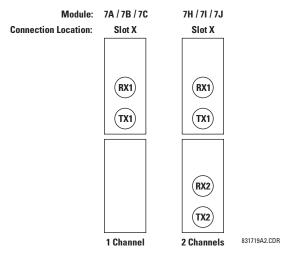


Figure 3-25: LED AND ELED FIBER MODULES

3.3.3 FIBER-LASER TRANSMITTERS

The following figure shows the configuration for the 72, 73, 7D, and 7K fiber-laser module.

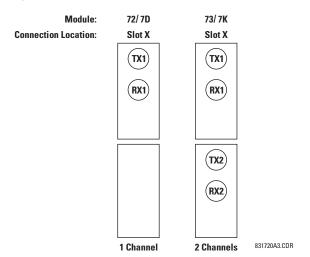


Figure 3-26: LASER FIBER MODULES

When using a LASER Interface, attenuators may be necessary to ensure that you do <u>not</u> exceed Maximum Optical Input Power to the receiver.

a) **DESCRIPTION**

The following figure shows the 64K ITU G.703 co-directional interface configuration.

The G.703 module is fixed at 64 kbps only. The SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \oplus$ DIRECT I/O $\Rightarrow \oplus$ DIRECT I/O DATA RATE setting is not applicable to this module.

AWG 22 twisted shielded pair is recommended for external connections, with the shield grounded only at one end. Connecting the shield to Pin X1a or X6a grounds the shield since these pins are internally connected to ground. Thus, if Pin X1a or X6a is used, do not ground at the other end. This interface module is protected by surge suppression devices.

78	_	Shld.	X 1a
		Tx -	X1b
П	G.703 CHANNEL 1	Rx -	X2a
	OTTAININE T	Tx +	X2b
П		Rx +	X3a
П	SURGE	÷	X3b
	G.703 CHANNEL 2	Shld.	X6a
П		Tx -	X6b
П		Rx -	X7a
Ξ	OHAININEE 2	Tx +	X7b
COMM		Rx +	X8a
ပ	SURGE	÷	X8b

831727A2-X1.CDR

Figure 3-27: G.703 INTERFACE CONFIGURATION

The following figure shows the typical pin interconnection between two G.703 interfaces. For the actual physical arrangement of these pins, see the Rear Terminal Assignments section earlier in this chapter. All pin interconnections are to be maintained for a connection to a multiplexer.

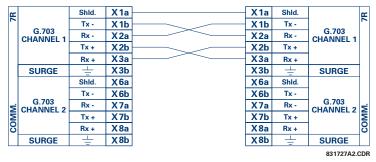


Figure 3-28: TYPICAL PIN INTERCONNECTION BETWEEN TWO G.703 INTERFACES

Pin nomenclature may differ from one manufacturer to another. Therefore, it is not uncommon to see pinouts numbered TxA, TxB, RxA and RxB. In such cases, it can be assumed that "A" is equivalent to "+" and "B" is equivalent to "-".

b) G.703 SELECTION SWITCH PROCEDURES

1. Remove the G.703 module (7R or 7S):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, **control power must be removed from the relay**. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.

- 2. Remove the module cover screw.
- 3. Remove the top cover by sliding it towards the rear and then lift it upwards.
- 4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes.
- 5. Replace the top cover and the cover screw.

6. Re-insert the G.703 module Take care to ensure that the **correct** module type is inserted into the **correct** slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

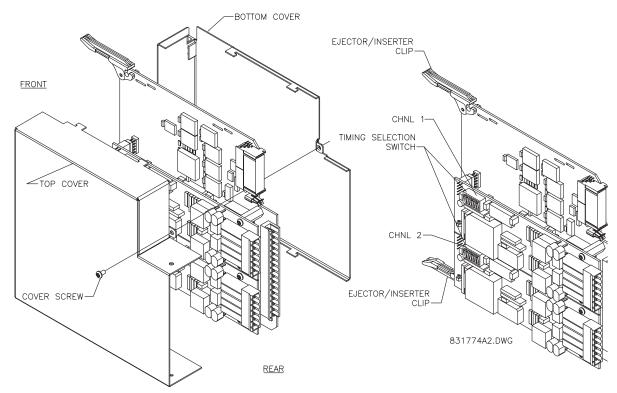


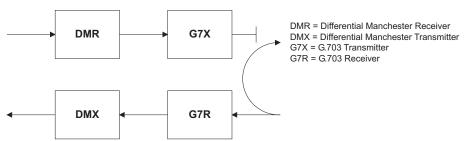
Figure 3-29: G.703 TIMING SELECTION SWITCH SETTING

Table 3-4: G.703 TIMING SELECTIONS

SWITCHES	FUNCTION
S1	OFF → Octet Timing Disabled ON → Octet Timing 8 kHz
S5 and S6	S5 = OFF and S6 = OFF \rightarrow Loop Timing Mode S5 = ON and S6 = OFF \rightarrow Internal Timing Mode S5 = OFF and S6 = ON \rightarrow Minimum Remote Loopback Mode S5 = ON and S6 = ON \rightarrow Dual Loopback Mode

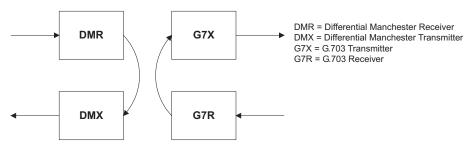
c) OCTET TIMING (SWITCH S1)

If Octet Timing is enabled (ON), this 8 kHz signal will be asserted during the violation of Bit 8 (LSB) necessary for connecting to higher order systems. When N60s are connected back to back, Octet Timing should be disabled (OFF).


d) TIMING MODES (SWITCHES S5 AND S6)

- Internal Timing Mode: The system clock generated internally. Therefore, the G.703 timing selection should be in the Internal Timing Mode for back-to-back (UR-to-UR) connections. For Back to Back Connections, set for Octet Timing (S1 = OFF) and Timing Mode = Internal Timing (S5 = ON and S6 = OFF).
- Loop Timing Mode: The system clock is derived from the received line signal. Therefore, the G.703 timing selection should be in Loop Timing Mode for connections to higher order systems. For connection to a higher order system (UR-to-multiplexer, factory defaults), set to Octet Timing (S1 = ON) and set Timing Mode = Loop Timing (S5 = OFF and S6 = OFF).

e) TEST MODES (SWITCHES S5 AND S6)


MINIMUM REMOTE LOOPBACK MODE:

In Minimum Remote Loopback mode, the multiplexer is enabled to return the data from the external interface without any processing to assist in diagnosing G.703 Line Side problems irrespective of clock rate. Data enters from the G.703 inputs, passes through the data stabilization latch which also restores the proper signal polarity, passes through the multiplexer and then returns to the transmitter. The Differential Received Data is processed and passed to the G.703 Transmitter module after which point the data is discarded. The G.703 Receiver module is fully functional and continues to process data and passes it to the Differential Manchester Transmitter module. Since timing is returned as it is received, the timing source is expected to be from the G.703 line side of the interface.

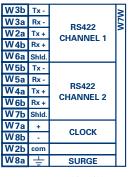
DUAL LOOPBACK MODE:

In Dual Loopback Mode, the multiplexers are active and the functions of the circuit are divided into two with each Receiver/ Transmitter pair linked together to deconstruct and then reconstruct their respective signals. Differential Manchester data enters the Differential Manchester Receiver module and then is returned to the Differential Manchester Transmitter module. Likewise, G.703 data enters the G.703 Receiver module and is passed through to the G.703 Transmitter module to be returned as G.703 data. Because of the complete split in the communications path and because, in each case, the clocks are extracted and reconstructed with the outgoing data, in this mode there must be two independent sources of timing. One source lies on the G.703 line side of the interface while the other lies on the Differential Manchester side of the interface.

3.3.5 RS422 INTERFACE

a) DESCRIPTION

The following figure shows the RS422 2-terminal interface configuration at 64 kbps. AWG 22 twisted shielded pair is recommended for external connections. This interface module is protected by surge suppression devices which optically isolated.


The RS422 module is fixed at 64 kbps only. The SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ DIRECT I/O $\Rightarrow \emptyset$ DIRECT I/O DATA RATE setting is not applicable to this module.

SHIELD TERMINATION

The shield pins (6a and 7b) are internally connected to the ground pin (8a). Proper shield termination is as follows:

Site 1: Terminate shield to pins 6a and/or 7b; Site 2: Terminate shield to 'COM' pin 2b.

The clock terminating impedance should match the impedance of the line.

RS422.CDR p/o 827831A6.CDR

Figure 3-30: RS422 INTERFACE CONFIGURATION

The following figure shows the typical pin interconnection between two RS422 interfaces. All pin interconnections are to be maintained for a connection to a multiplexer.

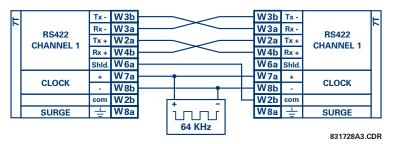
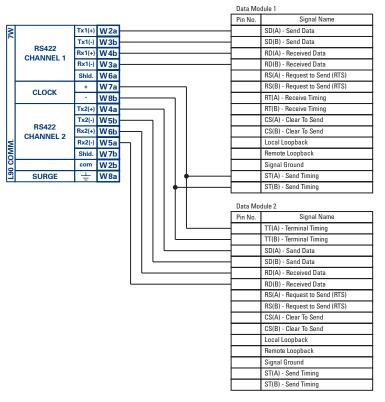



Figure 3-31: TYPICAL PIN INTERCONNECTION BETWEEN TWO RS422 INTERFACES

b) TWO CHANNEL APPLICATIONS VIA MULTIPLEXERS

The RS422 Interface may be used for '1 channel' or '2 channel' applications over SONET/SDH and/or Multiplexed systems. When used in 1 channel applications, the RS422 interface links to higher order systems in a typical fashion observing Tx, Rx, and Send Timing connections. However, when used in 2 channel applications, certain criteria have to be followed due to the fact that there is 1 clock input for the two RS422 channels. The system will function correctly if the following connections are observed and your Data Module has a feature called Terminal Timing. Terminal Timing is a common feature to most Synchronous Data Units that allows the module to accept timing from an external source. Using the Terminal Timing feature, 2 channel applications can be achieved if these connections are followed: The Send Timing outputs from the Multiplexer - Data Module 1, will connect to the Clock inputs of the UR–RS422 interface in the usual fashion. In addition, the Send Timing outputs of Data Module 1 will also be paralleled to the Terminal Timing inputs of Data Module 2. By using this configuration the timing for both Data Modules and both UR–RS422 channels will be derived from a single clock source. As a result, data sampling for both of the UR–RS422 channels will be synchronized via the Send Timing leads on Data Module 1 as shown in the following figure. If the Terminal Timing feature is not available or this type of connection is not desired, the G.703 interface is a viable option that does not impose timing restrictions.

831022A2.CDR

Figure 3-32: TIMING CONFIGURATION FOR RS422 TWO-CHANNEL, 3-TERMINAL APPLICATION

Data Module 1 provides timing to the N60 RS422 interface via the ST(A) and ST(B) outputs. Data Module 1 also provides timing to Data Module 2 TT(A) and TT(B) inputs via the ST(A) and AT(B) outputs. The Data Module pin numbers have been omitted in the figure above since they may vary depending on the manufacturer.

c) TRANSIT TIMING

The RS422 Interface accepts one clock input for Transmit Timing. It is important that the rising edge of the 64 kHz Transmit Timing clock of the Multiplexer Interface is sampling the data in the center of the Transmit Data window. Therefore, it is important to confirm Clock and Data Transitions to ensure Proper System Operation. For example, the following figure shows the positive edge of the Tx Clock in the center of the Tx Data bit.

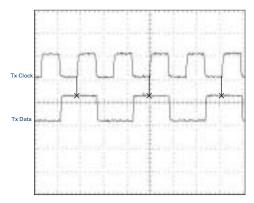
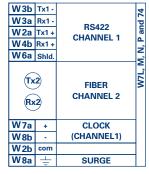


Figure 3-33: CLOCK AND DATA TRANSITIONS

d) RECEIVE TIMING

The RS422 Interface utilizes NRZI-MARK Modulation Code and; therefore, does not rely on an Rx Clock to recapture data. NRZI-MARK is an edge-type, invertible, self-clocking code.

To recover the Rx Clock from the data-stream, an integrated DPLL (Digital Phase Lock Loop) circuit is utilized. The DPLL is driven by an internal clock, which is over-sampled 16X, and uses this clock along with the data-stream to generate a data clock that can be used as the SCC (Serial Communication Controller) receive clock.


3.3.6 RS422 AND FIBER INTERFACE

The following figure shows the combined RS422 plus Fiber interface configuration at 64K baud. The 7L, 7M, 7N, 7P, and 74 modules are used in 2-terminal with a redundant channel or 3-terminal configurations where Channel 1 is employed via the RS422 interface (possibly with a multiplexer) and Channel 2 via direct fiber.

AWG 22 twisted shielded pair is recommended for external RS422 connections and the shield should be grounded only at one end. For the direct fiber channel, power budget issues should be addressed properly.

When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed Maximum Optical Input Power to the receiver.

L907LMNP.CDR P/O 827831A6.CDR

Figure 3-34: RS422 AND FIBER INTERFACE CONNECTION

Connections shown above are for multiplexers configured as DCE (Data Communications Equipment) units.

3.3.7 G.703 AND FIBER INTERFACE

The figure below shows the combined G.703 plus Fiber interface configuration at 64K baud. The 7E, 7F, 7G, 7Q, and 75 modules are used in configurations where Channel 1 is employed via the G.703 interface (possibly with a multiplexer) and Channel 2 via direct fiber. AWG 22 twisted shielded pair is recommended for external G.703 connections connecting the shield to Pin 1A at one end only. For the direct fiber channel, power budget issues should be addressed properly. See previous sections for more details on the G.703 and Fiber interfaces.

When using a LASER Interface, attenuators may be necessary to ensure that you do <u>not</u> exceed Maximum Optical Input Power to the receiver.

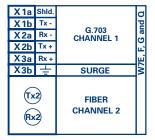
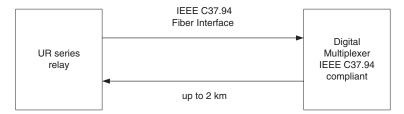


Figure 3-35: G.703 AND FIBER INTERFACE CONNECTION

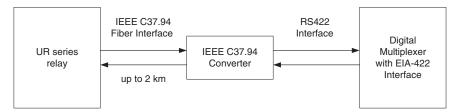
3.3.8 IEEE C37.94 INTERFACE

The UR-series IEEE C37.94 communication modules (76 and 77) are designed to interface with IEEE C37.94 compliant digital multiplexers and/or an IEEE C37.94 compliant interface converter for use with direct input/output applications for firmware revisions 3.30 and higher. The IEEE C37.94 standard defines a point-to-point optical link for synchronous data between a multiplexer and a teleprotection device. This data is typically 64 kbps, but the standard provides for speeds up to 64n kbps, where n = 1, 2, ..., 12. The UR-series C37.94 communication module is 64 kbps only with n fixed at 1. The frame is a valid International Telecommunications Union (ITU-T) recommended G.704 pattern from the standpoint of framing and data rate. The frame is 256 bits and is repeated at a frame rate of 8000 Hz, with a resultant bit rate of 2048 kbps.

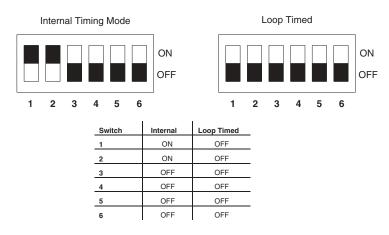
The specifications for the module are as follows:


IEEE standard: C37.94 for 1×64 kbps optical fiber interface

Fiber optic cable type: 50 mm or 62.5 mm core diameter optical fiber


Fiber optic mode: multi-mode Fiber optic cable length: up to 2 km Fiber optic connector: type ST Wavelength: 830 ±40 nm

Connection: as per all fiber optic connections, a Tx to Rx connection is required.


The UR-series C37.94 communication module can be connected directly to any compliant digital multiplexer that supports the IEEE C37.94 standard as shown below.

The UR-series C37.94 communication module can be connected to the electrical interface (G.703, RS422, or X.21) of a non-compliant digital multiplexer via an optical-to-electrical interface converter that supports the IEEE C37.94 standard, as shown below.

The UR-series C37.94 communication module has six (6) switches that are used to set the clock configuration. The functions of these control switches is shown below.

For the Internal Timing Mode, the system clock is generated internally. Therefore, the timing switch selection should be Internal Timing for Relay 1 and Loop Timed for Relay 2. There must be only one timing source configured.

For the Looped Timing Mode, the system clock is derived from the received line signal. Therefore, the timing selection should be in Loop Timing Mode for connections to higher order systems.

The C37.94 communications module cover removal procedure is as follows:

- 1. Remove the C37.94 module (76 or 77):
 - The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, **control power must be removed from the relay**. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
- 2. Remove the module cover screw.
- 3. Remove the top cover by sliding it towards the rear and then lift it upwards.
- 4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes (see description above).
- 5. Replace the top cover and the cover screw.
- 6. Re-insert the C37.94 module Take care to ensure that the **correct** module type is inserted into the **correct** slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

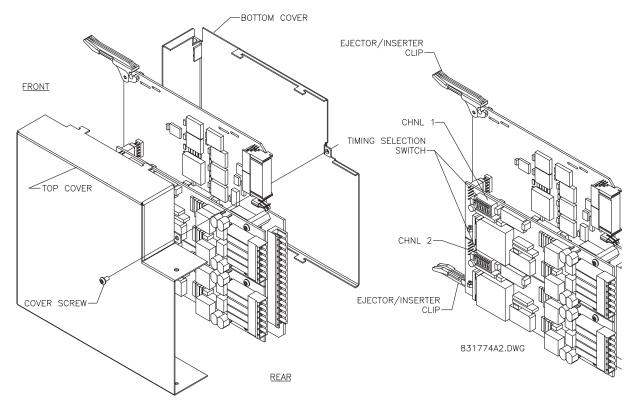


Figure 3-36: C37.94 TIMING SELECTION SWITCH SETTING

4.1.1 INTRODUCTION

The enerVista UR Setup software provides a graphical user interface (GUI) as one of two human interfaces to a UR device. The alternate human interface is implemented via the device's faceplate keypad and display (see Faceplate Interface section in this chapter).

The enerVista UR Setup software provides a single facility to configure, monitor, maintain, and trouble-shoot the operation of relay functions, connected over local or wide area communication networks. It can be used while disconnected (i.e. off-line) or connected (i.e. on-line) to a UR device. In off-line mode, settings files can be created for eventual downloading to the device. In on-line mode, you can communicate with the device in real-time.

The enerVista UR Setup software, provided with every N60 relay, can be run from any computer supporting Microsoft Windows[®] 95, 98, NT, 2000, ME, and XP. This chapter provides a summary of the basic enerVista UR Setup software interface features. The enerVista UR Setup Help File provides details for getting started and using the enerVista UR Setup software interface.

4.1.2 CREATING A SITE LIST

To start using the enerVista UR Setup software, a site definition and device definition must first be created. See the enerVista UR Setup Help File or refer to the *Connecting enerVista UR Setup with the N60* section in Chapter 1 for details.

4.1.3 ENERVISTA UR SETUP SOFTWARE OVERVIEW

a) ENGAGING A DEVICE

The enerVista UR Setup software may be used in on-line mode (relay connected) to directly communicate with a UR relay. Communicating relays are organized and grouped by communication interfaces and into sites. Sites may contain any number of relays selected from the UR product series.

b) USING SETTINGS FILES

The enerVista UR Setup software interface supports three ways of handling changes to relay settings:

- In off-line mode (relay disconnected) to create or edit relay settings files for later download to communicating relays.
- While connected to a communicating relay to directly modify any relay settings via relay data view windows, and then save the settings to the relay.
- You can create/edit settings files and then write them to the relay while the interface is connected to the relay.

Settings files are organized on the basis of file names assigned by the user. A settings file contains data pertaining to the following types of relay settings:

- Device Definition
- Product Setup
- FlexLogic™
- Control Elements
- Inputs/Outputs
- Testing

Factory default values are supplied and can be restored after any changes.

c) CREATING AND EDITING FLEXLOGIC™

You can create or edit a FlexLogic™ equation in order to customize the relay. You can subsequently view the automatically generated logic diagram.

d) VIEWING ACTUAL VALUES

You can view real-time relay data such as input/output status and measured parameters.

e) VIEWING TRIGGERED EVENTS

While the interface is in either on-line or off-line mode, you can view and analyze data generated by triggered specified parameters, via one of the following:

- Event Recorder facility: The event recorder captures contextual data associated with the last 1024 events, listed in chronological order from most recent to oldest.
- Oscillography facility: The oscillography waveform traces and digital states are used to provide a visual display of power system and relay operation data captured during specific triggered events.

f) FILE SUPPORT

- Execution: Any enerVista UR Setup file which is double clicked or opened will launch the application, or provide focus to the already opened application. If the file was a settings file (has a URS extension) which had been removed from the Settings List tree menu, it will be added back to the Settings List tree menu.
- **Drag and Drop:** The Site List and Settings List control bar windows are each mutually a drag source and a drop target for device-order-code-compatible files or individual menu items. Also, the Settings List control bar window and any Windows Explorer directory folder are each mutually a file drag source and drop target.

New files which are dropped into the Settings List window are added to the tree which is automatically sorted alphabetically with respect to settings file names. Files or individual menu items which are dropped in the selected device menu in the Site List window will automatically be sent to the on-line communicating device.

g) FIRMWARE UPGRADES

The firmware of a N60 device can be upgraded, locally or remotely, via the enerVista UR Setup software. The corresponding instructions are provided by the enerVista UR Setup Help file under the topic "Upgrading Firmware".

Modbus addresses assigned to firmware modules, features, settings, and corresponding data items (i.e. default values, minimum/maximum values, data type, and item size) may change slightly from version to version of firmware. The addresses are rearranged when new features are added or existing features are enhanced or modified. The **EEPROM DATA ERROR** message displayed after upgrading/downgrading the firmware is a resettable, self-test message intended to inform users that the Modbus addresses have changed with the upgraded firmware. This message does not signal any problems when appearing after firmware upgrades.

4.1.4 ENERVISTA UR SETUP SOFTWARE MAIN WINDOW

The enerVista UR Setup software main window supports the following primary display components:

- a. Title bar which shows the pathname of the active data view
- b. Main window menu bar
- c. Main window tool bar
- d. Site List control bar window
- e. Settings List control bar window
- f. Device data view window(s), with common tool bar
- g. Settings File data view window(s), with common tool bar
- h. Workspace area with data view tabs
- i. Status bar

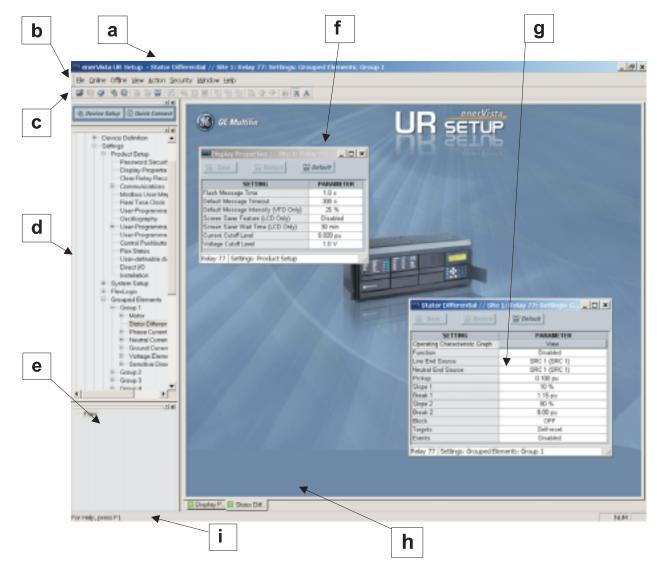


Figure 4-1: ENERVISTA UR SETUP SOFTWARE MAIN WINDOW

The keypad/display/LED interface is one of two alternate human interfaces supported. The other alternate human interface is implemented via the enerVista UR Setup software. The faceplate interface is available in two configurations: horizontal or vertical. The faceplate interface consists of several functional panels.

The faceplate is hinged to allow easy access to the removable modules. There is also a removable dust cover that fits over the faceplate which must be removed in order to access the keypad panel. The following two figures show the horizontal and vertical arrangement of faceplate panels.

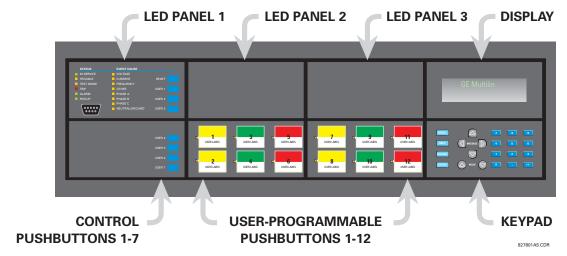


Figure 4-2: UR-SERIES HORIZONTAL FACEPLATE PANELS

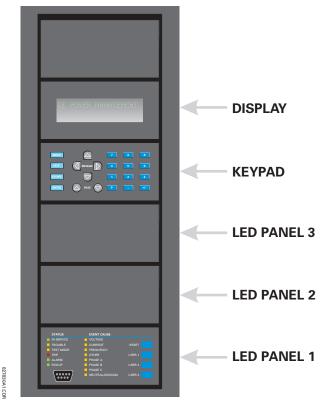


Figure 4-3: UR-SERIES VERTICAL FACEPLATE PANELS

4.2.2 LED INDICATORS

a) LED PANEL 1

This panel provides several LED indicators, several keys, and a communications port. The RESET key is used to reset any latched LED indicator or target message, once the condition has been cleared (these latched conditions can also be reset via the SETTINGS $\Rightarrow \emptyset$ INPUT/OUTPUTS $\Rightarrow \emptyset$ RESETTING menu). The USER keys are used by the Breaker Control feature. The RS232 port is intended for connection to a portable PC.

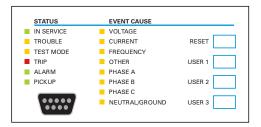
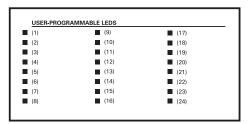


Figure 4-4: LED PANEL 1

STATUS INDICATORS:

- IN SERVICE: Indicates that control power is applied; all monitored inputs/outputs and internal systems are OK; the relay has been programmed.
- TROUBLE: Indicates that the relay has detected an internal problem.
- TEST MODE: Indicates that the relay is in test mode.
- TRIP: Indicates that the selected FlexLogic™ operand serving as a Trip switch has operated. This indicator always latches; the RESET command must be initiated to allow the latch to be reset.
- ALARM: Indicates that the selected FlexLogic[™] operand serving as an Alarm switch has operated. This indicator is never latched.
- **PICKUP**: Indicates that an element is picked up. This indicator is never latched.

EVENT CAUSE INDICATORS:


These indicate the input type that was involved in a condition detected by an element that is operated or has a latched flag waiting to be reset.

- VOLTAGE: Indicates voltage was involved.
- CURRENT: Indicates current was involved.
- FREQUENCY: Indicates frequency was involved.
- OTHER: Indicates a composite function was involved.
- PHASE A: Indicates Phase A was involved.
- PHASE B: Indicates Phase B was involved.
- PHASE C: Indicates Phase C was involved.
- NEUTRAL/GROUND: Indicates neutral or ground was involved.

b) LED PANELS 2 AND 3

These panels provide 48 amber LED indicators whose operation is controlled by the user. Support for applying a customized label beside every LED is provided.

User customization of LED operation is of maximum benefit in installations where languages other than English are used to communicate with operators. Refer to the User-Programmable LEDs section in Chapter 5 for the settings used to program the operation of the LEDs on these panels.

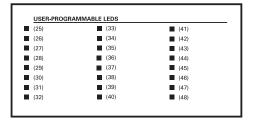


Figure 4-5: LED PANELS 2 AND 3 (INDEX TEMPLATE)

c) DEFAULT LABELS FOR LED PANEL 2

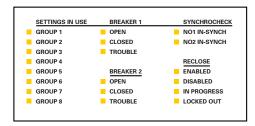
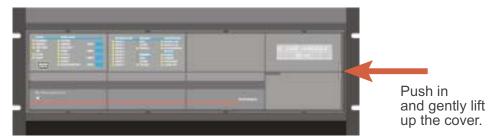


Figure 4-6: LED PANEL 2 (DEFAULT LABEL)

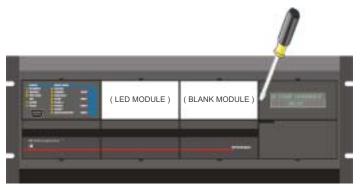
The default labels are intended to represent:

- GROUP 1...6: The illuminated GROUP is the active settings group.
- BREAKER n OPEN: The breaker is open.
- BREAKER n CLOSED: The breaker is closed.
- BREAKER n TROUBLE: A problem related to the breaker has been detected.
- SYNCHROCHECK NO n IN-SYNCH: Voltages have satisfied the synchrocheck element.

The relay is shipped with the default label for the LED panel 2. The LEDs, however, are not pre-programmed. To match the pre-printed label, the LED settings must be entered as shown in the *User-Programmable LEDs* section of Chapter 5. The LEDs are fully user-programmable. The default labels can be replaced by user-printed labels for both panels as explained in the following section.


d) CUSTOM LABELING OF LEDS

Custom labeling of an LED-only panel is facilitated through a Microsoft Word file available from the following URL:


http://www.GEindustrial.com/multilin/support/ur/

This file provides templates and instructions for creating appropriate labeling for the LED panel. The following procedures are contained in the downloadable file. The panel templates provide relative LED locations and located example text (x) edit boxes. The following procedure demonstrates how to install/uninstall the custom panel labeling.

1. Remove the clear Lexan Front Cover (GE Multilin Part Number: 1501-0014).

2. Pop out the LED Module and/or the Blank Module with a screwdriver as shown below. Be careful not to damage the plastic.

- 3. Place the left side of the customized module back to the front panel frame, then snap back the right side.
- 4. Put the clear Lexan Front Cover back into place.

e) CUSTOMIZING THE DISPLAY MODULE

The following items are required to customize the N60 display module:

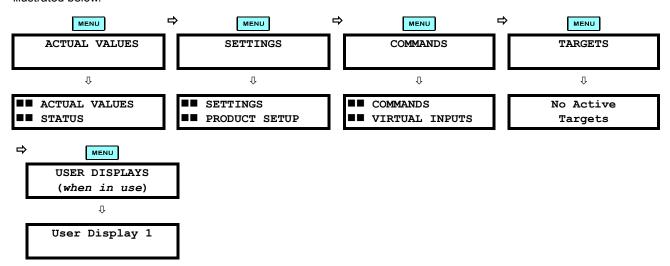
- Black and white or color printer (color preferred).
- Microsoft Word 97 or later software for editing the template.
- 1 each of: 8.5" x 11" white paper, exacto knife, ruler, custom display module (GE Multilin Part Number: 1516-0069), and a custom module cover (GE Multilin Part Number: 1502-0015).
- 1. Open the LED panel customization template with Microsoft Word. Add text in places of the **LED x** text placeholders on the template(s). Delete unused place holders as required.
- 2. When complete, save the Word file to your local PC for future use.
- 3. Print the template(s) to a local printer.
- 4. From the printout, cut-out the Background Template from the three windows, using the cropmarks as a guide.
- 5. Put the Background Template on top of the custom display module (GE Multilin Part Number: 1513-0069) and snap the clear custom module cover (GE Multilin Part Number: 1502-0015) over it and the templates.

4.2.3 DISPLAY

All messages are displayed on a 2×20 character vacuum fluorescent display to make them visible under poor lighting conditions. An optional liquid crystal display (LCD) is also available. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.

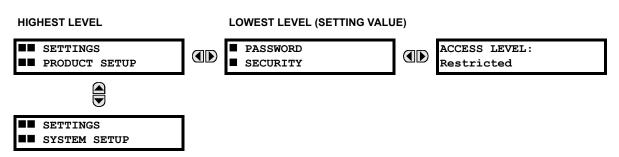
4.2.4 KEYPAD

Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The key navigates through these pages. Each heading page is broken down further into logical subgroups.

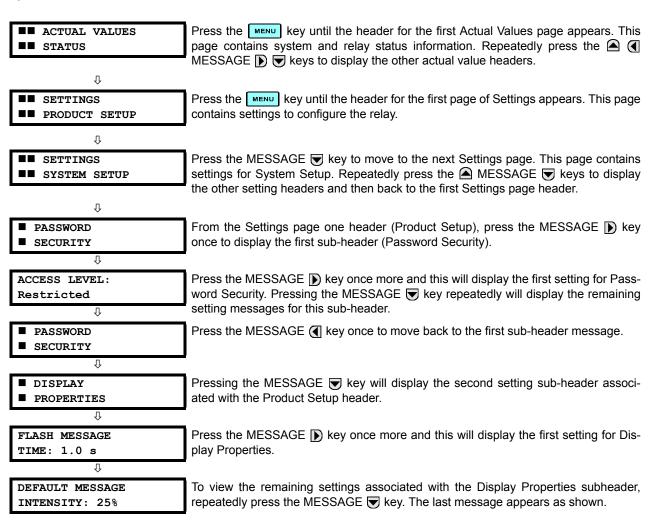

The MESSAGE keys navigate through the subgroups. The VALUE keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.

The key initiates and advance to the next character in text edit mode or enters a decimal point. The pressed at any time for context sensitive help messages. The key stores altered setting values.

4.2.5 MENUS


a) NAVIGATION

Press the wenu key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the key advances through the main heading pages as illustrated below.



b) HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (\blacksquare), while sub-header pages are indicated by single scroll bar characters (\blacksquare). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE and keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE key from a setting value or actual value display returns to the header display.

c) EXAMPLE MENU NAVIGATION

4.2.6 CHANGING SETTINGS

a) ENTERING NUMERICAL DATA

Each numerical setting has its own minimum, maximum, and increment value associated with it. These parameters define what values are acceptable for a setting.

FLASH MESSAGE
TIME: 1.0 s

WINIMUM: 0.5

MAXIMUM: 10.0

For example, select the SETTINGS PRODUCT SETUP DISPLAY PROPERTIES FLASH MESSAGE TIME setting.

Press the HELP key to view the minimum and maximum values. Press the HELP key again to view the next context sensitive help message.

Two methods of editing and storing a numerical setting value are available.

- 0 to 9 and (decimal point): The relay numeric keypad works the same as that of any electronic calculator. A number is entered one digit at a time. The leftmost digit is entered first and the rightmost digit is entered last. Pressing the MESSAGE (key or pressing the ESCAPE key, returns the original value to the display.
- VALUE The VALUE key increments the displayed value by the step value, up to the maximum value allowed. While at the maximum value, pressing the VALUE key again will allow the setting selection to continue upward from the minimum value. The VALUE key decrements the displayed value by the step value, down to the minimum value. While at the minimum value, pressing the VALUE key again will allow the setting selection to continue downward from the maximum value.

As an example, set the flash message time setting to 2.5 seconds. Press the appropriate numeric keys in the sequence "2 . 5". The display message will change as the digits are being entered.

NEW SETTING
HAS BEEN STORED

Until ENTER is pressed, editing changes are not registered by the relay. Therefore, press to store the new value in memory. This flash message will momentarily appear as confirmation of the storing process. Numerical values which contain decimal places will be rounded-off if more decimal place digits are entered than specified by the step value.

b) ENTERING ENUMERATION DATA

Enumeration settings have data values which are part of a set, whose members are explicitly defined by a name. A set is comprised of two or more members.

ACCESS LEVEL: For example, the selections available for ACCESS LEVEL are "Restricted", "Command", "Setting", and "Factory Service".

Enumeration type values are changed using the VALUE keys. The VALUE key displays the next selection while the VALUE key displays the previous selection.

If the ACCESS LEVEL needs to be "Setting", press the VALUE keys until the proper selection is displayed. Press Help at any time for the context sensitive help messages.

NEW SETTING
HAS BEEN STORED

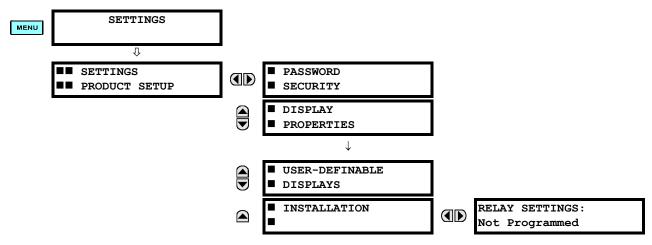
Changes are not registered by the relay until the ENTER key is pressed. Pressing ENTER stores the new value in memory. This flash message momentarily appears as confirmation of the storing process.

c) ENTERING ALPHANUMERIC TEXT

Text settings have data values which are fixed in length, but user-defined in character. They may be comprised of upper case letters, lower case letters, numerals, and a selection of special characters.

There are several places where text messages may be programmed to allow the relay to be customized for specific applications. One example is the Message Scratchpad. Use the following procedure to enter alphanumeric text messages.

For example: to enter the text, "Breaker #1"


- Press to enter text edit mode.
- 2. Press the VALUE keys until the character 'B' appears; press to advance the cursor to the next position.
- 3. Repeat step 2 for the remaining characters: r,e,a,k,e,r, ,#,1.
- 4. Press ENTER to store the text.
- 5. If you have any problem, press help to view context sensitive help. Flash messages will sequentially appear for several seconds each. For the case of a text setting message, pressing help displays how to edit and store new values.

d) ACTIVATING THE RELAY

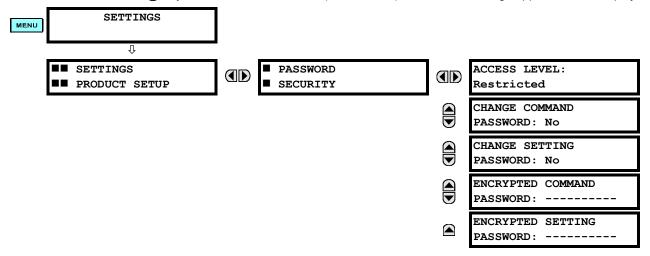
RELAY SETTINGS: Not Programmed When the relay is powered up, the Trouble LED will be on, the In Service LED off, and this message displayed, indicating the relay is in the "Not Programmed" state and is safeguarding (output relays blocked) against the installation of a relay whose settings have not been entered. This message remains until the relay is explicitly put in the "Programmed" state.

To change the RELAY SETTINGS: "Not Programmed" mode to "Programmed", proceed as follows:

- 1. Press the **MENU** key until the **SETTINGS** header flashes momentarily and the **SETTINGS PRODUCT SETUP** message appears on the display.
- Press the MESSAGE > key until the PASSWORD SECURITY message appears on the display.
- Press the MESSAGE key until the INSTALLATION message appears on the display.
- 4. Press the MESSAGE () key until the RELAY SETTINGS: Not Programmed message is displayed.

- 5. After the **RELAY SETTINGS: Not Programmed** message appears on the display, press the VALUE keys change the selection to "Programmed".
- 6. Press the **ENTER** key.

RELAY SETTINGS: Programmed


NEW SETTING HAS BEEN STORED

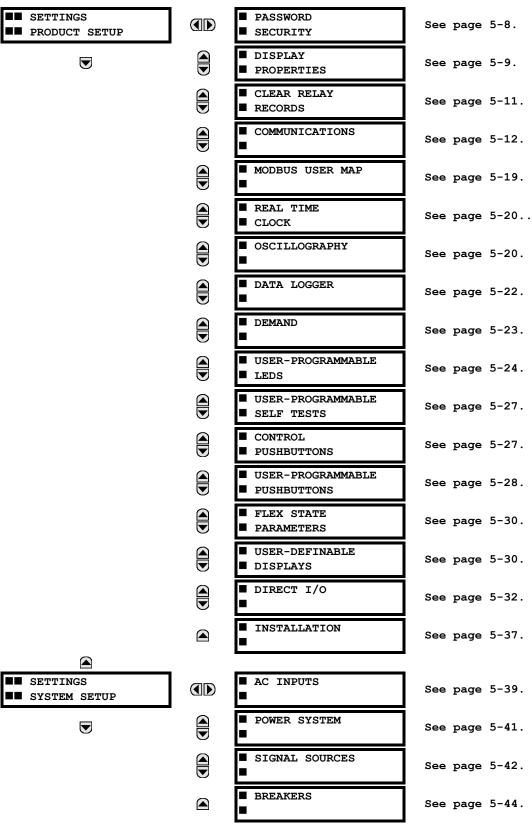
7. When the "NEW SETTING HAS BEEN STORED" message appears, the relay will be in "Programmed" state and the In Service LED will turn on.

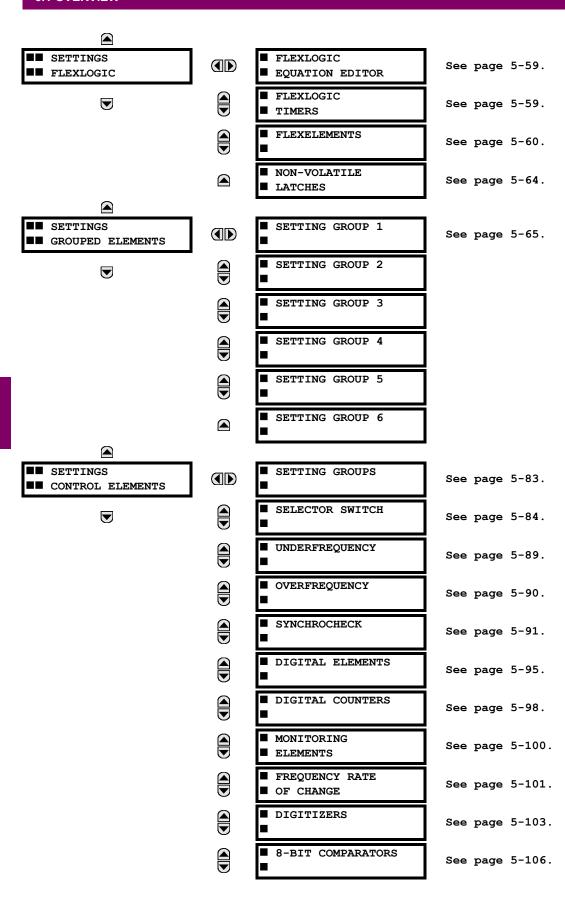
e) ENTERING INITIAL PASSWORDS

To enter the initial Setting (or Command) Password, proceed as follows:

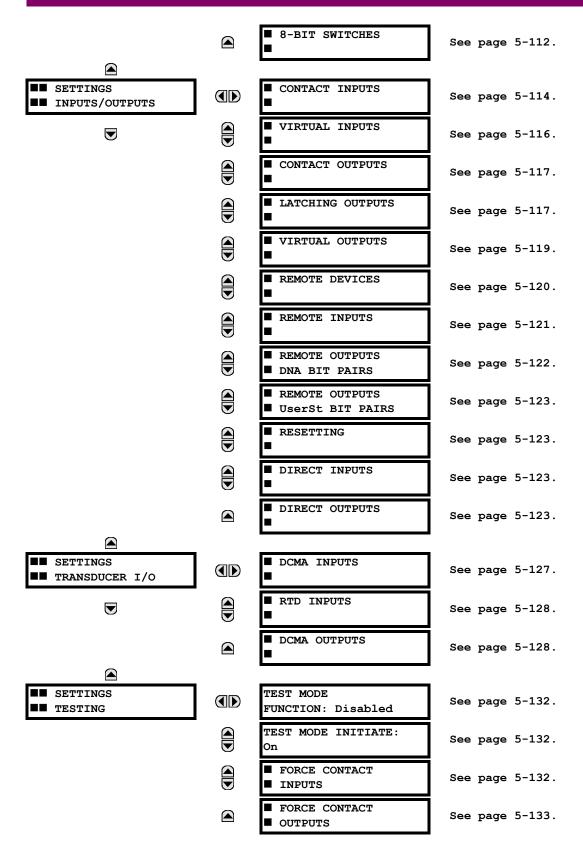
- 1. Press the key until the **SETTINGS** header flashes momentarily and the **SETTINGS PRODUCT SETUP** message appears on the display.
- 2. Press the MESSAGE (a) key until the ACCESS LEVEL message appears on the display.
- 3. Press the MESSAGE \(\overline{\pi} \) key until the **CHANGE SETTING** (or **COMMAND**) **PASSWORD** message appears on the display.

- 4. After the CHANGE...PASSWORD message appears on the display, press the VALUE (a) key or the VALUE (b) key to change the selection to "Yes".
- 5. Press the Key and the display will prompt you to ENTER NEW PASSWORD.
- 6. Type in a numerical password (up to 10 characters) and press the key.
- 7. When the VERIFY NEW PASSWORD is displayed, re-type in the same password and press ENTER.


When the NEW PASSWORD HAS BEEN STORED message appears, your new Setting (or Command) Password will be active.


f) CHANGING EXISTING PASSWORDS

To change an existing password, follow the instructions in the previous section with the following exception. A message will prompt you to type in the existing password (for each security level) before a new password can be entered.


In the event that a password has been lost (forgotten), submit the corresponding Encrypted Password from the **PASSWORD SECURITY** menu to the Factory for decoding.

5.1.1 SETTINGS MAIN MENU

5 SETTINGS 5.1 OVERVIEW

5.1.2 INTRODUCTION TO ELEMENTS

In the design of UR relays, the term "element" is used to describe a feature that is based around a comparator. The comparator is provided with an input (or set of inputs) that is tested against a programmed setting (or group of settings) to determine if the input is within the defined range that will set the output to logic 1, also referred to as "setting the flag". A single comparator may make multiple tests and provide multiple outputs; for example, the time overcurrent comparator sets a Pickup flag when the current input is above the setting and sets an Operate flag when the input current has been at a level above the pickup setting for the time specified by the time-current curve settings. All comparators, except the Digital Element which uses a logic state as the input, use analog parameter actual values as the input.

Elements are arranged into two classes, GROUPED and CONTROL. Each element classed as a GROUPED element is provided with six alternate sets of settings, in setting groups numbered 1 through 6. The performance of a GROUPED element is defined by the setting group that is active at a given time. The performance of a CONTROL element is independent of the selected active setting group.

The main characteristics of an element are shown on the element logic diagram. This includes the input(s), settings, fixed logic, and the output operands generated (abbreviations used on scheme logic diagrams are defined in Appendix F).

Some settings for current and voltage elements are specified in per-unit (pu) calculated quantities:

pu quantity = (actual quantity) / (base quantity)

- For current elements, the 'base quantity' is the nominal secondary or primary current of the CT. Where the current source is the sum of two CTs with different ratios, the 'base quantity' will be the common secondary or primary current to which the sum is scaled (i.e. normalized to the larger of the 2 rated CT inputs). For example, if CT1 = 300 / 5 A and CT2 = 100 / 5 A, then in order to sum these, CT2 is scaled to the CT1 ratio. In this case, the 'base quantity' will be 5 A secondary or 300 A primary.
- For voltage elements the 'base quantity' is the nominal primary voltage of the protected system which corresponds (based on VT ratio and connection) to secondary VT voltage applied to the relay. For example, on a system with a 13.8 kV nominal primary voltage and with 14400:120 V Delta-connected VTs, the secondary nominal voltage (1 pu) would be:

$$\frac{13800}{14400} \times 120 = 115 \text{ V} \tag{EQ 5.1}$$

For Wye-connected VTs, the secondary nominal voltage (1 pu) would be:

$$\frac{13800}{14400} \times \frac{120}{\sqrt{3}} = 66.4 \text{ V}$$
 (EQ 5.2)

Many settings are common to most elements and are discussed below:

- **FUNCTION setting:** This setting programs the element to be operational when selected as "Enabled". The factory default is "Disabled". Once programmed to "Enabled", any element associated with the Function becomes active and all options become available.
- NAME setting: This setting is used to uniquely identify the element.
- SOURCE setting: This setting is used to select the parameter or set of parameters to be monitored.
- **PICKUP setting:** For simple elements, this setting is used to program the level of the measured parameter above or below which the pickup state is established. In more complex elements, a set of settings may be provided to define the range of the measured parameters which will cause the element to pickup.
- PICKUP DELAY setting: This setting sets a time-delay-on-pickup, or on-delay, for the duration between the Pickup and Operate output states.
- **RESET DELAY setting:** This setting is used to set a time-delay-on-dropout, or off-delay, for the duration between the Operate output state and the return to logic 0 after the input transits outside the defined pickup range.
- BLOCK setting: The default output operand state of all comparators is a logic 0 or "flag not set". The comparator remains in this default state until a logic 1 is asserted at the RUN input, allowing the test to be performed. If the RUN input changes to logic 0 at any time, the comparator returns to the default state. The RUN input is used to supervise the comparator. The BLOCK input is used as one of the inputs to RUN control.

5 SETTINGS 5.1 OVERVIEW

TARGET setting: This setting is used to define the operation of an element target message. When set to Disabled, no
target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to SelfReset, the target message and LED indication follow the Operate state of the element, and self-resets once the operate element condition clears. When set to Latched, the target message and LED indication will remain visible after the
element output returns to logic 0 - until a RESET command is received by the relay.

• **EVENTS setting:** This setting is used to control whether the Pickup, Dropout or Operate states are recorded by the event recorder. When set to Disabled, element pickup, dropout or operate are not recorded as events. When set to Enabled, events are created for:

(Element) PKP (pickup) (Element) DPO (dropout) (Element) OP (operate)

The DPO event is created when the measure and decide comparator output transits from the pickup state (logic 1) to the dropout state (logic 0). This could happen when the element is in the operate state if the reset delay time is not '0'.

5.1.3 INTRODUCTION TO AC SOURCES

a) BACKGROUND

The N60 may be used on systems with breaker-and-a-half or ring bus configurations. In these applications, each of the two three-phase sets of individual phase currents (one associated with each breaker) can be used as an input to a breaker failure element. The sum of both breaker phase currents and 3I_0 residual currents may be required for the circuit relaying and metering functions. For a three-winding transformer application, it may be required to calculate watts and vars for each of three windings, using voltage from different sets of VTs. These requirements can be satisfied with a single UR, equipped with sufficient CT and VT input channels, by selecting the parameter to measure. A mechanism is provided to specify the AC parameter (or group of parameters) used as the input to protection/control comparators and some metering elements.

Selection of the parameter(s) to measure is partially performed by the design of a measuring element or protection/control comparator by identifying the type of parameter (fundamental frequency phasor, harmonic phasor, symmetrical component, total waveform RMS magnitude, phase-phase or phase-ground voltage, etc.) to measure. The user completes the process by selecting the instrument transformer input channels to use and some of the parameters calculated from these channels. The input parameters available include the summation of currents from multiple input channels. For the summed currents of phase, 31 0, and ground current, current from CTs with different ratios are adjusted to a single ratio before summation.

A mechanism called a "Source" configures the routing of CT and VT input channels to measurement sub-systems. Sources, in the context of UR series relays, refer to the logical grouping of current and voltage signals such that one source contains all the signals required to measure the load or fault in a particular power apparatus. A given source may contain all or some of the following signals: three-phase currents, single-phase ground current, three-phase voltages and an auxiliary voltage from a single VT for checking for synchronism.

To illustrate the concept of Sources, as applied to current inputs only, consider the breaker-and-a-half scheme below. In this application, the current flows as shown by the arrows. Some current flows through the upper bus bar to some other location or power equipment, and some current flows into transformer Winding 1. The current into Winding 1 is the phasor sum (or difference) of the currents in CT1 and CT2 (whether the sum or difference is used depends on the relative polarity of the CT connections). The same considerations apply to transformer Winding 2. The protection elements require access to the net current for transformer protection, but some elements may need access to the individual currents from CT1 and CT2.

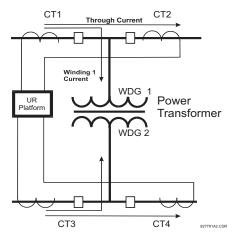


Figure 5-1: BREAKER-AND-A-HALF SCHEME

In conventional analog or electronic relays, the sum of the currents is obtained from an appropriate external connection of all CTs through which any portion of the current for the element being protected could flow. Auxiliary CTs are required to perform ratio matching if the ratios of the primary CTs to be summed are not identical. In the UR series of relays, provisions have been included for all the current signals to be brought to the UR device where grouping, ratio correction and summation are applied internally via configuration settings.

A major advantage of using internal summation is that the individual currents are available to the protection device; for example, as additional information to calculate a restraint current, or to allow the provision of additional protection features that operate on the individual currents such as breaker failure.

Given the flexibility of this approach, it becomes necessary to add configuration settings to the platform to allow the user to select which sets of CT inputs will be added to form the net current into the protected device.

The internal grouping of current and voltage signals forms an internal source. This source can be given a specific name through the settings, and becomes available to protection and metering elements in the UR platform. Individual names can be given to each source to help identify them more clearly for later use. For example, in the scheme shown in the above diagram, the configures one Source to be the sum of CT1 and CT2 and can name this Source as "Wdg 1 Current".

Once the sources have been configured, the user has them available as selections for the choice of input signal for the protection elements and as metered quantities.

b) CT/VT MODULE CONFIGURATION

CT and VT input channels are contained in CT/VT modules. The type of input channel can be phase/neutral/other voltage, phase/ground current, or sensitive ground current. The CT/VT modules calculate total waveform RMS levels, fundamental frequency phasors, symmetrical components and harmonics for voltage or current, as allowed by the hardware in each channel. These modules may calculate other parameters as directed by the CPU module.

A CT/VT module contains up to eight input channels, numbered 1 through 8. The channel numbering corresponds to the module terminal numbering 1 through 8 and is arranged as follows: Channels 1, 2, 3 and 4 are always provided as a group, hereafter called a "bank," and all four are either current or voltage, as are Channels 5, 6, 7 and 8. Channels 1, 2, 3 and 5, 6, 7 are arranged as phase A, B and C respectively. Channels 4 and 8 are either another current or voltage.

Banks are ordered sequentially from the block of lower-numbered channels to the block of higher-numbered channels, and from the CT/VT module with the lowest slot position letter to the module with the highest slot position letter, as follows:

The UR platform allows for a maximum of three sets of three-phase voltages and six sets of three-phase currents. The result of these restrictions leads to the maximum number of CT/VT modules in a chassis to three. The maximum number of sources is six. A summary of CT/VT module configurations is shown below.

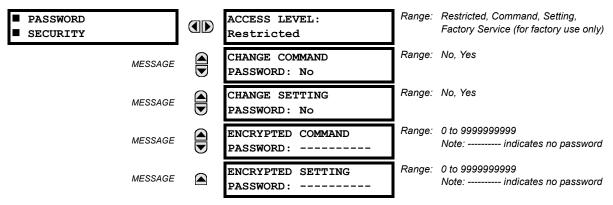
ITEM	MAXIMUM NUMBER
CT/VT Module	3
CT Bank (3 phase channels, 1 ground channel)	12
VT Bank (3 phase channels, 1 auxiliary channel)	6

5 SETTINGS 5.1 OVERVIEW

c) CT/VT INPUT CHANNEL CONFIGURATION

Upon relay startup, configuration settings for every bank of current or voltage input channels in the relay are automatically generated from the order code. Within each bank, a channel identification label is automatically assigned to each bank of channels in a given product. The 'bank' naming convention is based on the physical location of the channels, required by the user to know how to connect the relay to external circuits. Bank identification consists of the letter designation of the slot in which the CT/VT module is mounted as the first character, followed by numbers indicating the channel, either 1 or 5.

For three-phase channel sets, the number of the lowest numbered channel identifies the set. For example, F1 represents the three-phase channel set of F1/F2/F3, where F is the slot letter and 1 is the first channel of the set of three channels.


Upon startup, the CPU configures the settings required to characterize the current and voltage inputs, and will display them in the appropriate section in the sequence of the banks (as described above) as follows for a maximum configuration: F1, F5, M1, M5, U1, and U5.

The above section explains how the input channels are identified and configured to the specific application instrument transformers and the connections of these transformers. The specific parameters to be used by each measuring element and comparator, and some actual values are controlled by selecting a specific source. The source is a group of current and voltage input channels selected by the user to facilitate this selection. With this mechanism, a user does not have to make multiple selections of voltage and current for those elements that need both parameters, such as a distance element or a watt calculation. It also gathers associated parameters for display purposes.

The basic idea of arranging a source is to select a point on the power system where information is of interest. An application example of the grouping of parameters in a Source is a transformer winding, on which a three phase voltage is measured, and the sum of the currents from CTs on each of two breakers is required to measure the winding current flow.

5.2.1 PASSWORD SECURITY

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ PASSWORD SECURITY

Two levels of password security are provided: Command and Setting. Operations under password supervision are:

- **COMMAND:** operating the breakers via faceplate keypad, changing the state of virtual inputs, clearing the event records, clearing the oscillography records, changing the date and time, clearing energy records, clearing the data logger, user-programmable pushbuttons
- SETTING: changing any setting, test mode operation

The Command and Setting passwords are defaulted to "Null" when the relay is shipped from the factory. When a password is set to "Null", the password security feature is disabled.

Programming a password code is required to enable each access level. A password consists of 1 to 10 numerical characters. When a **CHANGE** ... **PASSWORD** setting is set to "Yes", the following message sequence is invoked:

- I. ENTER NEW PASSWORD: _____
- VERIFY NEW PASSWORD: _____
- 3. NEW PASSWORD HAS BEEN STORED

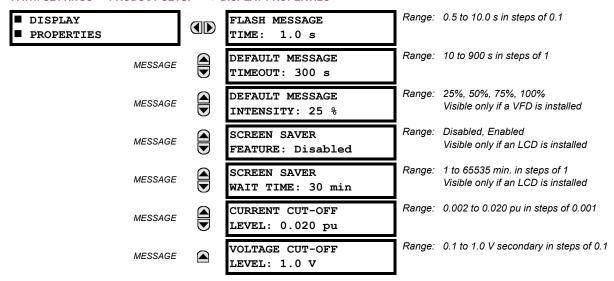
To gain write access to a "Restricted" setting, set ACCESS LEVEL to "Setting" and then change the setting, or attempt to change the setting and follow the prompt to enter the programmed password. If the password is correctly entered, access will be allowed. If no keys are pressed for longer than 30 minutes or control power is cycled, accessibility will automatically revert to the "Restricted" level.

If an entered password is lost (or forgotten), consult the factory with the corresponding ENCRYPTED PASSWORD.

The N60 provides a means to raise an alarm upon failed password entry. Should password verification fail while accessing a password-protected level of the relay (either settings or commands), the UNAUTHORIZED ACCESS FlexLogic™ operand is asserted. The operand can be programmed to raise an alarm via contact outputs or communications. This feature can be used to protect against both unauthorized and accidental access attempts.

The UNAUTHORIZED ACCESS operand is reset with the **COMMANDS** $\Rightarrow \emptyset$ **CLEAR RECORDS** $\Rightarrow \emptyset$ **RESET UNAUTHORIZED ALARMS** command. Therefore, to apply this feature with security, the command level should be password-protected.

The operand does not generate events or targets. If these are required, the operand can be assigned to a digital element programmed with event logs and/or targets enabled.


If the SETTING and COMMAND passwords are identical, this one password allows access to both commands and settings.

When enerVista UR Setup is used to access a particular level, the user will continue to have access to that level as long as there are open windows in the enerVista UR Setup software. To re-establish the Password Security feature, all windows must be closed for at least 30 minutes.

5.2.2 DISPLAY PROPERTIES

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ □ DISPLAY PROPERTIES

Some relay messaging characteristics can be modified to suit different situations using the display properties settings.

- **FLASH MESSAGE TIME:** Flash messages are status, warning, error, or information messages displayed for several seconds in response to certain key presses during setting programming. These messages override any normal messages. The duration of a flash message on the display can be changed to accommodate different reading rates.
- DEFAULT MESSAGE TIMEOUT: If the keypad is inactive for a period of time, the relay automatically reverts to a
 default message. The inactivity time is modified via this setting to ensure messages remain on the screen long enough
 during programming or reading of actual values.
- **DEFAULT MESSAGE INTENSITY:** To extend phosphor life in the vacuum fluorescent display, the brightness can be attenuated during default message display. During keypad interrogation, the display always operates at full brightness.
- SCREEN SAVER FEATURE and SCREEN SAVER WAIT TIME: These settings are only visible if the N60 has a liquid
 crystal display (LCD) and control its backlighting. When the SCREEN SAVER FEATURE is "Enabled", the LCD backlighting
 is turned off after the DEFAULT MESSAGE TIMEOUT followed by the SCREEN SAVER WAIT TIME, providing that no keys
 have been pressed and no target messages are active. When a keypress occurs or a target becomes active, the LCD
 backlighting is turned on.
- CURRENT CUT-OFF LEVEL: This setting modifies the current cut-off threshold. Very low currents (1 to 2% of the rated value) are very susceptible to noise. Some customers prefer very low currents to display as zero, while others prefer the current be displayed even when the value reflects noise rather than the actual signal. The N60 applies a cut-off value to the magnitudes and angles of the measured currents. If the magnitude is below the cut-off level, it is substituted with zero. This applies to phase and ground current phasors as well as true RMS values and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Note that the cut-off level for the sensitive ground input is 10 times lower that the CURRENT CUT-OFF LEVEL setting value. Raw current samples available via oscillography are not subject to cut-off.
- VOLTAGE CUT-OFF LEVEL: This setting modifies the voltage cut-off threshold. Very low secondary voltage measurements (at the fractional volt level) can be affected by noise. Some customers prefer these low voltages to be displayed as zero, while others prefer the voltage to be displayed even when the value reflects noise rather than the actual signal. The N60 applies a cut-off value to the magnitudes and angles of the measured voltages. If the magnitude is below the cut-off level, it is substituted with zero. This operation applies to phase and auxiliary voltages, and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Raw samples of the voltages available via oscillography are not subject cut-off. This setting relates to the actual measured voltage at the VT secondary inputs. It can be converted to per-unit values (pu) by dividing by the PHASE VT SECONDARY setting value. For example, a PHASE VT SECONDARY setting of "66.4 V" and a VOLTAGE CUT-OFF LEVEL setting of "1.0 V" gives a cut-off value of 1.0 V / 66.4 V = 0.015 pu.

5.2 PRODUCT SETUP 5 SETTINGS

The **CURRENT CUT-OFF LEVEL** and the **VOLTAGE CUT-OFF LEVEL** are used to determine the metered power cut-off levels. The power cut-off level is calculated as follows:

power cut-off level = CURRENT CUT-OFF LEVEL × VOLTAGE CUT-OFF LEVEL × 1.0 pu current × 1.0 pu voltage (EQ 5.3)

For example, given the following settings:

CURRENT CUT-OFF LEVEL: "0.02 pu"
VOLTAGE CUT-OFF LEVEL: "1.0 V"
PHASE CT PRIMARY: "100 A"
PHASE VT SECONDARY: "66.4 V"
PHASE VT RATIO: "208.00 : 1".

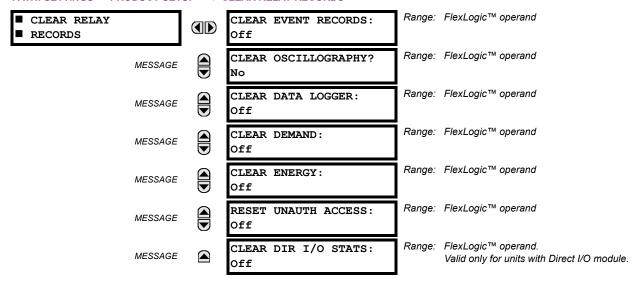
We have:

1.0 pu current = CT primary = "100 A", and

1.0 pu voltage = PHASE VT SECONDARY x PHASE VT RATIO = 66.4 V x 208 = 13811.2 V

The power cut-off is therefore:

```
power cut-off = CURRENT CUT-OFF LEVEL \times VOLTAGE CUT-OFF LEVEL \times 1.0 pu current \times 1.0 pu voltage = 0.02 pu \times 0.015 pu \times 100 A \times 13811.2 V = 416 watts
```


Any calculated power value below this cut-off will not be displayed. As well, the three-phase energy data will not accumulate if the total power from all three phases does not exceed the power cut-off.

Lower the VOLTAGE CUT-OFF LEVEL and CURRENT CUT-OFF LEVEL with care as the relay accepts lower signals as valid measurements. Unless dictated otherwise by a specific application, the default settings of "0.02 pu" for CURRENT CUT-OFF LEVEL and "1.0 V" for VOLTAGE CUT-OFF LEVEL are recommended.

5.2.3 CLEAR RELAY RECORDS

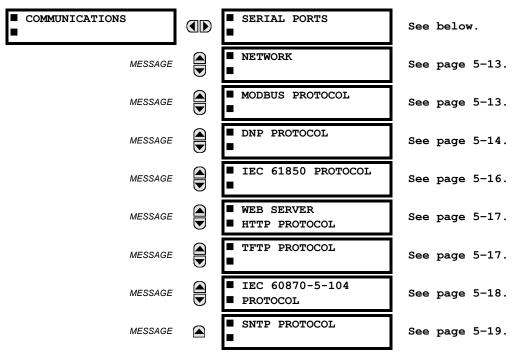
PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\mathcal{P}\$ CLEAR RELAY RECORDS

Selected records can be cleared from user-programmable conditions with FlexLogic[™] operands. Assigning user-programmable pushbuttons to clear specific records are typical applications for these commands. Since the N60 responds to rising edges of the configured FlexLogic[™] operands, they must be asserted for at least 50 ms to take effect.

Clearing records with user-programmable operands is not protected by the command password. However, user-programmable pushbuttons are protected by the command password. Thus, if they are used to clear records, the user-programmable pushbuttons can provide extra security if required.

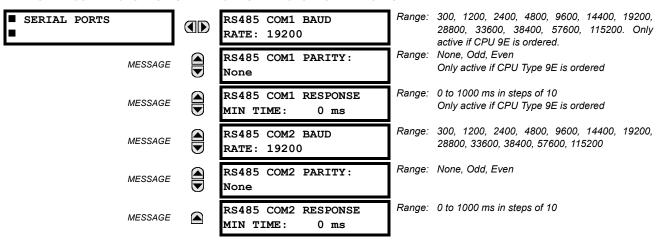
For example, to assign User-Programmable Pushbutton 1 to clear demand records, the following settings should be applied.

1. Assign the clear demand function to Pushbutton 1 by making the following change in the SETTINGS ⇒ PRODUCT SETUP ⇒ UCLEAR RELAY RECORDS menu:


CLEAR DEMAND: "PUSHBUTTON 1 ON"

2. Set the properties for User-Programmable Pushbutton 1 by making the following changes in the SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ USER-PROGRAMMABLE PUSHBUTTONS ⇒ USER PUSHBUTTON 1 menu:

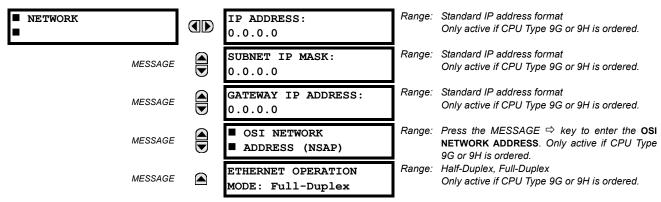
PUSHBUTTON 1 FUNCTION: "Self-reset" PUSHBTN 1 DROP-OUT TIME: "0.20 s"


a) MAIN MENU

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ↓ COMMUNICATIONS

b) SERIAL PORTS

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\partial\$ COMMUNICATIONS \$\Rightarrow\$ SERIAL PORTS


The N60 is equipped with up to 3 independent serial communication ports. The faceplate RS232 port is intended for local use and is fixed at 19200 baud and no parity. The rear COM1 port type is selected when ordering: either an Ethernet or RS485 port. The rear COM2 port is RS485. The RS485 ports have settings for baud rate and parity. It is important that these parameters agree with the settings used on the computer or other equipment that is connected to these ports. Any of these ports may be connected to a computer running enerVista UR Setup. This software can download and upload setting files, view measured parameters, and upgrade the relay firmware. A maximum of 32 relays can be daisy-chained and connected to a DCS, PLC or PC using the RS485 ports.

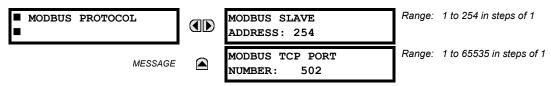
For each RS485 port, the minimum time before the port will transmit after receiving data from a host can be set. This feature allows operation with hosts which hold the RS485 transmitter active for some time after each transmission.

c) NETWORK

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ NETWORK

These messages appear only if the N60 is ordered with an Ethernet card.

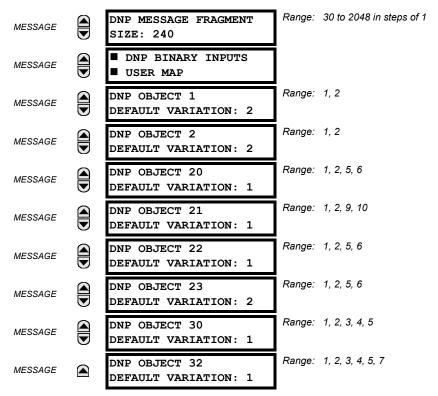
The IP addresses are used with the DNP, Modbus/TCP, IEC 61580, IEC 60870-5-104, TFTP, and HTTP protocols. The NSAP address is used with the IEC 61850 protocol over the OSI (CLNP/TP4) stack only. Each network protocol has a setting for the TCP/UDP PORT NUMBER. These settings are used only in advanced network configurations and should normally be left at their default values, but may be changed if required (for example, to allow access to multiple UR-series relays behind a router). By setting a different TCP/UDP PORT NUMBER for a given protocol on each UR-series relay, the router can map the relays to the same external IP address. The client software (enerVista UR Setup, for example) must be configured to use the correct port number if these settings are used.


When the NSAP address, any TCP/UDP Port Number, or any User Map setting (when used with DNP) is changed, it will not become active until power to the relay has been cycled (OFF/ON).

Do not set more than one protocol to use the same TCP/UDP PORT NUMBER, as this will result in unreliable operation of those protocols.

d) MODBUS PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ MODBUS PROTOCOL



The serial communication ports utilize the Modbus protocol, unless configured for DNP operation (see the DNP Protocol description below). This allows the enerVista UR Setup software to be used. The UR operates as a Modbus slave device only. When using Modbus protocol on the RS232 port, the N60 will respond regardless of the MODBUS SLAVE ADDRESS programmed. For the RS485 ports each N60 must have a unique address from 1 to 254. Address 0 is the broadcast address which all Modbus slave devices listen to. Addresses do not have to be sequential, but no two devices can have the same address or conflicts resulting in errors will occur. Generally, each device added to the link should use the next higher address starting at 1. Refer to Appendix B for more information on the Modbus protocol.

e) DNP PROTOCOL

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial\$ COMMUNICATIONS ⇒ \$\Partial\$ DNP PROTOCOL

PATH: SETTINGS ⇒ PRODUCT SET	'UP ⇒ 🖟 (COMMUNICATIONS ⇒ □ DNP PROT	OCOL	
■ DNP PROTOCOL		DNP PORT: NONE	Range:	NONE, COM1 - RS485, COM2 - RS485, FRONT PANEL - RS232, NETWORK
MESSAGE		DNP ADDRESS: 255	Range:	0 to 65519 in steps of 1
MESSAGE		■ DNP NETWORK ■ CLIENT ADDRESSES	Range:	Press the MESSAGE ⇒ key to enter the DNP NETWORK CLIENT ADDRESSES
MESSAGE		DNP TCP/UDP PORT NUMBER: 20000	Range:	1 to 65535 in steps of 1
MESSAGE		DNP UNSOL RESPONSE FUNCTION: Disabled	Range:	Enabled, Disabled
MESSAGE		DNP UNSOL RESPONSE TIMEOUT: 5 s	Range:	0 to 60 s in steps of 1
MESSAGE		DNP UNSOL RESPONSE MAX RETRIES: 10	Range:	1 to 255 in steps of 1
MESSAGE		DNP UNSOL RESPONSE DEST ADDRESS: 1	Range:	0 to 65519 in steps of 1
MESSAGE		USER MAP FOR DNP ANALOGS: Disabled	Range:	Enabled, Disabled
MESSAGE		NUMBER OF SOURCES IN ANALOG LIST: 1	Range:	1 to 6 in steps of 1
MESSAGE		DNP CURRENT SCALE FACTOR: 1	Range:	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
MESSAGE		DNP VOLTAGE SCALE FACTOR: 1	Range:	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
MESSAGE		DNP POWER SCALE FACTOR: 1	<u> </u>	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
MESSAGE		DNP ENERGY SCALE FACTOR: 1	Range:	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
MESSAGE		DNP OTHER SCALE FACTOR: 1	<u> </u>	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
MESSAGE		DNP CURRENT DEFAULT DEADBAND: 30000	<u> </u>	0 to 65535 in steps of 1
MESSAGE		DNP VOLTAGE DEFAULT DEADBAND: 30000	<u>]</u>	0 to 65535 in steps of 1
MESSAGE		DNP POWER DEFAULT DEADBAND: 30000	<u>]</u>	0 to 65535 in steps of 1
MESSAGE		DNP ENERGY DEFAULT DEADBAND: 30000	<u>_</u>	0 to 65535 in steps of 1
MESSAGE		DNP OTHER DEFAULT DEADBAND: 30000	<u>]</u>	0 to 65535 in steps of 1
MESSAGE		DNP TIME SYNC IIN PERIOD: 1440 min	Range:	1 to 10080 min. in steps of 1

The N60 supports the Distributed Network Protocol (DNP) version 3.0. The N60 can be used as a DNP slave device connected to a single DNP master (usually an RTU or a SCADA master station). Since the N60 maintains one set of DNP data change buffers and connection information, only one DNP master should actively communicate with the N60 at one time. The **DNP PORT** setting selects the communications port assigned to the DNP protocol; only a single port can be assigned. Once DNP is assigned to a serial port, the Modbus protocol is disabled on that port. Note that COM1 can be used only in non-ethernet UR relays. When this setting is set to "Network", the DNP protocol can be used over either TCP/IP or UDP/IP. Refer to Appendix E for more information on the DNP protocol. The **DNP ADDRESS** setting is the DNP slave address. This number identifies the N60 on a DNP communications link. Each DNP slave should be assigned a unique address. The **DNP NETWORK CLIENT ADDRESS** setting can force the N60 to respond to a maximum of five specific DNP masters.

The **DNP UNSOL RESPONSE FUNCTION** should be "Disabled" for RS485 applications since there is no collision avoidance mechanism. The **DNP UNSOL RESPONSE TIMEOUT** sets the time the N60 waits for a DNP master to confirm an unsolicited response. The **DNP UNSOL RESPONSE MAX RETRIES** setting determines the number of times the N60 retransmits an unsolicited response without receiving confirmation from the master; a value of "255" allows infinite re-tries. The **DNP UNSOL RESPONSE DEST ADDRESS** is the DNP address to which all unsolicited responses are sent. The IP address to which unsolicited responses are sent is determined by the N60 from the current TCP connection or the most recent UDP message.

The **USER MAP FOR DNP ANALOGS** setting allows the large pre-defined Analog Inputs points list to be replaced by the much smaller Modbus User Map. This can be useful for users wishing to read only selected Analog Input points from the N60. See Appendix E for more information.

The **NUMBER OF SOURCES IN ANALOG LIST** setting allows the selection of the number of current/voltage source values that are included in the Analog Inputs points list. This allows the list to be customized to contain data for only the sources that are configured. This setting is relevant only when the User Map is not used.

The **DNP SCALE FACTOR** settings are numbers used to scale Analog Input point values. These settings group the N60 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the scale factor for all Analog Input points of that type. For example, if the **DNP VOLTAGE SCALE FACTOR** setting is set to a value of 1000, all DNP Analog Input points that are voltages will be returned with values 1000 times smaller (e.g. a value of 72000 V on the N60 will be returned as 72). These settings are useful when analog input values must be adjusted to fit within certain ranges in DNP masters. Note that a scale factor of 0.1 is equivalent to a multiplier of 10 (i.e. the value will be 10 times larger).

The **DNP DEFAULT DEADBAND** settings determine when to trigger unsolicited responses containing Analog Input data. These settings group the N60 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the default deadband value for all Analog Input points of that type. For example, to trigger unsolicited responses from the N60

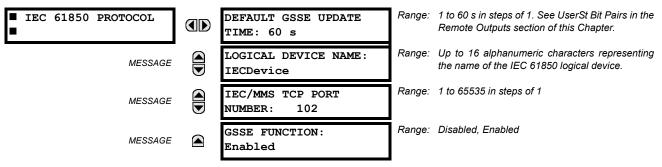
5.2 PRODUCT SETUP 5 SETTINGS

when any current values change by 15 A, the **DNP CURRENT DEFAULT DEADBAND** setting should be set to "15". Note that these settings are the deadband default values. DNP Object 34 points can be used to change deadband values, from the default, for each individual DNP Analog Input point. Whenever power is removed and re-applied to the N60, the default deadbands will be in effect.

The **DNP TIME SYNC IIN PERIOD** setting determines how often the Need Time Internal Indication (IIN) bit is set by the N60. Changing this time allows the DNP master to send time synchronization commands more or less often, as required.

The **DNP MESSAGE FRAGMENT SIZE** setting determines the size, in bytes, at which message fragmentation occurs. Large fragment sizes allow for more efficient throughput; smaller fragment sizes cause more application layer confirmations to be necessary which can provide for more robust data transfer over noisy communication channels.

The **DNP BINARY INPUTS USER MAP** setting allows for the creation of a custom DNP Binary Inputs points list. The default DNP Binary Inputs list contains 928 points representing various binary states (contact inputs and outputs, virtual inputs and outputs, protection element states, etc.). If not all of these points are required in the DNP master, a custom Binary Inputs points list can be created by selecting up to 58 blocks of 16 points. Each block represents 16 binary input points. Block 1 represents binary input points 0 to 15, block 2 represents binary input points 16 to 31, block 3 represents binary input points 32 to 47, etc. The minimum number of binary input points that can be selected is 16 (1 block). If all of the **BIN INPUT BLOCK X** settings are set to "Not Used", the standard list of 928 points will be in effect. The N60 will form the binary inputs points list from the **BIN INPUT BLOCK X** settings up to the first occurrence of a setting value of "Not Used".



When using the User Maps for DNP data points (analog inputs and/or binary inputs) for relays with ethernet installed, check the "DNP Points Lists" N60 web page to ensure the desired points lists are created. This web page can be viewed using a web browser by entering the N60 IP address to access the N60 "Main Menu", then by selecting the "Device Information Menu" > "DNP Points Lists" menu item.

The **DNP OBJECT N DEFAULT VARIATION** settings allow the user to select the DNP default variation number for object types 1, 2, 20, 21, 22, 23, 30, and 32. The default variation refers to the variation response when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Refer to the *DNP Implementation* section in Appendix E for additional details.

f) IEC 61850 PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL

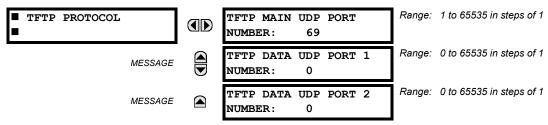
The N60 supports the Manufacturing Message Specification (MMS) protocol as specified by IEC 61850. MMS is supported over two protocol stacks: TCP/IP over ethernet and TP4/CLNP (OSI) over ethernet. The N60 operates as an IEC 61850 server. The *Remote Inputs/Outputs* section in this chapter describe the peer-to-peer GSSE message scheme.

The **LOGICAL DEVICE NAME** setting represents the MMS domain name (IEC 61850 logical device) where all IEC/MMS objects are located. The **GSSE FUNCTION** setting allows for the blocking of GSSE messages from the N60. This can be used during testing or to prevent the relay from sending GSSE messages during normal operation.

Since GSSE messages are multicast ethernet by specification, router networks must not be used for IEC/MMS.

g) WEB SERVER HTTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ WEB SERVER HTTP PROTOCOL


■ WEB SERVER
■ HTTP PROTOCOL

HTTP TCP PORT
NUMBER: 80

The N60 contains an embedded web server and is capable of transferring web pages to a web browser such as Microsoft Internet Explorer or Netscape Navigator. This feature is available only if the N60 has the ethernet option installed. The web pages are organized as a series of menus that can be accessed starting at the N60 "Main Menu". Web pages are available showing DNP and IEC 60870-5-104 points lists, Modbus registers, Event Records, Fault Reports, etc. The web pages can be accessed by connecting the UR and a computer to an ethernet network. The Main Menu will be displayed in the web browser on the computer simply by entering the IP address of the N60 into the "Address" box on the web browser.

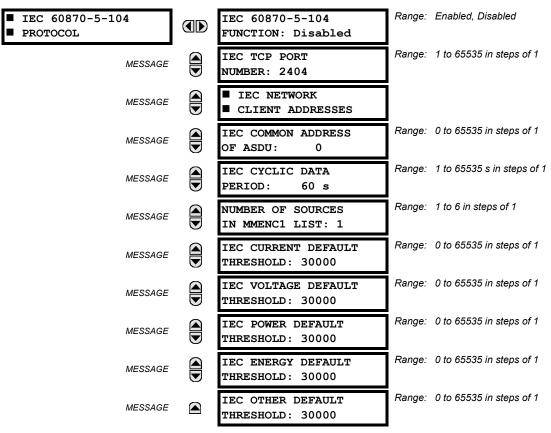
h) TFTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ TFTP PROTOCOL

The Trivial File Transfer Protocol (TFTP) can be used to transfer files from the UR over a network. The N60 operates as a TFTP server. TFTP client software is available from various sources, including Microsoft Windows NT. The $\mathtt{dir.txt}$ file obtained from the N60 contains a list and description of all available files (event records, oscillography, etc.).

i) IEC 60870-5-104 PROTOCOL

PATH: SETTINGS


→ PRODUCT SETUP

→

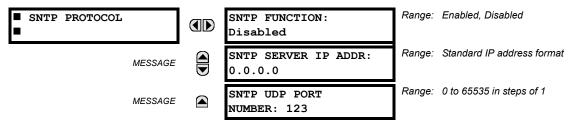
↓ COMMUNICATIONS

→

↓ IEC 60870-5-104 PROTOCOL

The N60 supports the IEC 60870-5-104 protocol. The N60 can be used as an IEC 60870-5-104 slave device connected to a maximum of two masters (usually either an RTU or a SCADA master station). Since the N60 maintains two sets of IEC 60870-5-104 data change buffers, no more than two masters should actively communicate with the N60 at one time.

The **NUMBER OF SOURCES IN MMENC1 LIST** setting allows the selection of the number of current/voltage source values that are included in the M_ME_NC_1 (measured value, short floating point) Analog points list. This allows the list to be customized to contain data for only the sources that are configured.


The IEC ----- DEFAULT THRESHOLD settings are the values used by the UR to determine when to trigger spontaneous responses containing M_ME_NC_1 analog data. These settings group the UR analog data into types: current, voltage, power, energy, and other. Each setting represents the default threshold value for all M_ME_NC_1 analog points of that type. For example, in order to trigger spontaneous responses from the UR when any current values change by 15 A, the IEC CURRENT DEFAULT THRESHOLD setting should be set to 15. Note that these settings are the default values of the dead-bands. P_ME_NC_1 (Parameter of measured value, short floating point value) points can be used to change threshold values, from the default, for each individual M_ME_NC_1 analog point. Whenever power is removed and re-applied to the UR, the default thresholds will be in effect.

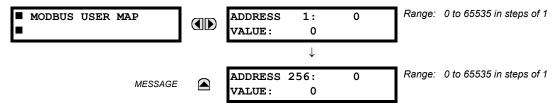
The IEC 60870-5-104 and DNP protocols can not be used at the same time. When the IEC 60870-5-104 FUNC-TION setting is set to "Enabled", the DNP protocol will not be operational. When this setting is changed it will not become active until power to the relay has been cycled (Off/On).

i) SNTP PROTOCOL

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ SNTP PROTOCOL

The N60 supports the Simple Network Time Protocol specified in RFC-2030. With SNTP, the N60 can obtain clock time over an Ethernet network. The N60 acts as an SNTP client to receive time values from an SNTP/NTP server, usually a dedicated product using a GPS receiver to provide an accurate time. Both unicast and broadcast SNTP are supported.

If SNTP functionality is enabled at the same time as IRIG-B, the IRIG-B signal provides the time value to the N60 clock for as long as a valid signal is present. If the IRIG-B signal is removed, the time obtained from the SNTP server is used. If either SNTP or IRIG-B is enabled, the N60 clock value cannot be changed using the front panel keypad.

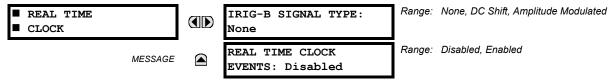

To use SNTP in unicast mode, **SNTP SERVER IP ADDR** must be set to the SNTP/NTP server IP address. Once this address is set and **SNTP FUNCTION** is "Enabled", the N60 attempts to obtain time values from the SNTP/NTP server. Since many time values are obtained and averaged, it generally takes three to four minutes until the N60 clock is closely synchronized with the SNTP/NTP server. It may take up to one minute for the N60 to signal an SNTP self-test error if the server is offline.

To use SNTP in broadcast mode, set the **sntp server ip ADDR** setting to "0.0.0.0" and **sntp function** to "Enabled". The N60 then listens to SNTP messages sent to the "all ones" broadcast address for the subnet. The N60 waits up to eighteen minutes (>1024 seconds) without receiving an SNTP broadcast message before signaling an SNTP self-test error.

The UR-series relays do not support the multicast or anycast SNTP functionality.

5.2.5 MODBUS USER MAP

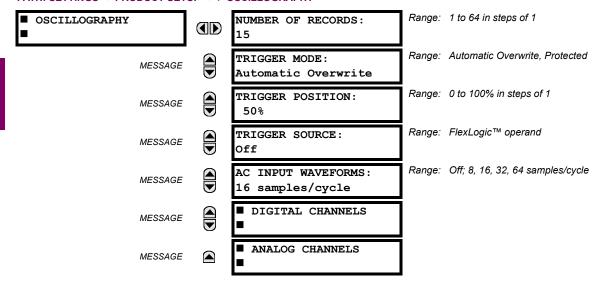
PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial\$ MODBUS USER MAP


The Modbus User Map provides read-only access for up to 256 registers. To obtain a memory map value, enter the desired address in the **ADDRESS** line (this value must be converted from hex to decimal format). The corresponding value is displayed in the **VALUE** line. A value of "0" in subsequent register **ADDRESS** lines automatically returns values for the previous **ADDRESS** lines incremented by "1". An address value of "0" in the initial register means "none" and values of "0" will be displayed for all registers. Different **ADDRESS** values can be entered as required in any of the register positions.

These settings can also be used with the DNP protocol. See the DNP Analog Input Points section in Appendix E for details.

5.2.6 REAL TIME CLOCK

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ↓ REAL TIME CLOCK


The date and time for the relay clock can be synchronized to other relays using an IRIG-B signal. It has the same accuracy as an electronic watch, approximately ±1 minute per month. An IRIG-B signal may be connected to the relay to synchronize the clock to a known time base and to other relays. If an IRIG-B signal is used, only the current year needs to be entered. See also the COMMANDS $\Rightarrow \emptyset$ SET DATE AND TIME menu for manually setting the relay clock.

The REAL TIME CLOCK EVENTS setting allows changes to the date and/or time to be captured in the event record.

5.2.7 OSCILLOGRAPHY

a) MAIN MENU

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ □ OSCILLOGRAPHY

Oscillography records contain waveforms captured at the sampling rate as well as other relay data at the point of trigger. Oscillography records are triggered by a programmable FlexLogic™ operand. Multiple oscillography records may be captured simultaneously.

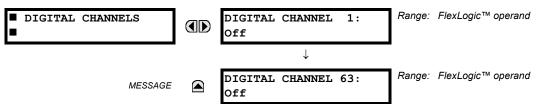
The **NUMBER OF RECORDS** is selectable, but the number of cycles captured in a single record varies considerably based on other factors such as sample rate and the number of operational CT/VT modules. There is a fixed amount of data storage for oscillography; the more data captured, the less the number of cycles captured per record. See the **ACTUAL VALUES** $\Rightarrow \emptyset$ **RECORDS** $\Rightarrow \emptyset$ **OSCILLOGRAPHY** menu to view the number of cycles captured per record. The following table provides sample configurations with corresponding cycles/record.

Table 5-1: OSCILLOGRAPHY CYCLES/RECORD EXAMPLE

# RECORDS	# CT/VTS	SAMPLE RATE	# DIGITALS	# ANALOGS	CYCLES/ RECORD
1	1	8	0	0	1872.0
1	1	16	16	0	1685.0
8	1	16	16	0	276.0
8	1	16	16	4	219.5
8	2	16	16	4	93.5
8	2	16	64	16	93.5
8	2	32	64	16	57.6
8	2	64	64	16	32.3
32	2	64	64	16	9.5

A new record may automatically overwrite an older record if TRIGGER MODE is set to "Automatic Overwrite".

Set the **TRIGGER POSITION** to a percentage of the total buffer size (e.g. 10%, 50%, 75%, etc.). A trigger position of 25% consists of 25% pre- and 75% post-trigger data. The **TRIGGER SOURCE** is always captured in oscillography and may be any FlexLogic™ parameter (element state, contact input, virtual output, etc.). The relay sampling rate is 64 samples per cycle.


The **AC INPUT WAVEFORMS** setting determines the sampling rate at which AC input signals (i.e. current and voltage) are stored. Reducing the sampling rate allows longer records to be stored. This setting has no effect on the internal sampling rate of the relay which is always 64 samples per cycle, i.e. it has no effect on the fundamental calculations of the device.

When changes are made to the oscillography settings, all existing oscillography records will be CLEARED.

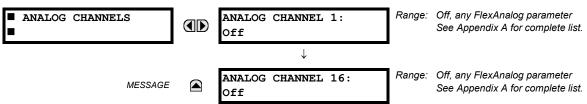
b) DIGITAL CHANNELS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ OSCILLOGRAPHY $\Rightarrow \emptyset$ DIGITAL CHANNELS

A **DIGITAL CHANNEL** setting selects the FlexLogic[™] operand state recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to "Off" are ignored. Upon startup, the relay will automatically prepare the parameter list.

c) ANALOG CHANNELS

PATH: SETTINGS


PRODUCT SETUP

U

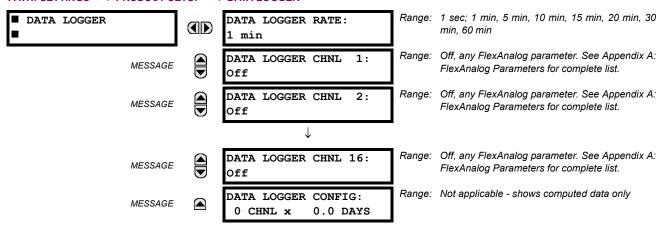
OSCILLOGRAPHY

U

ANALOG CHANNELS

An **ANALOG CHANNEL** setting selects the metering actual value recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to "Off" are ignored. The parameters available in a given relay are dependent on: (a) the type of relay, (b) the type and number of CT/VT hardware modules installed, and (c) the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is presented in Appendix A: *FlexAnalog Parameters*. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.

5.2 PRODUCT SETUP 5 SETTINGS


All eight CT/VT module channels are stored in the oscillography file. The CT/VT module channels are named as follows:

<slot letter><terminal_number>—<I or V><phase A, B, or C, or 4th input>

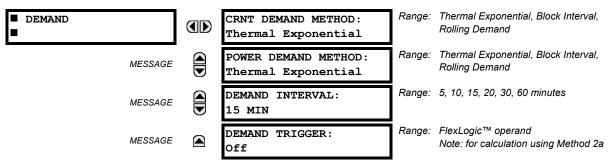
The fourth current input in a bank is called IG, and the fourth voltage input in a bank is called VX. For example, F2-IB designates the IB signal on Terminal 2 of the CT/VT module in slot F. If there are no CT/VT modules and Analog Input modules, no analog traces will appear in the file; only the digital traces will appear.

5.2.8 DATA LOGGER

PATH: SETTINGS ⇒ \$\PRODUCT SETUP ⇒ \$\Data Logger

The data logger samples and records up to 16 analog parameters at a user-defined sampling rate. This recorded data may be downloaded to the enerVista UR Setup software and displayed with 'parameters' on the vertical axis and 'time' on the horizontal axis. All data is stored in non-volatile memory, meaning that the information is retained when power to the relay is lost.

For a fixed sampling rate, the data logger can be configured with a few channels over a long period or a larger number of channels for a shorter period. The relay automatically partitions the available memory between the channels in use.


Changing any setting affecting Data Logger operation will clear any data that is currently in the log.

- DATA LOGGER RATE: This setting selects the time interval at which the actual value data will be recorded.
- DATA LOGGER CHNL 1(16): This setting selects the metering actual value that is to be recorded in Channel 1(16) of the data log. The parameters available in a given relay are dependent on: the type of relay, the type and number of CT/VT hardware modules installed, and the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is shown in Appendix A: FlexAnalog Parameters. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display entering this number via the relay keypad will cause the corresponding parameter to be displayed.
- **DATA LOGGER CONFIG:** This display presents the total amount of time the Data Logger can record the channels not selected to "Off" without over-writing old data.

5.2.9 DEMAND

5.2 PRODUCT SETUP

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ DEMAND

The relay measures current demand on each phase, and three-phase demand for real, reactive, and apparent power. Current and Power methods can be chosen separately for the convenience of the user. Settings are provided to allow the user to emulate some common electrical utility demand measuring techniques, for statistical or control purposes. If the CRNT DEMAND METHOD is set to "Block Interval" and the DEMAND TRIGGER is set to "Off", Method 2 is used (see below). If **DEMAND TRIGGER** is assigned to any other FlexLogic[™] operand, Method 2a is used (see below).

The relay can be set to calculate demand by any of three methods as described below:

CALCULATION METHOD 1: THERMAL EXPONENTIAL

This method emulates the action of an analog peak recording thermal demand meter. The relay measures the quantity (RMS current, real power, reactive power, or apparent power) on each phase every second, and assumes the circuit quantity remains at this value until updated by the next measurement. It calculates the 'thermal demand equivalent' based on the following equation:

$$d(t) = D(1 - e^{-kt})$$
 (EQ 5.4)

where: d = demand value after applying input quantity for time <math>t (in minutes)

D = input quantity (constant), and k = 2.3 / thermal 90% response time.

The 90% thermal response time characteristic of 15 minutes is illustrated below. A setpoint establishes the time to reach 90% of a steady-state value, just as the response time of an analog instrument. A steady state value applied for twice the response time will indicate 99% of the value.

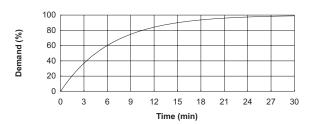


Figure 5-2: THERMAL DEMAND CHARACTERISTIC

CALCULATION METHOD 2: BLOCK INTERVAL

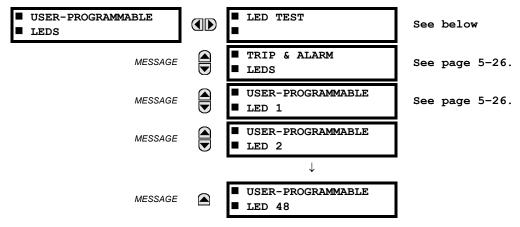
This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the programmed demand time interval, starting daily at 00:00:00 (i.e. 12:00 am). The 1440 minutes per day is divided into the number of blocks as set by the programmed time interval. Each new value of demand becomes available at the end of each time interval.

CALCULATION METHOD 2a: BLOCK INTERVAL (with Start Demand Interval Logic Trigger)

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the interval between successive Start Demand Interval logic input pulses. Each new value of demand becomes available at the end of each pulse. Assign a FlexLogic™ operand to the DEMAND TRIGGER setting to program the input for the new demand interval pulses.

5.2 PRODUCT SETUP 5 SETTINGS

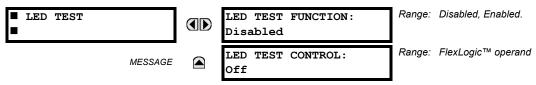
If no trigger is assigned in the **DEMAND TRIGGER** setting and the **CRNT DEMAND METHOD** is "Block Interval", use calculating method #2. If a trigger is assigned, the maximum allowed time between 2 trigger signals is 60 minutes. If no trigger signal appears within 60 minutes, demand calculations are performed and available and the algorithm resets and starts the new cycle of calculations. The minimum required time for trigger contact closure is $20 \, \mu s$.


CALCULATION METHOD 3: ROLLING DEMAND

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the programmed demand time interval, in the same way as Block Interval. The value is updated every minute and indicates the demand over the time interval just preceding the time of update.

5.2.10 USER-PROGRAMMABLE LEDS

a) MAIN MENU


PATH: SETTINGS PRODUCT SETUP USER-PROGRAMMABLE LEDS

The 48 amber LEDs on relay panels 2 and 3 can be customized to illuminate when a selected FlexLogic™ operand is in the Logic 1 state. The trip and alarm LEDs on panel 1 can also be customized in a similar manner. To ensure correct functionality of all LEDs, an LED Test feature is also provided.

b) LED TEST

PATH: SETTINGS PRODUCT SETUP USER-PROGRAMMABLE LEDS LED TEST

When enabled, the LED Test can be initiated from any digital input or user-programmable condition such as user-programmable pushbutton. The control operand is configured under the **LED TEST CONTROL** setting. The test covers all LEDs, including the LEDs of the optional user-programmable pushbuttons.

The test consists of three stages.

Stage 1: All 62 LEDs on the relay are illuminated. This is a quick test to verify if any of the LEDs is "burned". This stage lasts as long as the control input is on, up to a maximum of 1 minute. After 1 minute, the test will end.

Stage 2: All the LEDs are turned off, and then one LED at a time turns on for 1 second, then back off. The test routine starts at the top left panel, moving from the top to bottom of each LED column. This test checks for hardware failures that lead to more than one LED being turned on from a single logic point. This stage can be interrupted at any time.

Stage 3: All the LEDs are turned on. One LED at a time turns off for 1 second, then back on. The test routine starts at the top left panel moving from top to bottom of each column of the LEDs. This test checks for hardware failures that lead to more than one LED being turned off from a single logic point. This stage can be interrupted at any time.

When testing is in progress, the LEDs are controlled by the test sequence, rather than the protection, control, and monitoring features. However, the LED control mechanism accepts all the changes to LED states generated by the relay and stores the actual LED states (On or Off) in memory. When the test completes, the LEDs reflect the actual state resulting from relay response during testing. The Reset pushbutton will not clear any targets when the LED Test is in progress.

A dedicated FlexLogic™ operand, LED TEST IN PROGRESS, is set for the duration of the test. When the test sequence is initiated, the LED Test Initiated event is stored in the Event Recorder.

The entire test procedure is user-controlled. In particular, Stage 1 can last as long as necessary, and Stages 2 and 3 can be interrupted. The test responds to the position and rising edges of the control input defined by the **LED TEST CONTROL** setting. The control pulses must last at least 250 ms to take effect. The following diagram explains how the test is executed.

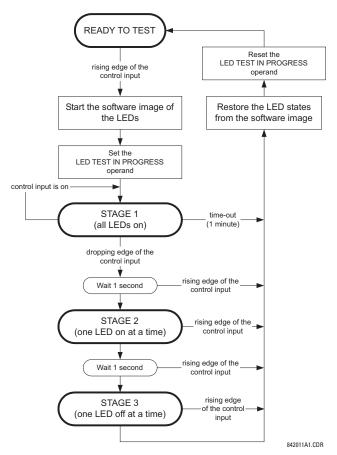


Figure 5-3: LED TEST SEQUENCE

APPLICATION EXAMPLE 1:

Assume one needs to check if any of the LEDs is "burned" through User-Programmable Pushbutton 1. The following settings should be applied. Configure User-Programmable Pushbutton 1 by making the following entries in the SETTINGS

PRODUCT SETUP

USER-PROGRAMMABLE PUSHBUTTONS
USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.10 s"

Configure the LED test to recognize User-Programmable Pushbutton 1 by making the following entries in the SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE LEDS ⇒ LED TEST menu:

LED TEST FUNCTION: "Enabled"

LED TEST CONTROL: "PUSHBUTTON 1 ON"

The test will be initiated when the User-Programmable Pushbutton 1 is pressed. The pushbutton should remain pressed for as long as the LEDs are being visually inspected. When finished, the pushbutton should be released. The relay will then automatically start Stage 2. At this point forward, test may be aborted by pressing the pushbutton.

5.2 PRODUCT SETUP 5 SETTINGS

APPLICATION EXAMPLE 2:

Assume one needs to check if any LEDs are "burned" as well as exercise one LED at a time to check for other failures. This is to be performed via User-Programmable Pushbutton 1.

After applying the settings in Application Example 1, hold down the pushbutton as long as necessary to test all LEDs. Next, release the pushbutton to automatically start Stage 2. Once Stage 2 has started, the pushbutton can be released. When Stage 2 is completed, Stage 3 will automatically start. The test may be aborted at any time by pressing the pushbutton.

c) TRIP AND ALARM LEDS

PATH: SETTINGS

PRODUCT SETUP

USER-PROGRAMMABLE LEDS

TRIP & ALARM LEDS

LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

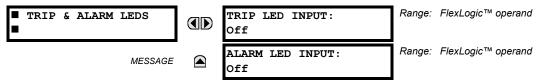
REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

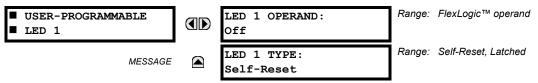
REPROGRAMMABLE LEDS


REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS

REPROGRAMMABLE LEDS


RE

The Trip and Alarm LEDs are on LED Panel 1. Each indicator can be programmed to become illuminated when the selected FlexLogic™ operand is in the Logic 1 state.

d) USER-PROGRAMMABLE LED 1(48)

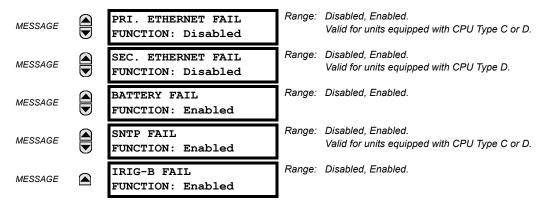
PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ⇩ USER-PROGRAMMABLE LEDS ⇒ ⇩ USER-PROGRAMMABLE LED 1(48)

There are 48 amber LEDs across the relay faceplate LED panels. Each of these indicators can be programmed to illuminate when the selected FlexLogic™ operand is in the Logic 1 state.

LEDs 1 through 24 inclusive are on LED Panel 2; LEDs 25 through 48 inclusive are on LED Panel 3.

Refer to the LED Indicators section in Chapter 4 for the locations of these indexed LEDs. This menu selects the operands to control these LEDs. Support for applying user-customized labels to these LEDs is provided. If the **LED X TYPE** setting is "Self-Reset" (default setting), the LED illumination will track the state of the selected LED operand. If the **LED X TYPE** setting is 'Latched', the LED, once lit, remains so until reset by the faceplate RESET button, from a remote device via a communications channel, or from any programmed operand, even if the LED operand state de-asserts.

Table 5-2: RECOMMENDED SETTINGS FOR LED PANEL 2 LABELS

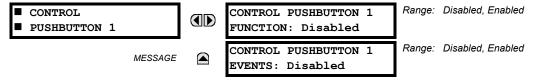

SETTING	PARAMETER
LED 1 Operand	SETTING GROUP ACT 1
LED 2 Operand	SETTING GROUP ACT 2
LED 3 Operand	SETTING GROUP ACT 3
LED 4 Operand	SETTING GROUP ACT 4
LED 5 Operand	SETTING GROUP ACT 5
LED 6 Operand	SETTING GROUP ACT 6
LED 7 Operand	Off
LED 8 Operand	Off
LED 9 Operand	BREAKER 1 OPEN
LED 10 Operand	BREAKER 1 CLOSED
LED 11 Operand	BREAKER 1 TROUBLE
LED 12 Operand	Off

SETTING	PARAMETER
LED 13 Operand	Off
LED 14 Operand	BREAKER 2 OPEN
LED 15 Operand	BREAKER 2 CLOSED
LED 16 Operand	BREAKER 2 TROUBLE
LED 17 Operand	SYNC 1 SYNC OP
LED 18 Operand	SYNC 2 SYNC OP
LED 19 Operand	Off
LED 20 Operand	Off
LED 21 Operand	Off
LED 22 Operand	Off
LED 23 Operand	Off
LED 24 Operand	Off

Refer to the Control of Setting Groups example in the Control Elements section of this chapter for group activation.

5.2.11 USER-PROGRAMMABLE SELF TESTS

PATH: SETTINGS PRODUCT SETUP USER-PROGRAMMABLE SELF TESTS USER-PROGRAMMABLE SELF TESTS



All major self-test alarms are reported automatically with their corresponding FlexLogic™ operands, events, and targets. Most of the Minor Alarms can be disabled if desired.

When in the "Disabled" mode, minor alarms will not assert a FlexLogic™ operand, write to the event recorder, display target messages. Moreover, they will not trigger the **ANY MINOR ALARM** or **ANY SELF-TEST** messages. When in the "Enabled" mode, minor alarms continue to function along with other major and minor alarms. Refer to the Relay Self-Tests section in Chapter 7 for additional information on major and minor self-test alarms.

5.2.12 CONTROL PUSHBUTTONS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ CONTROL PUSHBUTTONS \Rightarrow CONTROL PUSHBUTTON 1(7)

The three standard pushbuttons located on the top left panel of the faceplate are user-programmable and can be used for various applications such as performing an LED test, switching setting groups, and invoking and scrolling though user-programmable displays, etc. Firmware revisions 3.2x and older use these three pushbuttons for manual breaker control. This functionality has been retained – if the Breaker Control feature is configured to use the three pushbuttons, they cannot be used as user-programmable control pushbuttons. The location of the control pushbuttons in the following figure.

An additional four control pushbuttons are included when the N60 is ordered with twelve user programmable pushbuttons.

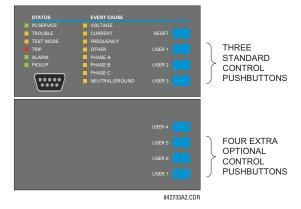


Figure 5-4: CONTROL PUSHBUTTONS

5.2 PRODUCT SETUP 5 SETTINGS

The control pushbuttons are typically not used for critical operations. As such, they are not protected by the control password. However, by supervising their output operands, the user can dynamically enable or disable the control pushbuttons for security reasons.

Each control pushbutton asserts its own FlexLogic[™] operand, CONTROL PUSHBTN 1(7) ON. These operands should be configured appropriately to perform the desired function. The operand remains asserted as long as the pushbutton is pressed and resets when the pushbutton is released. A dropout delay of 100 ms is incorporated to ensure fast pushbutton manipulation will be recognized by various features that may use control pushbuttons as inputs.

An event is logged in the Event Record (as per user setting) when a control pushbutton is pressed; no event is logged when the pushbutton is released. The faceplate keys (including control keys) cannot be operated simultaneously – a given key must be released before the next one can be pressed.

The control pushbuttons become user-programmable only if the Breaker Control feature is not configured for manual control via the User 1 through User 7 pushbuttons as shown below. If configured for manual control, the Breaker Control feature typically uses the larger, optional user-programmable pushbuttons, making the control pushbuttons available for other user applications.

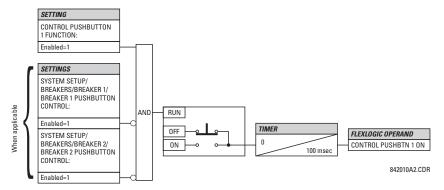
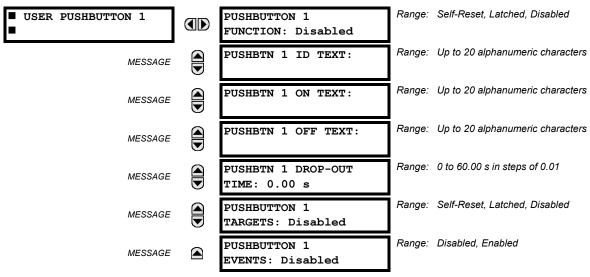



Figure 5-5: CONTROL PUSHBUTTON LOGIC

5.2.13 USER-PROGRAMMABLE PUSHBUTTONS

PATH: SETTINGS PRODUCT SETUP USER-PROGRAMMABLE PUSHBUTTONS USER PUSHBUTTON 1(12)

The N60 has 12 optional user-programmable pushbuttons available, each configured via 12 identical menus. The pushbuttons provide an easy and error-free method of manually entering digital information (On, Off) into FlexLogic™ equations as well as protection and control elements. Typical applications include breaker control, autorecloser blocking, ground protection blocking, and setting groups changes.

5 SETTINGS 5.2 PRODUCT SETUP

The user-configurable pushbuttons are shown below. They can be custom labeled with a factory-provided template, available online at http://www.GEindustrial.com/multilin.

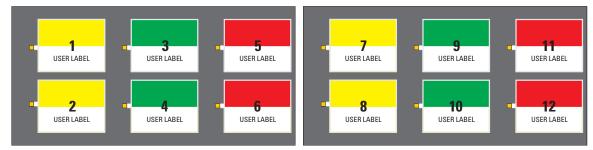


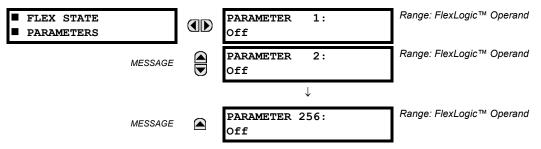
Figure 5-6: USER-PROGRAMMABLE PUSHBUTTONS

Each pushbutton asserts its own On and Off FlexLogic™ operands, respectively. FlexLogic™ operands should be used to program desired pushbutton actions. The operand names are PUSHBUTTON 1 ON and PUSHBUTTON 1 OFF.

A pushbutton may be programmed to latch or self-reset. An indicating LED next to each pushbutton signals the present status of the corresponding "On" FlexLogic™ operand. When set to "Latched", the state of each pushbutton is stored in non-volatile memory which is maintained during any supply power loss.

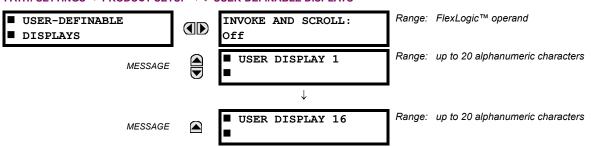
Pushbuttons states can be logged by the Event Recorder and displayed as target messages. User-defined messages can also be associated with each pushbutton and displayed when the pushbutton is ON.

- **PUSHBUTTON 1 FUNCTION:** This setting selects the characteristic of the pushbutton. If set to "Disabled", the pushbutton is deactivated and the corresponding FlexLogic™ operands (both "On" and "Off") are de-asserted. If set to "Self-reset", the control logic of the pushbutton asserts the "On" corresponding FlexLogic™ operand as long as the pushbutton is being pressed. As soon as the pushbutton is released, the FlexLogic™ operand is de-asserted. The "Off" operand is asserted/de-asserted accordingly.
 - If set to "Latched", the control logic alternates the state of the corresponding FlexLogic™ operand between "On" and "Off" on each push of the button. When operating in "Latched" mode, FlexLogic™ operand states are stored in non-volatile memory. Should power be lost, the correct pushbutton state is retained upon subsequent power up of the relay.
- **PUSHBTN 1 ID TEXT:** This setting specifies the top 20-character line of the user-programmable message and is intended to provide ID information of the pushbutton. Refer to the User-Definable Displays section for instructions on how to enter alphanumeric characters from the keypad.
- **PUSHBTN 1 ON TEXT:** This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is in the "on" position. Refer to the User-Definable Displays section for instructions on entering alphanumeric characters from the keypad.
- PUSHBTN 1 OFF TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is activated from the On to the Off position and the PUSHBUTTON 1 FUNCTION is "Latched". This message is not displayed when the PUSHBUTTON 1 FUNCTION is "Self-reset" as the pushbutton operand status is implied to be "Off" upon its release. All user text messaging durations for the pushbuttons are configured with the PRODUCT SETUP ⇒ DISPLAY PROPERTIES ⇒ FLASH MESSAGE TIME setting.
- **PUSHBTN 1 DROP-OUT TIME:** This setting specifies a drop-out time delay for a pushbutton in the self-reset mode. A typical applications for this setting is providing a select-before-operate functionality. The selecting pushbutton should have the drop-out time set to a desired value. The operating pushbutton should be logically ANDed with the selecting pushbutton in FlexLogic[™]. The selecting pushbutton LED remains on for the duration of the drop-out time, signaling the time window for the intended operation.


For example, consider a relay with the following settings: **PUSHBTN 1 ID TEXT**: "AUTORECLOSER", **PUSHBTN 1 ON TEXT**: "DISABLED - CALL 2199", and **PUSHBTN 1 OFF TEXT**: "ENABLED". When Pushbutton 1 changes its state to the "On" position, the following **AUTOCLOSER DISABLED - Call 2199** message is displayed: When Pushbutton 1 changes its state to the "Off" position, the message will change to **AUTORECLOSER ENABLED**.

User-programmable pushbuttons require a type HP relay faceplate. If an HP-type faceplate was ordered separately, the relay order code must be changed to indicate the HP faceplate option. This can be done via enerVista UR Setup with the **Maintenance > Enable Pushbutton** command.

5.2.14 FLEX STATE PARAMETERS


This feature provides a mechanism where any of 256 selected FlexLogic[™] operand states can be used for efficient monitoring. The feature allows user-customized access to the FlexLogic[™] operand states in the relay. The state bits are packed so that 16 states may be read out in a single Modbus register. The state bits can be configured so that all of the states which are of interest to the user are available in a minimum number of Modbus registers.

The state bits may be read out in the "Flex States" register array beginning at Modbus address 900 hex. 16 states are packed into each register, with the lowest-numbered state in the lowest-order bit. There are 16 registers in total to accommodate the 256 state bits.

5.2.15 USER-DEFINABLE DISPLAYS

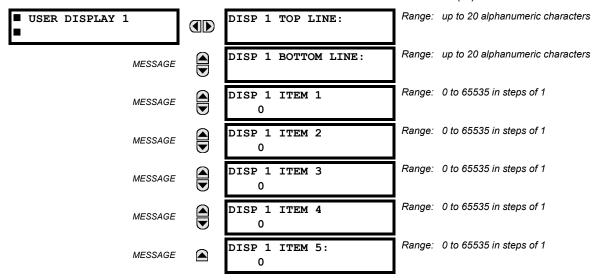
a) MAIN MENU

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial \text{ USER-DEFINABLE DISPLAYS}

This menu provides a mechanism for manually creating up to 16 user-defined information displays in a convenient viewing sequence in the **USER DISPLAYS** menu (between the **TARGETS** and **ACTUAL VALUES** top-level menus). The sub-menus facilitate text entry and Modbus Register data pointer options for defining the User Display content.

Once programmed, the user-definable displays can be viewed in two ways.

- **KEYPAD**: Use the Menu key to select the **USER DISPLAYS** menu item to access the first user-definable display (note that only the programmed screens are displayed). The screens can be scrolled using the Up and Down keys. The display disappears after the default message time-out period specified by the **PRODUCT SETUP** ⇒ **UISPLAY PROPERTIES** ⇒ **UPFAULT MESSAGE TIMEOUT** setting.
- USER-PROGRAMMABLE CONTROL INPUT: The user-definable displays also respond to the INVOKE AND SCROLL setting. Any FlexLogic™ operand (in particular, the user-programmable pushbutton operands), can be used to navigate the programmed displays.


On the rising edge of the configured operand (such as when the pushbutton is pressed), the displays are invoked by showing the last user-definable display shown during the previous activity. From this moment onward, the operand acts exactly as the Down key and allows scrolling through the configured displays. The last display wraps up to the first one. The INVOKE AND SCROLL input and the Down keypad key operate concurrently.

When the default timer expires (set by the **DEFAULT MESSAGE TIMEOUT** setting), the relay will start to cycle through the user displays. The next activity of the **INVOKE AND SCROLL** input stops the cycling at the currently displayed user display, not at the first user-defined display. The **INVOKE AND SCROLL** pulses must last for at least 250 ms to take effect.

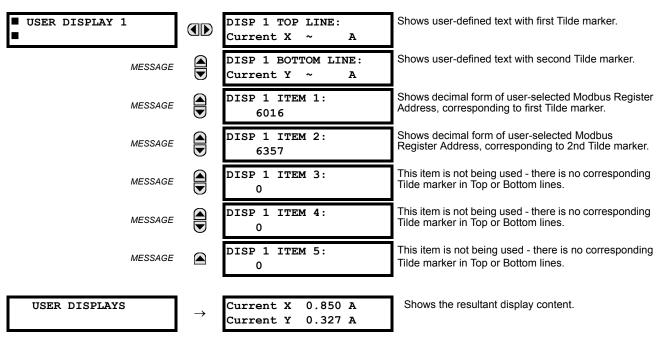
5 SETTINGS 5.2 PRODUCT SETUP

b) USER DISPLAY 1(16)

PATH: SETTINGS PRODUCT SETUP USER-DEFINABLE DISPLAYS USER DISPLAY 1(16)

Any existing system display can be automatically copied into an available user display by selecting the existing display and pressing the ENTER key. The display will then prompt **ADD TO USER DISPLAY LIST?**. After selecting "Yes", a message indicates that the selected display has been added to the user display list. When this type of entry occurs, the sub-menus are automatically configured with the proper content – this content may subsequently be edited.

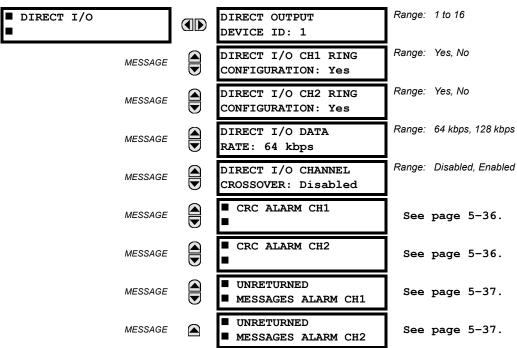
This menu is used **to enter** user-defined text and/or user-selected Modbus-registered data fields into the particular user display. Each user display consists of two 20-character lines (top and bottom). The tilde (\sim) character is used to mark the start of a data field - the length of the data field needs to be accounted for. Up to 5 separate data fields (ITEM 1(5)) can be entered in a user display - the *n*th tilde (\sim) refers to the *n*th item.


A User Display may be entered from the faceplate keypad or the enerVista UR Setup interface (preferred for convenience). The following procedure shows how to enter text characters in the top and bottom lines from the faceplate keypad:

- 1. Select the line to be edited.
- 2. Press the key to enter text edit mode.
- 3. Use either Value key to scroll through the characters. A space is selected like a character.
- 4. Press the key to advance the cursor to the next position.
- 5. Repeat step 3 and continue entering characters until the desired text is displayed.
- 6. The HELP key may be pressed at any time for context sensitive help information.
- 7. Press the **ENTER** key to store the new settings.

To enter a numerical value for any of the 5 items (the *decimal form* of the selected Modbus address) from the faceplate keypad, use the number keypad. Use the value of '0' for any items not being used. Use the help key at any selected system display (setting, actual value, or command) which has a Modbus address, to view the *hexadecimal form* of the Modbus address, then manually convert it to decimal form before entering it (enerVista UR Setup usage conveniently facilitates this conversion).

Use the MENU key to go to the user displays menu **to view** the user-defined content. The current user displays will show in sequence, changing every 4 seconds. While viewing a user display, press the ENTER key and then select the "Yes" option **to remove** the display from the user display list. Use the MENU key again **to exit** the user displays menu.


An example User Display setup and result is shown below:

5.2.16 DIRECT INPUTS/OUTPUTS

a) MAIN MENU

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\partial\$ DIRECT I/O

Direct inputs/outputs are intended for exchange of status information (inputs and outputs) between UR-series relays connected directly via Type-7 digital communications cards. The mechanism is very similar to IEC 61850 GSSE, except that communications takes place over a non-switchable isolated network and is optimized for speed. On Type 7 cards that support two channels, direct output messages are sent from both channels simultaneously. This effectively sends direct output

5 SETTINGS 5.2 PRODUCT SETUP

messages both ways around a ring configuration. On Type 7 cards that support one channel, direct output messages are sent only in one direction. Messages will be resent (forwarded) when it is determined that the message did not originate at the receiver.

Direct output message timing is similar to GSSE message timing. Integrity messages (with no state changes) are sent at least every 1000 ms. Messages with state changes are sent within the main pass scanning the inputs and asserting the outputs unless the communication channel bandwidth has been exceeded. Two Self-Tests are performed and signaled by the following FlexLogic™ operands:

- DIRECT RING BREAK (direct input/output ring break). This FlexLogic[™] operand indicates that direct output messages sent from a UR-series relay are not being received back by the relay.
- 2. DIRECT DEVICE 1(16) OFF (direct device offline). This FlexLogic™ operand indicates that direct output messages from at least one direct device are not being received.

Direct input/output settings are similar to remote input/output settings. The equivalent of the remote device name strings for direct inputs/outputs is the **DIRECT OUTPUT DEVICE ID**. The **DIRECT OUTPUT DEVICE ID** identifies the relay in all direct output messages. All UR-series IEDs in a ring should have unique numbers assigned. The IED ID is used to identify the sender of the direct input/output message.

If the direct input/output scheme is configured to operate in a ring (**DIRECT I/O RING CONFIGURATION**: "Yes"), all direct output messages should be received back. If not, the Direct Input/Output Ring Break self-test is triggered. The self-test error is signaled by the DIRECT RING BREAK FlexLogic™ operand.

Select the **DIRECT I/O DATA RATE** to match the data capabilities of the communications channel. Back-to-back connections of the local relays configured with the 7A, 7B, 7C, 7D, 7H, 7I, 7J, 7K, 72 and 73 fiber optic communication cards may be set to 128 kbps. For local relays configured with all other communication cards (i.e. 7E, 7F, 7G, 7L, 7M, 7N, 7P, 7R, 7S, 7T, 7W, 74, 75, 76 and 77), the baud rate will be set to 64 kbps. All IEDs communicating over direct inputs/outputs must be set to the same data rate. UR-series IEDs equipped with dual-channel communications cards apply the same data rate to both channels. Delivery time for direct input/output messages is approximately 0.2 of a power system cycle at 128 kbps and 0.4 of a power system cycle at 64 kbps, per each 'bridge'.

The G.703 and RS422 modules are fixed at 64 kbps only. The SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ DIRECT I/O DATA RATE setting is not applicable to these modules.

The **DIRECT I/O CHANNEL CROSSOVER** setting applies to N60s with dual-channel communication cards and allows crossing over messages from Channel 1 to Channel 2. This places all UR-series IEDs into one direct input/output network regardless of the physical media of the two communication channels.

The following application examples illustrate the basic concepts for direct input/output configuration. Please refer to the *Inputs/Outputs* section in this chapter for information on configuring FlexLogic™ operands (flags, bits) to be exchanged.

EXAMPLE 1: EXTENDING THE INPUT/OUTPUT CAPABILITIES OF A UR-SERIES RELAY

Consider an application that requires additional quantities of digital inputs and/or output contacts and/or lines of program-mable logic that exceed the capabilities of a single UR-series chassis. The problem is solved by adding an extra UR-series IED, such as the C30, to satisfy the additional input/output and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown in the figure below.

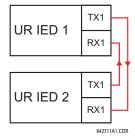


Figure 5-7: INPUT/OUTPUT EXTENSION VIA DIRECT I/OS

In the above application, the following settings should be applied:

5.2 PRODUCT SETUP 5 SETTINGS

UR IED 1: DIRECT OUTPUT DEVICE ID: "1"

DIRECT I/O RING CONFIGURATION: "Yes" DIRECT I/O DATA RATE: "128 kbps"

UR IED 2: DIRECT OUTPUT DEVICE ID: "2"

DIRECT I/O RING CONFIGURATION: "Yes" DIRECT I/O DATA RATE: "128 kbps"

The message delivery time is about 0.2 of power cycle in both ways (at 128 kbps); i.e., from Device 1 to Device 2, and from Device 2 to Device 1. Different communications cards can be selected by the user for this back-to-back connection (fiber, G.703, or RS422).

EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION

A simple interlocking busbar protection scheme could be accomplished by sending a blocking signal from downstream devices, say 2, 3, and 4, to the upstream device that monitors a single incomer of the busbar, as shown below.

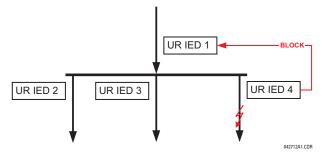


Figure 5-8: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME

For increased reliability, a dual-ring configuration (shown below) is recommended for this application.

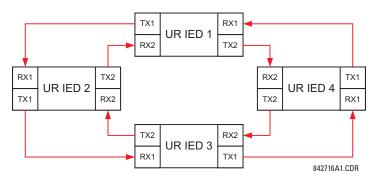


Figure 5-9: INTERLOCKING BUS PROTECTION SCHEME VIA DIRECT I/OS

In the above application, the following settings should be applied:

UR IED 1: DIRECT OUTPUT DEVICE ID: "1" UR IED 2: DIRECT OUTPUT DEVICE ID: "2"

DIRECT I/O RING CONFIGURATION: "Yes"

DIRECT I/O RING CONFIGURATION: "Yes"

UR IED 3: DIRECT OUTPUT DEVICE ID: "3" UR IED 4: DIRECT OUTPUT DEVICE ID: "4"

DIRECT I/O RING CONFIGURATION: "Yes"

DIRECT I/O RING CONFIGURATION: "Yes"

Message delivery time is approximately 0.2 of power system cycle (at 128 kbps) times number of 'bridges' between the origin and destination. Dual-ring configuration effectively reduces the maximum 'communications distance' by a factor of two.

In this configuration the following delivery times are expected (at 128 kbps) if both rings are healthy:

IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle; IED 1 to IED 4: 0.2 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle; IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED 4: 0.2 of power system cycle

If one ring is broken (say TX2/RX2) the delivery times are as follows:

5 SETTINGS 5.2 PRODUCT SETUP

```
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle; IED 1 to IED 4: 0.6 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle; IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED 4: 0.2 of power system cycle
```

A coordinating timer for this bus protection scheme could be selected to cover the worst case scenario (0.4 of power system cycle). Upon detecting a broken ring, the coordination time should be adaptively increased to 0.6 of power system cycle. The complete application requires addressing a number of issues such as failure of both the communications rings, failure or out-of-service conditions of one of the relays, etc. Self-monitoring flags of the direct inputs/outputs feature would be primarily used to address these concerns.

EXAMPLE 3: PILOT-AIDED SCHEMES

Consider the three-terminal line protection application shown below:

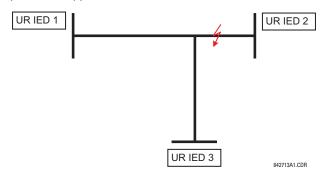


Figure 5-10: THREE-TERMINAL LINE APPLICATION

A permissive pilot-aided scheme could be implemented in a two-ring configuration as shown below (IEDs 1 and 2 constitute a first ring, while IEDs 2 and 3 constitute a second ring):

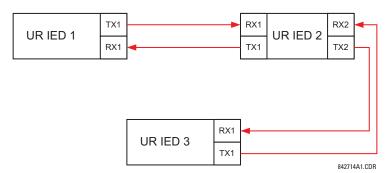


Figure 5-11: SINGLE-CHANNEL OPEN LOOP CONFIGURATION

In the above application, the following settings should be applied:

UR IED 1: DIRECT OUTPUT DEVICE ID: "1" UR IED 2: DIRECT OUTPUT DEVICE ID: "2"

DIRECT I/O RING CONFIGURATION: "Yes"

DIRECT I/O RING CONFIGURATION: "Yes"

UR IED 3: DIRECT OUTPUT DEVICE ID: "3"

DIRECT I/O RING CONFIGURATION: "Yes"

In this configuration the following delivery times are expected (at 128 kbps):

IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.5 of power system cycle;

IED 2 to IED 3: 0.2 of power system cycle

In the above scheme, IEDs 1 and 3 do not communicate directly. IED 2 must be configured to forward the messages as explained in the *Inputs/Outputs* section. A blocking pilot-aided scheme should be implemented with more security and, ideally, faster message delivery time. This could be accomplished using a dual-ring configuration as shown below.

5.2 PRODUCT SETUP 5 SETTINGS

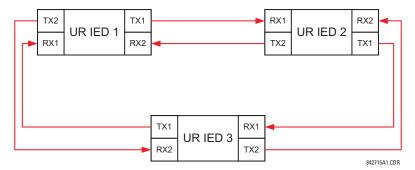


Figure 5-12: DUAL-CHANNEL CLOSED LOOP (DUAL-RING) CONFIGURATION

In the above application, the following settings should be applied:

UR IED 1: DIRECT OUTPUT DEVICE ID: "1" UR IED 2: DIRECT OUTPUT DEVICE ID: "2"

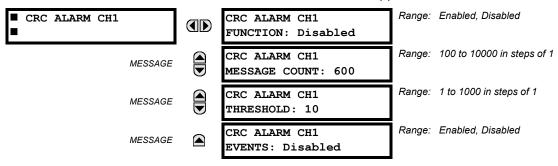
DIRECT I/O RING CONFIGURATION: "Yes"

DIRECT I/O RING CONFIGURATION: "Yes"

UR IED 3: DIRECT OUTPUT DEVICE ID: "3"

DIRECT I/O RING CONFIGURATION: "Yes"

In this configuration the following delivery times are expected (at 128 kbps) if both the rings are healthy:


IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.2 of power system cycle;

IED 2 to IED 3: 0.2 of power system cycle

The two communications configurations could be applied to both permissive and blocking schemes. Speed, reliability and cost should be taken into account when selecting the required architecture.

b) CRC ALARM CH1(2)

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial\$ DIRECT I/O ⇒ \$\Partial\$ CRC ALARM CH1(2)

The N60 checks integrity of the incoming direct input/output messages using a 32-bit CRC. The CRC Alarm function is available for monitoring the communication medium noise by tracking the rate of messages failing the CRC check. The monitoring function counts all incoming messages, including messages that failed the CRC check. A separate counter adds up messages that failed the CRC check. When the failed CRC counter reaches the user-defined level specified by the CRC ALARM CH1 THRESHOLD setting within the user-defined message count CRC ALARM 1 CH1 COUNT, the DIR IO CH1 CRC ALARM FlexLogic™ operand is set.

When the total message counter reaches the user-defined maximum specified by the CRC ALARM CH1 MESSAGE COUNT setting, both the counters reset and the monitoring process is restarted.

The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions - if required - should be programmed accordingly.

The CRC Alarm function is available on a per-channel basis. The total number of direct input/output messages that failed the CRC check is available as the ACTUAL VALUES

STATUS

Under INPUTS

Under

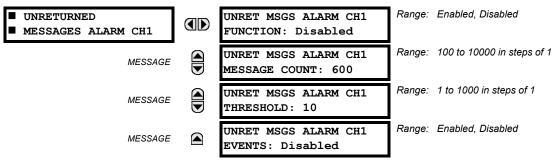
Message Count and Length of the Monitoring Window:

5 SETTINGS 5.2 PRODUCT SETUP

To monitor communications integrity, the relay sends 1 message per second (at 64 kbps) or 2 messages per second (128 kbps) even if there is no change in the direct outputs. For example, setting the **CRC ALARM CH1 MESSAGE COUNT** to "10000", corresponds a time window of about 160 minutes at 64 kbps and 80 minutes at 128 kbps. If the messages are sent faster as a result of direct outputs activity, the monitoring time interval will shorten. This should be taken into account when determining the **CRC ALARM CH1 MESSAGE COUNT** setting. For example, if the requirement is a maximum monitoring time interval of 10 minutes at 64 kbps, then the **CRC ALARM CH1 MESSAGE COUNT** should be set to $10 \times 60 \times 1 = 600$.

Correlation of Failed CRC and Bit Error Rate (BER):

The CRC check may fail if one or more bits in a packet are corrupted. Therefore, an exact correlation between the CRC fail rate and the BER is not possible. Under certain assumptions an approximation can be made as follows. A direct input/output packet containing 20 bytes results in 160 bits of data being sent and therefore, a transmission of 63 packets is equivalent to 10,000 bits. A BER of 10⁻⁴ implies 1 bit error for every 10,000 bits sent/received. Assuming the best case of only 1 bit error in a failed packet, having 1 failed packet for every 63 received is about equal to a BER of 10⁻⁴.


c) UNRETURNED MESSAGES ALARM CH1(2)

PATH: SETTINGS

PRODUCT SETUP

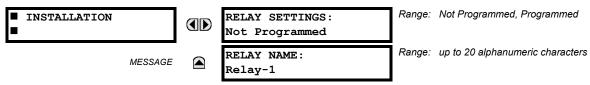
UNRECT I/O

UNRETURNED MESSAGES ALARM CH1(2)

The N60 checks integrity of the direct input/output communication ring by counting unreturned messages. In the ring configuration, all messages originating at a given device should return within a pre-defined period of time. The Unreturned Messages Alarm function is available for monitoring the integrity of the communication ring by tracking the rate of unreturned messages. This function counts all the outgoing messages and a separate counter adds the messages have failed to return. When the unreturned messages counter reaches the user-definable level specified by the UNRET MSGS ALARM CH1 COUNT, the DIR IO CH1 UNRET ALM FlexLogic™ operand is set.

When the total message counter reaches the user-defined maximum specified by the **UNRET MSGS ALARM CH1 MESSAGE COUNT** setting, both the counters reset and the monitoring process is restarted.

The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions, if required, should be programmed accordingly.

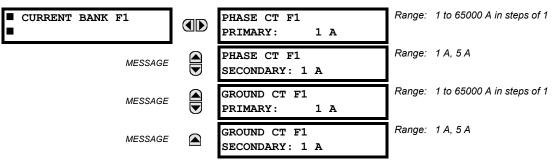

The Unreturned Messages Alarm function is available on a per-channel basis and is active only in the ring configuration. The total number of unreturned input/output messages is available as the ACTUAL VALUES

⇒ STATUS

⇒ UNRETURNED MSG COUNT CH1(2) actual value.

5.2.17 INSTALLATION

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ↓ INSTALLATION



To safeguard against the installation of a relay without any entered settings, the unit will not allow signaling of any output relay until **RELAY SETTINGS** is set to "Programmed". This setting is defaulted to "Not Programmed" when at the factory. The **UNIT NOT PROGRAMMED** self-test error message is displayed until the relay is put into the "Programmed" state.

The **RELAY NAME** setting allows the user to uniquely identify a relay. This name will appear on generated reports. This name is also used to identify specific devices which are engaged in automatically sending/receiving data over the Ethernet communications channel using the IEC 61850 protocol.

5.3.1 AC INPUTS

a) CURRENT BANKS

Six banks of phase/ground CTs can be set, where the current banks are denoted in the following format (X represents the module slot position letter):

$$Xa$$
, where $X = \{F, M, U\}$ and $a = \{1, 5\}$.

See the Introduction to AC Sources section at the beginning of this chapter for additional details.

These settings are critical for all features that have settings dependent on current measurements. When the relay is ordered, the CT module must be specified to include a standard or sensitive ground input. As the phase CTs are connected in Wye (star), the calculated phasor sum of the three phase currents (IA + IB + IC = Neutral Current = 3Io) is used as the input for the neutral overcurrent elements. In addition, a zero-sequence (core balance) CT which senses current in all of the circuit primary conductors, or a CT in a neutral grounding conductor may also be used. For this configuration, the ground CT primary rating must be entered. To detect low level ground fault currents, the sensitive ground input may be used. In this case, the sensitive ground CT primary rating must be entered. Refer to Chapter 3 for more details on CT connections.

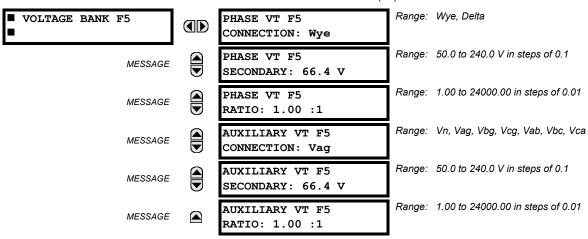
Enter the rated CT primary current values. For both 1000:5 and 1000:1 CTs, the entry would be 1000. For correct operation, the CT secondary rating must match the setting (which must also correspond to the specific CT connections used).

The following example illustrates how multiple CT inputs (current banks) are summed as one source current. Given If the following current banks:

F1: CT bank with 500:1 ratio; F5: CT bank with 1000: ratio; M1: CT bank with 800:1 ratio

The following rule applies:

$$SRC 1 = F1 + F5 + M1$$
 (EQ 5.5)


1 pu is the highest primary current. In this case, 1000 is entered and the secondary current from the 500:1 ratio CT will be adjusted to that created by a 1000:1 CT before summation. If a protection element is set up to act on SRC 1 currents, then a pickup level of 1 pu will operate on 1000 A primary.

The same rule applies for current sums from CTs with different secondary taps (5 A and 1 A).

5.3 SYSTEM SETUP 5 SETTINGS

b) VOLTAGE BANKS

PATH: SETTINGS ⇒ \$\Partial SYSTEM SETUP ⇒ AC INPUTS ⇒ \$\Partial VOLTAGE BANK F5(U5)

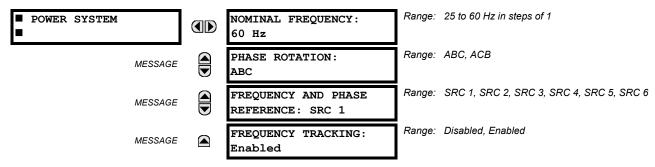
Because energy parameters are accumulated, these values should be recorded and then reset immediately prior to changing VT characteristics.

Three banks of phase/auxiliary VTs can be set, where voltage banks are denoted in the following format (*X* represents the module slot position letter):

Xa, where $X = \{F, M, U\}$ and $a = \{5\}$.

See the Introduction to AC Sources section at the beginning of this chapter for additional details.

With VTs installed, the relay can perform voltage measurements as well as power calculations. Enter the **PHASE VT F5 CONNECTION** made to the system as "Wye" or "Delta". An open-delta source VT connection would be entered as "Delta". See the *Typical Wiring Diagram* in Chapter 3 for details.


The nominal **PHASE VT F5 SECONDARY** voltage setting is the voltage across the relay input terminals when nominal voltage is applied to the VT primary.

For example, on a system with a 13.8 kV nominal primary voltage and with a 14400:120 volt VT in a Delta connection, the secondary voltage would be 115, i.e. $(13800 / 14400) \times 120$. For a Wye connection, the voltage value entered must be the phase to neutral voltage which would be 115 / $\sqrt{3}$ = 66.4.

On a 14.4 kV system with a Delta connection and a VT primary to secondary turns ratio of 14400:120, the voltage value entered would be 120, i.e. 14400 / 120.

5.3.2 POWER SYSTEM

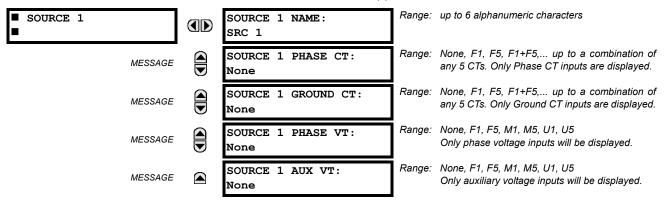
The power system **NOMINAL FREQUENCY** value is used as a default to set the digital sampling rate if the system frequency cannot be measured from available signals. This may happen if the signals are not present or are heavily distorted. Before reverting to the nominal frequency, the frequency tracking algorithm holds the last valid frequency measurement for a safe period of time while waiting for the signals to reappear or for the distortions to decay.

The phase sequence of the power system is required to properly calculate sequence components and power parameters. The **PHASE ROTATION** setting matches the power system phase sequence. Note that this setting informs the relay of the actual system phase sequence, either ABC or ACB. CT and VT inputs on the relay, labeled as A, B, and C, must be connected to system phases A, B, and C for correct operation.

The **FREQUENCY AND PHASE REFERENCE** setting determines which signal source is used (and hence which AC signal) for phase angle reference. The AC signal used is prioritized based on the AC inputs that are configured for the signal source: phase voltages takes precedence, followed by auxiliary voltage, then phase currents, and finally ground current.

For three phase selection, phase A is used for angle referencing ($V_{\text{ANGLE REF}} = V_A$), while Clarke transformation of the phase signals is used for frequency metering and tracking ($V_{\text{FREQUENCY}} = (2V_A - V_B - V_C)/3$) for better performance during fault, open pole, and VT and CT fail conditions.

The phase reference and frequency tracking AC signals are selected based upon the Source configuration, regardless of whether or not a particular signal is actually applied to the relay.


Phase angle of the reference signal will always display zero degrees and all other phase angles will be relative to this signal. If the pre-selected reference signal is not measurable at a given time, the phase angles are not referenced.

The phase angle referencing is done via a phase locked loop, which can synchronize independent UR-series relays if they have the same AC signal reference. These results in very precise correlation of time tagging in the event recorder between different UR-series relays provided the relays have an IRIG-B connection.

FREQUENCY TRACKING should only be set to "Disabled" in very unusual circumstances; consult the factory for special variable-frequency applications.

Six identical source menus are available. The "SRC 1" text can be replaced by with a user-defined name appropriate for the associated source.

"F", "M", and "U" represent the module slot position. The number directly following these letters represents either the first bank of four channels (1, 2, 3, 4) called "1" or the second bank of four channels (5, 6, 7, 8) called "5" in a particular CT/VT module. Refer to the Introduction to AC Sources section at the beginning of this chapter for additional details on this concept.

It is possible to select the sum of up to five (5) CTs. The first channel displayed is the CT to which all others will be referred. For example, the selection "F1+F5" indicates the sum of each phase from channels "F1" and "F5", scaled to whichever CT has the higher ratio. Selecting "None" hides the associated actual values.

The approach used to configure the AC sources consists of several steps; first step is to specify the information about each CT and VT input. For CT inputs, this is the nominal primary and secondary current. For VTs, this is the connection type, ratio and nominal secondary voltage. Once the inputs have been specified, the configuration for each Source is entered, including specifying which CTs will be summed together.

User Selection of AC Parameters for Comparator Elements:

CT/VT modules automatically calculate all current and voltage parameters from the available inputs. Users must select the specific input parameters to be measured by every element in the relevant settings menu. The internal design of the element specifies which type of parameter to use and provides a setting for Source selection. In elements where the parameter may be either fundamental or RMS magnitude, such as phase time overcurrent, two settings are provided. One setting specifies the Source, the second setting selects between fundamental phasor and RMS.

AC Input Actual Values:

The calculated parameters associated with the configured voltage and current inputs are displayed in the current and voltage sections of actual values. Only the phasor quantities associated with the actual AC physical input channels will be displayed here. All parameters contained within a configured source are displayed in the sources section of the actual values.

DISTURBANCE DETECTORS (INTERNAL):

The 50DD element is a sensitive current disturbance detector that detects any disturbance on the protected system. 50DD is intended for use in conjunction with measuring elements, blocking of current based elements (to prevent maloperation as a result of the wrong settings), and starting oscillography data capture. A disturbance detector is provided for each Source.

The 50DD function responds to the changes in magnitude of the sequence currents. The disturbance detector scheme logic is as follows:

5 SETTINGS 5.3 SYSTEM SETUP

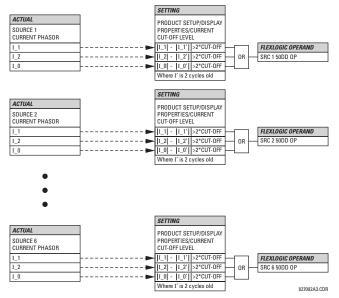


Figure 5-13: DISTURBANCE DETECTOR LOGIC DIAGRAM

The disturbance detector responds to the change in currents of twice the current cut-off level. The default cut-off threshold is 0.02 pu; thus by default the disturbance detector responds to a change of 0.04 pu. The metering sensitivity setting (PROD-UCT SETUP $\Rightarrow \emptyset$ DISPLAY PROPERTIES $\Rightarrow \emptyset$ CURRENT CUT-OFF LEVEL) controls the sensitivity of the disturbance detector accordingly.

EXAMPLE USE OF SOURCES:

An example of the use of sources, with a relay with three CT/VT modules, is shown in the diagram below. A relay could have the following hardware configuration:

INCREASING SLOT POSITION LETTER>					
CT/VT MODULE 1 CT/VT MODULE 2 CT/VT MODULE 3					
CTs CTs VTs					

This configuration could be used on a two winding transformer, with one winding connected into a breaker-and-a-half system. The following figure shows the arrangement of sources used to provide the functions required in this application, and the CT/VT inputs that are used to provide the data.

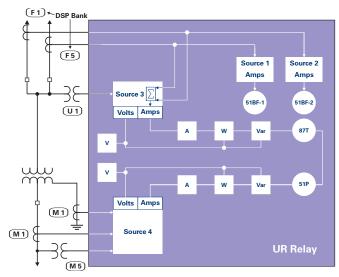
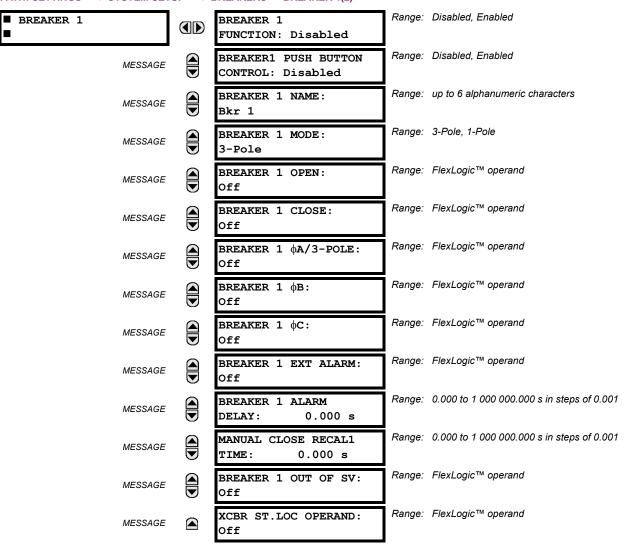



Figure 5-14: EXAMPLE USE OF SOURCES

PATH: SETTINGS ⇒ \$\Partial\$ SYSTEM SETUP ⇒ \$\Partial\$ BREAKERS ⇒ BREAKER 1(2)

A description of the operation of the breaker control and status monitoring features is provided in Chapter 4. Only information concerning programming of the associated settings is covered here. These features are provided for two breakers; a user may use only those portions of the design relevant to a single breaker, which must be Breaker 1.

- BREAKER 1(2) FUNCTION: Set to "Enable" to allow the operation of any breaker control feature.
- BREAKER1(2) PUSH BUTTON CONTROL: Set to "Enable" to allow faceplate push button operations.
- BREAKER 1(2) NAME: Assign a user-defined name (up to 6 characters) to the breaker. This name will be used in flash messages related to Breaker 1.
- BREAKER 1(2) MODE: Selects "3-pole" mode, where all breaker poles are operated simultaneously, or "1-pole" mode where all breaker poles are operated either independently or simultaneously.
- BREAKER 1(2) OPEN: Selects an operand that creates a programmable signal to operate an output relay to open Breaker No. 1.
- BREAKER 1(2) CLOSE: Selects an operand that creates a programmable signal to operate an output relay to close Breaker No. 1.
- BREAKER 1(2) ΦA/3-POLE: Selects an operand, usually a contact input connected to a breaker auxiliary position tracking mechanism. This input can be either a 52/a or 52/b contact, or a combination the 52/a and 52/b contacts, that

5 SETTINGS 5.3 SYSTEM SETUP

must be programmed to create a logic 0 when the breaker is open. If **BREAKER 1 MODE** is selected as "3-Pole", this setting selects a single input as the operand used to track the breaker open or closed position. If the mode is selected as "1-Pole", the input mentioned above is used to track phase A and settings **BREAKER 1** Φ **B** and **BREAKER 1** Φ **C** select operands to track phases B and C, respectively.

- BREAKER 1(2) FB: If the mode is selected as 3-pole, this setting has no function. If the mode is selected as 1-pole, this input is used to track phase B as above for phase A.
- BREAKER 1(2) FC: If the mode is selected as 3-pole, this setting has no function. If the mode is selected as 1-pole, this input is used to track phase C as above for phase A.
- BREAKER 1(2) EXT ALARM: Selects an operand, usually an external contact input, connected to a breaker alarm reporting contact.
- BREAKER 1(2) ALARM DELAY: Sets the delay interval during which a disagreement of status among the three pole
 position tracking operands will not declare a pole disagreement, to allow for non-simultaneous operation of the poles.
- MANUAL CLOSE RECAL1 TIME: Sets the interval required to maintain setting changes in effect after an operator has
 initiated a manual close command to operate a circuit breaker.
- BREAKER 1(2) OUT OF SV: Selects an operand indicating that Breaker 1(2) is out-of-service.
- XCBR ST.LOC OPERAND: Selects a FlexLogic[™] operand to provide a value for the IEC 61850 XCBR1(2) St.Loc data item.

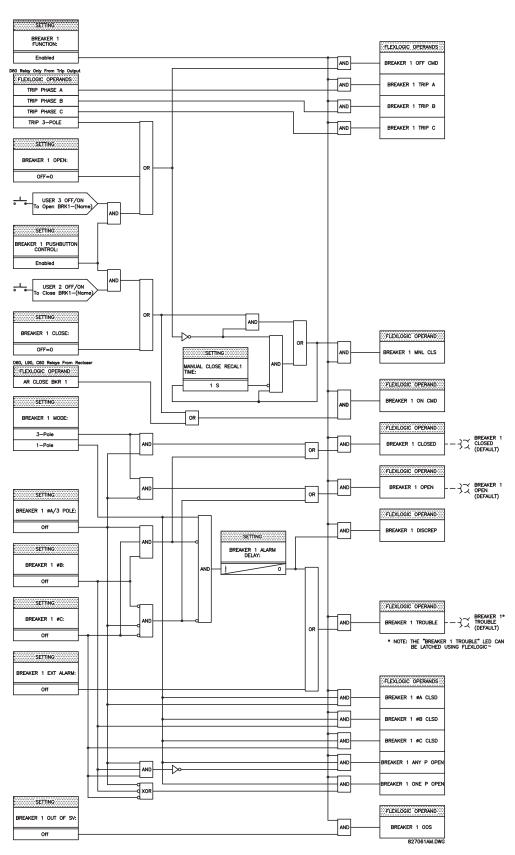


Figure 5-15: DUAL BREAKER CONTROL SCHEME LOGIC

5.4.1 INTRODUCTION TO FLEXLOGIC™

To provide maximum flexibility to the user, the arrangement of internal digital logic combines fixed and user-programmed parameters. Logic upon which individual features are designed is fixed, and all other logic, from digital input signals through elements or combinations of elements to digital outputs, is variable. The user has complete control of all variable logic through FlexLogic[™]. In general, the system receives analog and digital inputs which it uses to produce analog and digital outputs. The major sub-systems of a generic UR-series relay involved in this process are shown below.

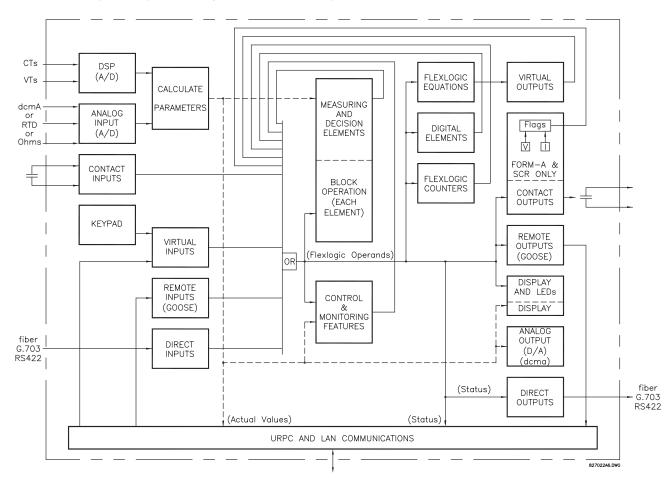


Figure 5-16: UR ARCHITECTURE OVERVIEW

The states of all digital signals used in the N60 are represented by flags (or FlexLogic™ operands, which are described later in this section). A digital "1" is represented by a 'set' flag. Any external contact change-of-state can be used to block an element from operating, as an input to a control feature in a FlexLogic™ equation, or to operate a contact output. The state of the contact input can be displayed locally or viewed remotely via the communications facilities provided. If a simple scheme where a contact input is used to block an element is desired, this selection is made when programming the element. This capability also applies to the other features that set flags: elements, virtual inputs, remote inputs, schemes, and human operators.

If more complex logic than presented above is required, it is implemented via FlexLogic[™]. For example, if it is desired to have the closed state of contact input H7a and the operated state of the phase undervoltage element block the operation of the phase time overcurrent element, the two control input states are programmed in a FlexLogic[™] equation. This equation ANDs the two control inputs to produce a 'virtual output' which is then selected when programming the phase time overcurrent to be used as a blocking input. Virtual outputs can only be created by FlexLogic[™] equations.

Traditionally, protective relay logic has been relatively limited. Any unusual applications involving interlocks, blocking, or supervisory functions had to be hard-wired using contact inputs and outputs. FlexLogic™ minimizes the requirement for auxiliary components and wiring while making more complex schemes possible.

5.4 FLEXLOGIC™ 5 SETTINGS

The logic that determines the interaction of inputs, elements, schemes and outputs is field programmable through the use of logic equations that are sequentially processed. The use of virtual inputs and outputs in addition to hardware is available internally and on the communication ports for other relays to use (distributed FlexLogic[™]).

FlexLogic™ allows users to customize the relay through a series of equations that consist of <u>operators</u> and <u>operands</u>. The operands are the states of inputs, elements, schemes and outputs. The operators are logic gates, timers and latches (with set and reset inputs). A system of sequential operations allows any combination of specified operands to be assigned as inputs to specified operators to create an output. The final output of an equation is a numbered register called a <u>virtual output</u>. Virtual outputs can be used as an input operand in any equation, including the equation that generates the output, as a seal-in or other type of feedback.

A FlexLogic™ equation consists of parameters that are either operands or operators. Operands have a logic state of 1 or 0. Operators provide a defined function, such as an AND gate or a Timer. Each equation defines the combinations of parameters to be used to set a Virtual Output flag. Evaluation of an equation results in either a 1 (=ON, i.e. flag set) or 0 (=OFF, i.e. flag not set). Each equation is evaluated at least 4 times every power system cycle.

Some types of operands are present in the relay in multiple instances; e.g. contact and remote inputs. These types of operands are grouped together (for presentation purposes only) on the faceplate display. The characteristics of the different types of operands are listed in the table below.

Table 5-3: N60 FLEXLOGIC™ OPERAND TYPES

OPERAND TYPE	STATE	EXAMPLE FORMAT	CHARACTERISTICS [INPUT IS '1' (= ON) IF]
Contact Input	On	Cont Ip On	Voltage is presently applied to the input (external contact closed).
	Off	Cont Ip Off	Voltage is presently not applied to the input (external contact open).
Contact Output	Voltage On	Cont Op 1 VOn	Voltage exists across the contact.
(type Form-A contact only)	Voltage Off	Cont Op 1 VOff	Voltage does not exists across the contact.
,	Current On	Cont Op 1 IOn	Current is flowing through the contact.
	Current Off	Cont Op 1 IOff	Current is not flowing through the contact.
Direct Input	On	DIRECT INPUT 1 On	The direct input is presently in the ON state.
Element (Analog)	Pickup	PHASE TOC1 PKP	The tested parameter is presently above the pickup setting of an element which responds to rising values or below the pickup setting of an element which responds to falling values.
	Dropout	PHASE TOC1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	PHASE TOC1 OP	The tested parameter has been above/below the pickup setting of the element for the programmed delay time, or has been at logic 1 and is now at logic 0 but the reset timer has not finished timing.
	Block	PH DIR1 BLK	The output of the comparator is set to the block function.
Element	Pickup	Dig Element 1 PKP	The input operand is at logic 1.
(Digital)	Dropout	Dig Element 1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	Dig Element 1 OP	The input operand has been at logic 1 for the programmed pickup delay time, or has been at logic 1 for this period and is now at logic 0 but the reset timer has not finished timing.
Element	Higher than	Counter 1 HI	The number of pulses counted is above the set number.
(Digital Counter)	Equal to	Counter 1 EQL	The number of pulses counted is equal to the set number.
	Lower than	Counter 1 LO	The number of pulses counted is below the set number.
Fixed	On	On	Logic 1
	Off	Off	Logic 0
Remote Input	On	REMOTE INPUT 1 On	The remote input is presently in the ON state.
Virtual Input	On	Virt lp 1 On	The virtual input is presently in the ON state.
Virtual Output	On	Virt Op 1 On	The virtual output is presently in the set state (i.e. evaluation of the equation which produces this virtual output results in a "1").

The operands available for this relay are listed alphabetically by types in the following table.

Table 5–4: N60 FLEXLOGIC™ OPERANDS (Sheet 1 of 5)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION	
CONTROL PUSHBUTTONS	CONTROL PUSHBTN n ON	Control Pushbutton n (n = 1 to 7) is being pressed.	
DIRECT DEVICES	DIRECT DEVICE 10n	Flag is set, logic=1	
	DIRECT DEVICE 160n DIRECT DEVICE 10ff	Flag is set, logic=1 Flag is set, logic=1	
	DIRECT DEVICE 160ff	Flag is set, logic=1	
DIRECT INPUT/ OUTPUT CHANNEL MONITORING	DIR IO CH1(2) CRC ALARM DIR IO CRC ALARM DIR IO CH1(2) UNRET ALM DIR IO UNRET ALM	The rate of Direct Input messages received on Channel 1(2) and failing the CRC exceeded the user-specified level. The rate of Direct Input messages failing the CRC exceeded the user-specified level on Channel 1 or 2. The rate of returned direct input/output messages on Channel 1(2) exceeded the user-specified level (ring configurations only). The rate of returned direct input/output messages exceeded the user-specified level on Channel 1 or 2 (ring configurations only).	
ELEMENT: 8-Bit Comparator	8BIT COMP 1 PKP 8BIT COMP 1 DPO 8BIT COMP 1 OP 8BIT COMP 1 BIT 0 8BIT COMP 1 BIT 1 8BIT COMP 1 BIT 2 8BIT COMP 1 BIT 3 8BIT COMP 1 BIT 3 8BIT COMP 1 BIT 5 8BIT COMP 1 BIT 5 8BIT COMP 1 BIT 6 8BIT COMP 1 BIT 7	Comparator 1 has picked up Comparator 1 has dropped out Comparator 1 has operated Bit 0 of Comparator 1 asserted (the least significant bit) Bit 1 of Comparator 1 asserted Bit 2 of Comparator 1 asserted Bit 3 of Comparator 1 asserted Bit 4 of Comparator 1 asserted Bit 5 of Comparator 1 asserted Bit 6 of Comparator 1 asserted Bit 6 of Comparator 1 asserted (the most significant bit) Sign bit of Comparator 1 asserted (asserted for negative values; de-asserted for positive values)	
	8BIT COMP 2 to 8BIT COMP 6	Same set of operands as shown for 8 BIT COMP 1 above	
ELEMENT: 8-Bit Switch	8BIT SWITCH 1 BIT 0 8BIT SWITCH 1 BIT 1 8BIT SWITCH 1 BIT 2 8BIT SWITCH 1 BIT 3 8BIT SWITCH 1 BIT 4 8BIT SWITCH 1 BIT 5 8BIT SWITCH 1 BIT 6 8BIT SWITCH 1 BIT 7	Bit 0 of Eight-Bit Switch 1 asserted (the least significant bit) Bit 1 of Eight-Bit Switch 1 asserted Bit 2 of Eight-Bit Switch 1 asserted Bit 3 of Eight-Bit Switch 1 asserted Bit 4 of Eight-Bit Switch 1 asserted Bit 5 of Eight-Bit Switch 1 asserted Bit 6 of Eight-Bit Switch 1 asserted Bit 7 of Eight-Bit Switch 1 asserted	
	8BIT SWITCH 2 to 8BIT SWITCH 6	Same set of operands as shown for 8 BIT SWITCH 1 above	
ELEMENT: Breaker Control			
	BREAKER 2	Same set of operands as shown for BREAKER 1	
ELEMENT: Digital Counters	Counter 1 HI Counter 1 EQL Counter 1 LO	Digital Counter 1 output is 'more than' comparison value Digital Counter 1 output is 'equal to' comparison value Digital Counter 1 output is 'less than' comparison value	
	Counter 8 HI Counter 8 EQL Counter 8 LO	Digital Counter 8 output is 'more than' comparison value Digital Counter 8 output is 'equal to' comparison value Digital Counter 8 output is 'less than' comparison value	

Table 5–4: N60 FLEXLOGIC™ OPERANDS (Sheet 2 of 5)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: Digital Elements	Dig Element 1 PKP Dig Element 1 OP Dig Element 1 DPO	Digital Element 1 is picked up Digital Element 1 is operated Digital Element 1 is dropped out
	Dig Element 16 PKP Dig Element 16 OP Dig Element 16 DPO	Digital Element 16 is picked up Digital Element 16 is operated Digital Element 16 is dropped out
Digitizer DIGITIZER N BIT 1 DIGITIZER N BIT 2 DIGITIZER N BIT 3 DIGITIZER N BIT 3 DIGITIZER N BIT 4 DIGITIZER N BIT 4 DIGITIZER N BIT 5 DIGITIZER N BIT 5 DIGITIZER N BIT 6 DIGITIZER N BIT 7 Bit 1 of Digitizer N (N = 1 to 5) asserted Bit 2 of Digitizer N (N = 1 to 5) asserted Bit 3 of Digitizer N (N = 1 to 5) asserted Bit 5 of Digitizer N (N = 1 to 5) asserted Bit 6 of Digitizer N (N = 1 to 5) asserted (the		Bit 2 of Digitizer N (N = 1 to 5) asserted Bit 3 of Digitizer N (N = 1 to 5) asserted Bit 4 of Digitizer N (N = 1 to 5) asserted
	Output = $(-1)^{B7} \times (B6 \times 2^6 + B5)$	$\times 2^5 + \ldots + B1 \times 2^1 + B0 \times 2^0)$
ELEMENT: Sensitive Directional Power	DIR POWER 1 STG1 PKP DIR POWER 1 STG2 PKP DIR POWER 1 STG1 DPO DIR POWER 1 STG1 DPO DIR POWER 1 STG1 OP DIR POWER 1 STG2 OP DIR POWER 1 PKP DIR POWER 1 DPO DIR POWER 1 DPO DIR POWER 1 OP	Stage 1 of the Directional Power element 1 has picked up Stage 2 of the Directional Power element 1 has picked up Stage 1 of the Directional Power element 1 has dropped out Stage 2 of the Directional Power element 1 has dropped out Stage 1 of the Directional Power element 1 has operated Stage 2 of the Directional Power element 1 has operated The Directional Power element has picked up The Directional Power element has dropped out The Directional Power element has operated
	DIR POWER 2	Same set of operands as DIR POWER 1
ELEMENT Frequency Rate of Change	FREQ RATE n PKP FREQ RATE n DPO FREQ RATE n OP	The n-th Frequency Rate of Change element has picked up The n-th Frequency Rate of Change element has dropped out The n-th Frequency Rate of Change element has operated
ELEMENT: FxE 1 PKP FlexElement™ 1 has picked up FlexElements™ FxE 1 OP FlexElement™ 1 has operated FxE 1 DPO FlexElement™ 1 has dropped out		FlexElement™ 1 has operated
	FXE 16 PKP FXE 16 OP FXE 16 DPO	FlexElement™ 16 has picked up FlexElement™ 16 has operated FlexElement™ 16 has dropped out
ELEMENT Non-Volatile Latches	LATCH 1 ON LATCH 1 OFF	Non-Volatile Latch 1 is ON (Logic = 1) Non-Voltage Latch 1 is OFF (Logic = 0)
	LATCH 16 ON LATCH 16 OFF	Non-Volatile Latch 16 is ON (Logic = 1) Non-Voltage Latch 16 is OFF (Logic = 0)
ELEMENT: Open Pole Detector	OPEN POLE OP ΦA OPEN POLE OP ΦB OPEN POLE OP ΦC OPEN POLE OP	Open pole condition is detected in phase A Open pole condition is detected in phase B Open pole condition is detected in phase C Open pole detector is operated
ELEMENT: Overfrequency	OVERFREQ 1 PKP OVERFREQ 1 OP OVERFREQ 1 DPO	Overfrequency 1 has picked up Overfrequency 1 has operated Overfrequency 1 has dropped out
	OVERFREQ 2 to 4 Same set of operands as shown for OVERFREQ 1	
ELEMENT: Phase Instantaneous Overcurrent	PHASE IOC1 PKP PHASE IOC1 OP PHASE IOC1 DPO PHASE IOC1 PKP A PHASE IOC1 PKP B PHASE IOC1 PKP C PHASE IOC1 OP A PHASE IOC1 OP B PHASE IOC1 DPO A PHASE IOC1 DPO B PHASE IOC1 DPO C	At least one phase of PHASE IOC1 has picked up At least one phase of PHASE IOC1 has operated At least one phase of PHASE IOC1 has dropped out Phase A of PHASE IOC1 has picked up Phase B of PHASE IOC1 has picked up Phase C of PHASE IOC1 has picked up Phase A of PHASE IOC1 has operated Phase B of PHASE IOC1 has operated Phase B of PHASE IOC1 has operated Phase C of PHASE IOC1 has dropped out Phase B of PHASE IOC1 has dropped out Phase C of PHASE IOC1 has dropped out
	PHASE IOC2IOC12	Same set of operands as shown for PHASE IOC1

Table 5–4: N60 FLEXLOGIC™ OPERANDS (Sheet 3 of 5)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION	
ELEMENT: Phase Overvoltage	PHASE OV1 PKP PHASE OV1 OP PHASE OV1 DPO PHASE OV1 PKP A PHASE OV1 PKP B PHASE OV1 PKP C PHASE OV1 OP A PHASE OV1 OP B PHASE OV1 OP C PHASE OV1 DPO A PHASE OV1 DPO A PHASE OV1 DPO B PHASE OV1 DPO B	At least one phase of Overvoltage 1 has picked up At least one phase of Overvoltage 1 has operated At least one phase of Overvoltage 1 has operated Phase A of Overvoltage 1 has picked up Phase B of Overvoltage 1 has picked up Phase C of Overvoltage 1 has picked up Phase A of Overvoltage 1 has operated Phase B of Overvoltage 1 has operated Phase C of Overvoltage 1 has operated Phase A of Overvoltage 1 has operated Phase B of Overvoltage 1 has dropped out Phase B of Overvoltage 1 has dropped out Phase C of Overvoltage 1 has dropped out	
ELEMENT: Phase Undervoltage	PHASE UV1 PKP PHASE UV1 OP PHASE UV1 DPO PHASE UV1 PKP A PHASE UV1 PKP B PHASE UV1 OP A PHASE UV1 OP A PHASE UV1 OP C PHASE UV1 DPO A PHASE UV1 DPO B PHASE UV1 DPO C	At least one phase of UV1 has picked up At least one phase of UV1 has operated At least one phase of UV1 has dropped out Phase A of UV1 has picked up Phase B of UV1 has picked up Phase C of UV1 has picked up Phase A of UV1 has operated Phase B of UV1 has operated Phase B of UV1 has operated Phase C of UV1 has dropped out Phase B of UV1 has dropped out Phase B of UV1 has dropped out Phase C of UV1 has dropped out	
	PHASE UV2	Same set of operands as shown for PHASE UV1	
ELEMENT: Power Swing Detect	POWER SWING OUTER POWER SWING MIDDLE POWER SWING INNER POWER SWING BLOCK POWER SWING TMRX PKP POWER SWING TRIP POWER SWING 50DD POWER SWING INCOMING POWER SWING OUTGOING POWER SWING UN/BLOCK	Positive Sequence impedance in outer characteristic. Positive Sequence impedance in middle characteristic. Positive Sequence impedance in inner characteristic. Power Swing Blocking element operated. Power Swing Timer x picked up. Out-of-step Tripping operated. The Power Swing element detected a disturbance other than power swing. An unstable power swing has been detected (incoming locus). An unstable power swing has been detected (outgoing locus).	
ELEMENT: Selector Switch	SELECTOR 1 POS Y SELECTOR 1 BIT 0 SELECTOR 1 BIT 1 SELECTOR 1 BIT 2 SELECTOR 1 STP ALARM SELECTOR 1 BIT ALARM SELECTOR 1 ALARM SELECTOR 1 PWR ALARM	Selector Switch 1 is in Position Y (mutually exclusive operands). First bit of the 3-bit word encoding position of Selector 1. Second bit of the 3-bit word encoding position of Selector 1. Third bit of the 3-bit word encoding position of Selector 1. Position of Selector 1 has been pre-selected with the stepping up control input but not acknowledged. Position of Selector 1 has been pre-selected with the 3-bit control input but not acknowledged. Position of Selector 1 has been pre-selected but not acknowledged. Position of Selector Switch 1 is undetermined when the relay powers up and synchronizes to the 3-bit input.	
	SELECTOR 2	Same set of operands as shown above for SELECTOR 1	
ELEMENT: Setting Group	SETTING GROUP ACT 1	Setting Group 1 is active	
John S Group	SETTING GROUP ACT 6	Setting Group 6 is active	
ELEMENT: Disturbance Detector	SRCx 50DD OP	Source x Disturbance Detector has operated	
ELEMENT: VTFF (Voltage Transformer Fuse Failure)	SRCx VT FUSE FAIL OP SRCx VT FUSE FAIL DPO SRCx VT FUSE FAIL VOL LOSS	Source x VT Fuse Failure detector has operated Source x VT Fuse Failure detector has dropped out Source x has lost voltage signals (V2 above 25% or V1 below 70% of nominal)	
ELEMENT: Synchrocheck	SYNC 1 DEAD S OP SYNC 1 DEAD S DPO SYNC 1 SYNC OP SYNC 1 SYNC DPO SYNC 1 CLS OP SYNC 1 CLS DPO SYNC 1 V1 ABOVE MIN SYNC 1 V1 BELOW MAX SYNC 1 V2 ABOVE MIN SYNC 1 V2 BELOW MAX	Synchrocheck 1 dead source has operated Synchrocheck 1 dead source has dropped out Synchrocheck 1 in synchronization has operated Synchrocheck 1 in synchronization has dropped out Synchrocheck 1 close has operated Synchrocheck 1 close has dropped out Synchrocheck 1 V1 is above the minimum live voltage Synchrocheck 1 V1 is below the maximum dead voltage Synchrocheck 1 V2 is above the minimum live voltage Synchrocheck 1 V2 is below the maximum dead voltage Synchrocheck 1 V2 is below the maximum dead voltage Same set of operands as shown for SYNC 1	

Table 5–4: N60 FLEXLOGIC™ OPERANDS (Sheet 4 of 5)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION	
ELEMENT: Underfrequency	UNDERFREQ 1 PKP UNDERFREQ 1 OP UNDERFREQ 1 DPO	Underfrequency 1 has picked up Underfrequency 1 has operated Underfrequency 1 has dropped out	
	UNDERFREQ 2 to 6	Same set of operands as shown for UNDERFREQ 1 above	
FIXED OPERANDS	Off	Logic = 0. Does nothing and may be used as a delimiter in an equation list; used as 'Disable' by other features.	
	On	Logic = 1. Can be used as a test setting.	
INPUTS/OUTPUTS: Contact Inputs	Cont lp 1 On Cont lp 2 On	(will not appear unless ordered) (will not appear unless ordered)	
	Cont lp 1 Off Cont lp 2 Off	(will not appear unless ordered) (will not appear unless ordered)	
INPUTS/OUTPUTS: Contact Outputs, Current	Cont Op 1 IOn Cont Op 2 IOn	(will not appear unless ordered) (will not appear unless ordered) ↓	
(from detector on Form-A output only)	Cont Op 1 IOff Cont Op 2 IOff	(will not appear unless ordered) (will not appear unless ordered) ↓	
INPUTS/OUTPUTS: Contact Outputs, Voltage	Cont Op 1 VOn Cont Op 2 VOn	(will not appear unless ordered) (will not appear unless ordered)	
(from detector on Form-A output only)	Cont Op 1 VOff Cont Op 2 VOff	(will not appear unless ordered) (will not appear unless ordered)	
INPUTS/OUTPUTS	DIRECT INPUT 1 On	Flag is set, logic=1	
Direct Inputs	DIRECT INPUT 64 On	Flag is set, logic=1	
INPUTS/OUTPUTS:	REMOTE INPUT 1 On	Flag is set, logic=1	
Remote Inputs	REMOTE INPUT 32 On	Flag is set, logic=1	
INPUTS/OUTPUTS:			
Virtual Inputs	Virt Ip 32 On	Flag is set, logic=1	
INPUTS/OUTPUTS:	Virt Op 1 On	Flag is set, logic=1	
Virtual Outputs	Virt Op 64 On	Flag is set, logic=1	
LED TEST	LED TEST IN PROGRESS	An LED test has been initiated and has not finished.	
REMOTE DEVICES	REMOTE DEVICE 1 On	Flag is set, logic=1	
	REMOTE DEVICE 16 On	Flag is set, logic=1	
	REMOTE DEVICE 1 Off	Flag is set, logic=1	
	REMOTE DEVICE 16 Off	Flag is set, logic=1	
RESETTING	RESET OP RESET OP (COMMS) RESET OP (OPERAND)	Reset command is operated (set by all 3 operands below) Communications source of the reset command Operand (assigned in the INPUTS/OUTPUTS ⇒ ♣ RESETTING menu) source of the reset command	
	RESET OP (PUSHBUTTON)	Reset key (pushbutton) source of the reset command	

Table 5-4: N60 FLEXLOGIC™ OPERANDS (Sheet 5 of 5)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
SELF- DIAGNOSTICS	ANY MAJOR ERROR ANY MINOR ERROR ANY SELF-TEST BATTERY FAIL DIRECT DEVICE OFF DIRECT RING BREAK DSP ERROR EEPROM DATA ERROR EQUIPMENT MISMATCH FLEXLOGIC ERR TOKEN IRIG-B FAILURE LATCHING OUT ERROR LOW ON MEMORY NO DSP INTERRUPTS PRI ETHERNET FAIL PROGRAM MEMORY PROTOTYPE FIRMWARE REMOTE DEVICE OFF SEC ETHERNET FAIL SNTP FAILURE SYSTEM EXCEPTION UNIT NOT CALIBRATED UNIT NOT PROGRAMMED WATCHDOG ERROR	Any of the major self-test errors generated (major error) Any of the minor self-test errors generated (minor error) Any self-test errors generated (generic, any error) See description in Chapter 7: Commands and Targets.
UNAUTHORIZED ACCESS ALARM	UNAUTHORIZED ACCESS	Asserted when a password entry fails while accessing a password-protected level of the relay.
USER- PROGRAMMABLE PUSHBUTTONS	PUSHBUTTON x ON PUSHBUTTON x OFF	Pushbutton Number x is in the 'On' position Pushbutton Number x is in the 'Off' position

Some operands can be re-named by the user. These are the names of the breakers in the breaker control feature, the ID (identification) of contact inputs, the ID of virtual inputs, and the ID of virtual outputs. If the user changes the default name/ ID of any of these operands, the assigned name will appear in the relay list of operands. The default names are shown in the FlexLogicTM operands table above.

The characteristics of the logic gates are tabulated below, and the operators available in FlexLogic™ are listed in the Flex-Logic™ operators table.

Table 5–5: FLEXLOGIC™ GATE CHARACTERISTICS

GATES	NUMBER OF INPUTS	OUTPUT IS '1' (= ON) IF	
NOT	1	input is '0'	
OR	2 to 16	any input is '1'	
AND	2 to 16	all inputs are '1'	
NOR	2 to 16	all inputs are '0'	
NAND	2 to 16	any input is '0'	
XOR	2	only one input is '1'	

Table 5-6: FLEXLOGIC™ OPERATORS

TYPE	SYNTAX	DESCRIPTION	NOTES	
Editor	INSERT	Insert a parameter in an equation list.		
	DELETE	Delete a parameter from an equation list.		
End	END	The first END encountered signifies the last entry in the list of processed FlexLogic™ parameters.		
One Shot	POSITIVE ONE SHOT	One shot that responds to a positive going edge.	A 'one shot' refers to a single input gate	
	NEGATIVE ONE SHOT	One shot that responds to a negative going edge.	that generates a pulse in response to an edge on the input. The output from a 'one shot' is True (positive) for only one pass through the FlexLogic™ equation. There is a maximum of 32 'one shots'.	
	DUAL ONE SHOT	One shot that responds to both the positive and negative going edges.		
Logic	NOT	Logical Not	Operates on the previous parameter.	
Gate	OR(2)	2 input OR gate	Operates on the 2 previous parameters.	
	OR(16)	16 input OR gate	Operates on the 16 previous parameters.	
	AND(2)	2 input AND gate	Operates on the 2 previous parameters.	
	AND(16)	16 input AND gate	Operates on the 16 previous parameters.	
	NOR(2)	2 input NOR gate	Operates on the 2 previous parameters.	
	NOR(16)	16 input NOR gate	Operates on the 16 previous parameters.	
	NAND(2)	2 input NAND gate	Operates on the 2 previous parameters.	
	NAND(16)	16 input NAND gate	Operates on the 16 previous parameters.	
	XOR(2)	2 input Exclusive OR gate	Operates on the 2 previous parameters.	
	LATCH (S,R)	Latch (Set, Reset) - reset-dominant	The parameter preceding LATCH(S,R) is the Reset input. The parameter preceding the Reset input is the Set input.	
Timer	TIMER 1	Timer set with FlexLogic™ Timer 1 settings.	The timer is started by the preceding parameter. The output of the timer is TIMER #.	
	TIMER 32	Timer set with FlexLogic™ Timer 32 settings.		
Assign Virtual Output	= Virt Op 1 Virt Op 64	Assigns previous FlexLogic™ parameter to Virtual Output 1.	The virtual output is set by the preceding parameter	
Output	- viit Op 04	Assigns previous FlexLogic™ parameter to Virtual Output 64.		

5.4.2 FLEXLOGIC™ RULES

When forming a FlexLogic™ equation, the sequence in the linear array of parameters must follow these general rules:

- 1. Operands must precede the operator which uses the operands as inputs.
- 2. Operators have only one output. The output of an operator must be used to create a virtual output if it is to be used as an input to two or more operators.
- 3. Assigning the output of an operator to a Virtual Output terminates the equation.
- 4. A timer operator (e.g. "TIMER 1") or virtual output assignment (e.g. " = Virt Op 1") may only be used once. If this rule is broken, a syntax error will be declared.

5.4.3 FLEXLOGIC™ EVALUATION

Each equation is evaluated in the order in which the parameters have been entered.

FlexLogic[™] provides latches which by definition have a memory action, remaining in the set state after the set input has been asserted. However, they are *volatile*; i.e. they reset on the re-application of control power.

When making changes to settings, all FlexLogic™ equations are re-compiled whenever any new setting value is entered, so all latches are automatically reset. If it is necessary to re-initialize FlexLogic™ during testing, for example, it is suggested to power the unit down and then back up.

5.4.4 FLEXLOGIC™ EXAMPLE

This section provides an example of implementing logic for a typical application. The sequence of the steps is quite important as it should minimize the work necessary to develop the relay settings. Note that the example presented in the figure below is intended to demonstrate the procedure, not to solve a specific application situation.

In the example below, it is assumed that logic has already been programmed to produce Virtual Outputs 1 and 2, and is only a part of the full set of equations used. When using FlexLogic™, it is important to make a note of each Virtual Output used – a Virtual Output designation (1 to 64) can only be properly assigned once.

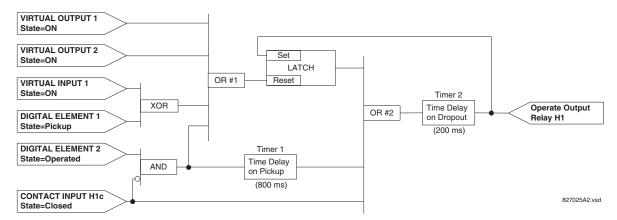


Figure 5-17: EXAMPLE LOGIC SCHEME

1. Inspect the example logic diagram to determine if the required logic can be implemented with the FlexLogic™ operators. If this is not possible, the logic must be altered until this condition is satisfied. Once this is done, count the inputs to each gate to verify that the number of inputs does not exceed the FlexLogic™ limits, which is unlikely but possible. If the number of inputs is too high, subdivide the inputs into multiple gates to produce an equivalent. For example, if 25 inputs to an AND gate are required, connect Inputs 1 through 16 to AND(16), 17 through 25 to AND(9), and the outputs from these two gates to AND(2).

Inspect each operator between the initial operands and final virtual outputs to determine if the output from the operator is used as an input to more than one following operator. If so, the operator output must be assigned as a Virtual Output.

For the example shown above, the output of the AND gate is used as an input to both OR#1 and Timer 1, and must therefore be made a Virtual Output and assigned the next available number (i.e. Virtual Output 3). The final output must also be assigned to a Virtual Output as Virtual Output 4, which will be programmed in the contact output section to operate relay H1 (i.e. Output Contact H1).

Therefore, the required logic can be implemented with two FlexLogic™ equations with outputs of Virtual Output 3 and Virtual Output 4 as shown below.

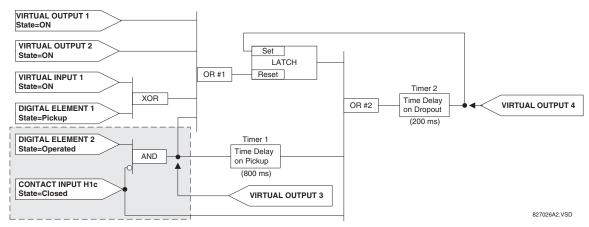


Figure 5-18: LOGIC EXAMPLE WITH VIRTUAL OUTPUTS

5.4 FLEXLOGIC™ 5 SETTINGS

2. Prepare a logic diagram for the equation to produce Virtual Output 3, as this output will be used as an operand in the Virtual Output 4 equation (create the equation for every output that will be used as an operand first, so that when these operands are required they will already have been evaluated and assigned to a specific Virtual Output). The logic for Virtual Output 3 is shown below with the final output assigned.

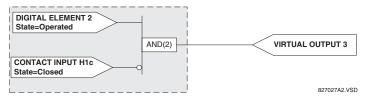


Figure 5-19: LOGIC FOR VIRTUAL OUTPUT 3

3. Prepare a logic diagram for Virtual Output 4, replacing the logic ahead of Virtual Output 3 with a symbol identified as Virtual Output 3, as shown below.

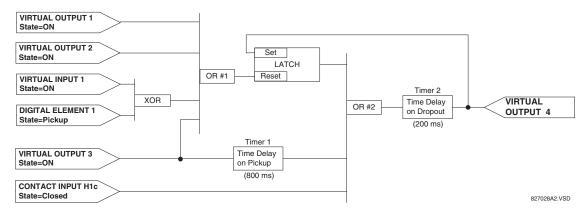


Figure 5-20: LOGIC FOR VIRTUAL OUTPUT 4

4. Program the FlexLogic™ equation for Virtual Output 3 by translating the logic into available FlexLogic™ parameters. The equation is formed one parameter at a time until the required logic is complete. It is generally easier to start at the output end of the equation and work back towards the input, as shown in the following steps. It is also recommended to list operator inputs from bottom to top. For demonstration, the final output will be arbitrarily identified as parameter 99, and each preceding parameter decremented by one in turn. Until accustomed to using FlexLogic™, it is suggested that a worksheet with a series of cells marked with the arbitrary parameter numbers be prepared, as shown below.

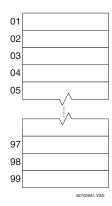


Figure 5-21: FLEXLOGIC™ WORKSHEET

- 5. Following the procedure outlined, start with parameter 99, as follows:
 - 99: The final output of the equation is Virtual Output 3, which is created by the operator "= Virt Op n". This parameter is therefore "= Virt Op 3."

98: The gate preceding the output is an AND, which in this case requires two inputs. The operator for this gate is a 2-input AND so the parameter is "AND(2)". Note that FlexLogic™ rules require that the number of inputs to most types of operators must be specified to identify the operands for the gate. As the 2-input AND will operate on the two operands preceding it, these inputs must be specified, starting with the lower.

- 97: This lower input to the AND gate must be passed through an inverter (the NOT operator) so the next parameter is "NOT". The NOT operator acts upon the operand immediately preceding it, so specify the inverter input next.
- 96: The input to the NOT gate is to be contact input H1c. The ON state of a contact input can be programmed to be set when the contact is either open or closed. Assume for this example the state is to be ON for a closed contact. The operand is therefore "Cont Ip H1c On".
- 95: The last step in the procedure is to specify the upper input to the AND gate, the operated state of digital element 2. This operand is "DIG ELEM 2 OP".

Writing the parameters in numerical order can now form the equation for VIRTUAL OUTPUT 3:

```
[95] DIG ELEM 2 OP
[96] Cont Ip H1c On
[97] NOT
[98] AND(2)
[99] = Virt Op 3
```

It is now possible to check that this selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the Logic for Virtual Output 3 diagram as a check.

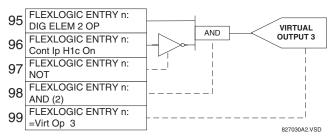


Figure 5-22: FLEXLOGIC™ EQUATION FOR VIRTUAL OUTPUT 3

- 6. Repeating the process described for VIRTUAL OUTPUT 3, select the FlexLogic™ parameters for Virtual Output 4.
 - 99: The final output of the equation is VIRTUAL OUTPUT 4 which is parameter "= Virt Op 4".
 - 98: The operator preceding the output is Timer 2, which is operand "TIMER 2". Note that the settings required for the timer are established in the timer programming section.
 - 97: The operator preceding Timer 2 is OR #2, a 3-input OR, which is parameter "OR(3)".
 - 96: The lowest input to OR #2 is operand "Cont Ip H1c On".
 - 95: The center input to OR #2 is operand "TIMER 1".
 - 94: The input to Timer 1 is operand "Virt Op 3 On".
 - 93: The upper input to OR #2 is operand "LATCH (S,R)".
 - 92: There are two inputs to a latch, and the input immediately preceding the latch reset is OR #1, a 4-input OR, which is parameter "OR(4)".
 - 91: The lowest input to OR #1 is operand "Virt Op 3 On".
 - 90: The input just above the lowest input to OR #1 is operand "XOR(2)".
 - 89: The lower input to the XOR is operand "DIG ELEM 1 PKP".
 - 88: The upper input to the XOR is operand "Virt Ip 1 On".
 - 87: The input just below the upper input to OR #1 is operand "Virt Op 2 On".
 - 86: The upper input to OR #1 is operand "Virt Op 1 On".
 - 85: The last parameter is used to set the latch, and is operand "Virt Op 4 On".

The equation for VIRTUAL OUTPUT 4 is:

```
[85] Virt Op 4 On
[86] Virt Op 1 On
[87] Virt Op 2 On
[88] Virt Ip 1 On
[89] DIG ELEM 1 PKP
[90] XOR(2)
[91] Virt Op 3 On
[92] OR(4)
[93] LATCH (S,R)
[94] Virt Op 3 On
[95] TIMER 1
[96] Cont Ip H1c On
[97] OR(3)
[98] TIMER 2
[99] = Virt Op 4
```

It is now possible to check that the selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the Logic for Virtual Output 4 diagram as a check.

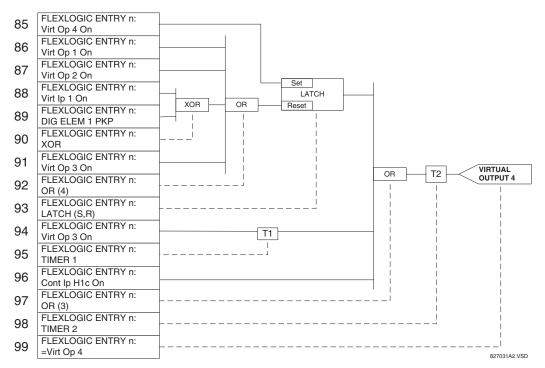


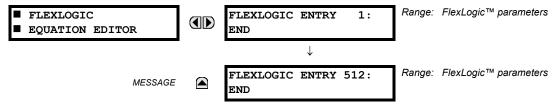
Figure 5-23: FLEXLOGIC™ EQUATION FOR VIRTUAL OUTPUT 4

7. Now write the complete FlexLogic™ expression required to implement the logic, making an effort to assemble the equation in an order where Virtual Outputs that will be used as inputs to operators are created before needed. In cases where a lot of processing is required to perform logic, this may be difficult to achieve, but in most cases will not cause problems as all logic is calculated at least 4 times per power frequency cycle. The possibility of a problem caused by sequential processing emphasizes the necessity to test the performance of FlexLogic™ before it is placed in service.

In the following equation, Virtual Output 3 is used as an input to both Latch 1 and Timer 1 as arranged in the order shown below:

```
DIG ELEM 2 OP
Cont Ip H1c On
NOT
AND(2)
```

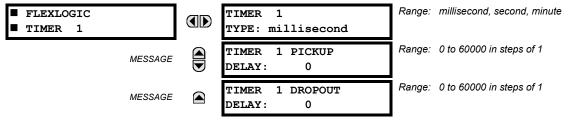
```
= Virt Op 3
Virt Op 4 On
Virt Op 1 On
Virt Op 2 On
Virt Ip 1 On
DIG ELEM 1 PKP
XOR (2)
Virt Op 3 On
OR (4)
LATCH (S,R)
Virt Op 3 On
TIMER 1
Cont Ip H1c On
OR (3)
TIMER 2
= Virt Op 4
END
```


In the expression above, the Virtual Output 4 input to the 4-input OR is listed before it is created. This is typical of a form of feedback, in this case, used to create a seal-in effect with the latch, and is correct.

8. The logic should always be tested after it is loaded into the relay, in the same fashion as has been used in the past. Testing can be simplified by placing an "END" operator within the overall set of FlexLogic™ equations. The equations will then only be evaluated up to the first "END" operator.

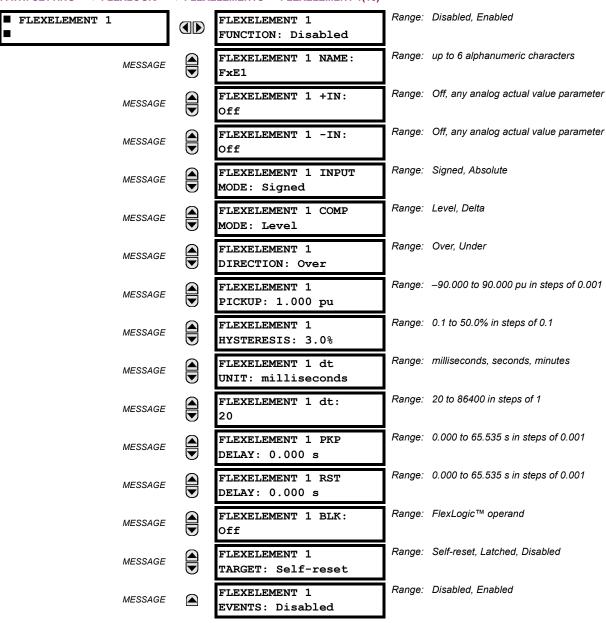
The "On" and "Off" operands can be placed in an equation to establish a known set of conditions for test purposes, and the "INSERT" and "DELETE" commands can be used to modify equations.

5.4.5 FLEXLOGIC™ EQUATION EDITOR



There are 512 FlexLogic™ entries available, numbered from 1 to 512, with default 'END' entry settings. If a "Disabled" Element is selected as a FlexLogic™ entry, the associated state flag will never be set to '1'. The '+/–' key may be used when editing FlexLogic™ equations from the keypad to quickly scan through the major parameter types.

5.4.6 FLEXLOGIC™ TIMERS


PATH: SETTINGS $\Rightarrow \emptyset$ FLEXLOGIC $\Rightarrow \emptyset$ FLEXLOGIC TIMERS \Rightarrow FLEXLOGIC TIMER 1(32)

There are 32 identical FlexLogic™ timers available. These timers can be used as operators for FlexLogic™ equations.

- TIMER 1 TYPE: This setting is used to select the time measuring unit.
- TIMER 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set this function to "0".
- TIMER 1 DROPOUT DELAY: Sets the time delay to dropout. If a dropout delay is not required, set this function to "0".

PATH: SETTING ⇒ \$\Partial\$ FLEXLOGIC \$\Rightarrow\$ FLEXELEMENT 1(16)

A FlexElement™ is a universal comparator that can be used to monitor any analog actual value calculated by the relay or a net difference of any two analog actual values of the same type. The effective operating signal could be treated as a signed number or its absolute value could be used as per user's choice.

The element can be programmed to respond either to a signal level or to a rate-of-change (delta) over a pre-defined period of time. The output operand is asserted when the operating signal is higher than a threshold or lower than a threshold as per user's choice.

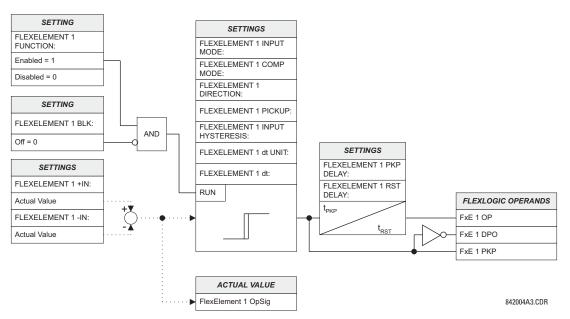


Figure 5-24: FLEXELEMENT™ SCHEME LOGIC

The **FLEXELEMENT 1 +IN** setting specifies the first (non-inverted) input to the FlexElement[™]. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands.

This **FLEXELEMENT 1 –IN** setting specifies the second (inverted) input to the FlexElement™. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands. This input should be used to invert the signal if needed for convenience, or to make the element respond to a differential signal such as for a top-bottom oil temperature differential alarm. The element will not operate if the two input signals are of different types, for example if one tries to use active power and phase angle to build the effective operating signal.

The element responds directly to the differential signal if the **FLEXELEMENT 1 INPUT MODE** setting is set to "Signed". The element responds to the absolute value of the differential signal if this setting is set to "Absolute". Sample applications for the "Absolute" setting include monitoring the angular difference between two phasors with a symmetrical limit angle in both directions; monitoring power regardless of its direction, or monitoring a trend regardless of whether the signal increases of decreases.

The element responds directly to its operating signal – as defined by the FLEXELEMENT 1 +IN, FLEXELEMENT 1 –IN and FLEX-ELEMENT 1 INPUT MODE settings – if the FLEXELEMENT 1 COMP MODE setting is set to "Threshold". The element responds to the rate of change of its operating signal if the FLEXELEMENT 1 COMP MODE setting is set to "Delta". In this case the FLEXELE-MENT 1 dt UNIT and FLEXELEMENT 1 dt settings specify how the rate of change is derived.

The **FLEXELEMENT 1 DIRECTION** setting enables the relay to respond to either high or low values of the operating signal. The following figure explains the application of the **FLEXELEMENT 1 DIRECTION**, **FLEXELEMENT 1 PICKUP** and **FLEXELEMENT 1 HYS-TERESIS** settings.

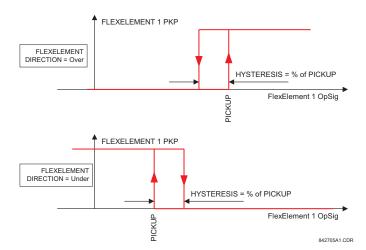


Figure 5–25: FLEXELEMENT™ DIRECTION, PICKUP, AND HYSTERESIS

In conjunction with the **FLEXELEMENT 1 INPUT MODE** setting the element could be programmed to provide two extra characteristics as shown in the figure below.

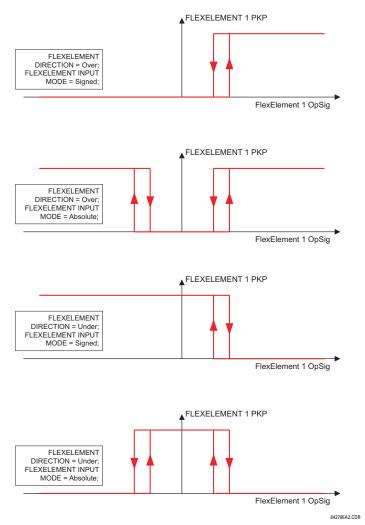


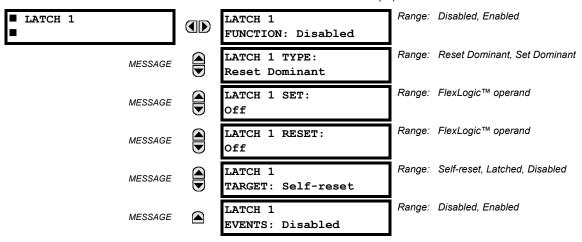
Figure 5-26: FLEXELEMENT™ INPUT MODE SETTING

The **FLEXELEMENT 1 PICKUP** setting specifies the operating threshold for the effective operating signal of the element. If set to "Over", the element picks up when the operating signal exceeds the **FLEXELEMENT 1 PICKUP** value. If set to "Under", the element picks up when the operating signal falls below the **FLEXELEMENT 1 PICKUP** value.

The **FLEXELEMENT 1 HYSTERESIS** setting controls the element dropout. It should be noticed that both the operating signal and the pickup threshold can be negative facilitating applications such as reverse power alarm protection. The FlexElement™ can be programmed to work with all analog actual values measured by the relay. The **FLEXELEMENT 1 PICKUP** setting is entered in per-unit values using the following definitions of the base units:

Table 5-7: FLEXELEMENT™ BASE UNITS

dcmA	BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and –IN inputs.	
FREQUENCY	f_{BASE} = 1 Hz	
PHASE ANGLE	ϕ_{BASE} = 360 degrees (see the UR angle referencing convention)	
POWER FACTOR	PF _{BASE} = 1.00	
RTDs	BASE = 100°C	
SENSITIVE DIR POWER (Sns Dir Power)	P_{BASE} = maximum value of 3 × V_{BASE} × I_{BASE} for the +IN and -IN inputs of the sources configured for the sensitive power directional element(s).	
SOURCE CURRENT	I _{BASE} = maximum nominal primary RMS value of the +IN and –IN inputs	
SOURCE ENERGY (Positive and Negative Watthours, Positive and Negative Varhours)	E _{BASE} = 10000 MWh or MVAh, respectively	
SOURCE POWER	P_{BASE} = maximum value of $V_{BASE} \times I_{BASE}$ for the +IN and –IN inputs	
SOURCE VOLTAGE	V _{BASE} = maximum nominal primary RMS value of the +IN and –IN inputs	
SYNCHROCHECK (Max Delta Volts)	V _{BASE} = maximum primary RMS value of all the sources related to the +IN and –IN inputs	


The **FLEXELEMENT 1 HYSTERESIS** setting defines the pickup–dropout relation of the element by specifying the width of the hysteresis loop as a percentage of the pickup value as shown in the FlexElement™ Direction, Pickup, and Hysteresis diagram.

The FLEXELEMENT 1 DT UNIT setting specifies the time unit for the setting FLEXELEMENT 1 dt. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta". The FLEXELEMENT 1 DT setting specifies duration of the time interval for the rate of change mode of operation. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta".

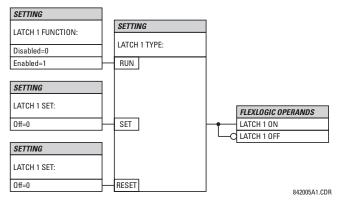
This **FLEXELEMENT 1 PKP DELAY** setting specifies the pickup delay of the element. The **FLEXELEMENT 1 RST DELAY** setting specifies the reset delay of the element.

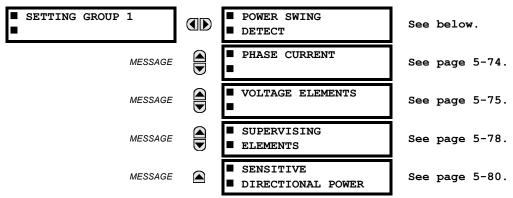
5.4.8 NON-VOLATILE LATCHES

The non-volatile latches provide a permanent logical flag that is stored safely and will not reset upon reboot after the relay is powered down. Typical applications include sustaining operator commands or permanently block relay functions, such as Autorecloser, until a deliberate HMI action resets the latch. The settings, logic, and element operation are described below:

- LATCH 1 TYPE: This setting characterizes Latch 1 to be Set- or Reset-dominant.
- LATCH 1 SET: If asserted, the specified FlexLogic™ operands 'sets' Latch 1.
- LATCH 1 RESET: If asserted, the specified FlexLogic™ operand 'resets' Latch 1.

LATCH N TYPE	LATCH N SET	LATCH N RESET	LATCH N ON	LATCH N OFF
Reset	ON	OFF	ON	OFF
Dominant	OFF	OFF	Previous State	Previous State
	ON	ON	OFF	ON
	OFF	ON	OFF	ON
Set Dominant	ON	OFF	ON	OFF
	ON	ON	ON	OFF
	OFF	OFF	Previous State	Previous State
	OFF	ON	OFF	ON

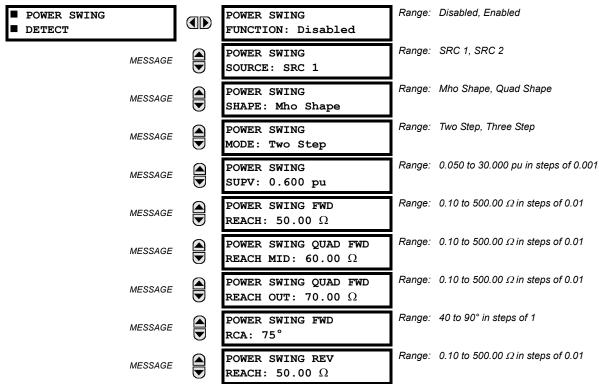



Figure 5-27: NON-VOLATILE LATCH OPERATION TABLE (N=1 to 16) AND LOGIC

5.5.1 OVERVIEW

Each protection element can be assigned up to six different sets of settings according to Setting Group designations 1 to 6. The performance of these elements is defined by the active Setting Group at a given time. Multiple setting groups allow the user to conveniently change protection settings for different operating situations (e.g. altered power system configuration, season of the year). The active setting group can be preset or selected via the **SETTING GROUPS** menu (see the *Control Elements* section later in this chapter). See also the *Introduction to Elements* section at the beginning of this chapter.

5.5.2 SETTING GROUP



Each of the six Setting Group menus is identical. **SETTING GROUP 1** (the default active group) automatically becomes active if no other group is active (see the Control Elements section for additional details).

5.5.3 POWER SWING DETECT

PATH: SETTINGS $\Rightarrow \circlearrowleft$ Grouped elements \Rightarrow Setting group 1(6) $\Rightarrow \circlearrowleft$ Power Swing detect

MESSAGE	POWER SWING QUAD REV REACH MID: 60.00 Ω	Range:	0.10 to 500.00 Ω in steps of 0.01
MESSAGE	POWER SWING QUAD REV REACH OUT: 70.00 Ω	Range:	0.10 to 500.00 Ω in steps of 0.01
MESSAGE	POWER SWING REV RCA: 75°	Range:	40 to 90° in steps of 1
MESSAGE	POWER SWING OUTER LIMIT ANGLE: 120°	Range:	40 to 140° in steps of 1
MESSAGE	POWER SWING MIDDLE LIMIT ANGLE: 90°	Range:	40 to 140° in steps of 1
MESSAGE	POWER SWING INNER LIMIT ANGLE: 60°	Range:	40 to 140° in steps of 1
MESSAGE	POWER SWING OUTER RGT BLD: 100.00 Ω	Range:	0.10 to 500.00 Ω in steps of 0.01
MESSAGE	POWER SWING OUTER LFT BLD: 100.00 Ω	Range:	0.10 to 500.00 Ω in steps of 0.01
MESSAGE	POWER SWING MIDDLE RGT BLD: 100.00 Ω	Range:	0.10 to 500.00 Ω in steps of 0.01
MESSAGE	POWER SWING MIDDLE LFT BLD: 100.00 Ω	Range:	0.10 to 500.00 Ω in steps of 0.01
MESSAGE	POWER SWING INNER RGT BLD: 100.00 Ω	Range:	0.10 to 500.00 Ω in steps of 0.01
MESSAGE	POWER SWING INNER LFT BLD: 100.00 Ω	Range:	0.10 to 500.00 Ω in steps of 0.01
MESSAGE	POWER SWING PICKUP DELAY 1: 0.030 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	POWER SWING RESET DELAY 1: 0.050 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	POWER SWING PICKUP DELAY 2: 0.017 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	POWER SWING PICKUP DELAY 3: 0.009 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	POWER SWING PICKUP DELAY 4: 0.017 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	POWER SWING SEAL-IN DELAY: 0.400 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	POWER SWING TRIP MODE: Delayed	Range:	Early, Delayed
MESSAGE	POWER SWING BLK: Off	Range:	Flexlogic™ operand
MESSAGE	POWER SWING TARGET: Self-Reset	Range:	Self-Reset, Latched, Disabled
MESSAGE	POWER SWING EVENTS: Disabled	Range:	Disabled, Enabled
		l	

5-66

5 SETTINGS 5.5 GROUPED ELEMENTS

The Power Swing Detect element provides both power swing blocking and out-of-step tripping functions. The element measures the positive-sequence apparent impedance and traces its locus with respect to either two or three user-selectable operating characteristic boundaries. Upon detecting appropriate timing relations, the blocking and/or tripping indication is given through FlexLogic™ operands. The element incorporates an adaptive disturbance detector. This function does not trigger on power swings, but is capable of detecting faster disturbances − faults in particular − that may occur during power swings. Operation of this dedicated disturbance detector is signaled via the POWER SWING 50DD operand.

The Power Swing Detect element asserts two outputs intended for blocking selected protection elements on power swings: POWER SWING BLOCK is a traditional signal that is safely asserted for the entire duration of the power swing, and POWER SWING UN/BLOCK is established in the same way, but resets when an extra disturbance is detected during the power swing. The POWER SWING UN/BLOCK operand may be used for blocking selected protection elements if the intent is to respond to faults during power swing conditions.

Different protection elements respond differently to power swings. If tripping is required for faults during power swing conditions, some elements may be blocked permanently (using the POWER SWING BLOCK operand), and others may be blocked and dynamically unblocked upon fault detection (using the POWER SWING UN/BLOCK operand).

The operating characteristic and logic figures should be viewed along with the following discussion to develop an understanding of the operation of the element.

The Power Swing Detect element operates in three-step or two-step mode:

- Three-step operation: The power swing blocking sequence essentially times the passage of the locus of the positive-sequence impedance between the outer and the middle characteristic boundaries. If the locus enters the outer characteristic (indicated by the POWER SWING OUTER FlexLogic™ operand) but stays outside the middle characteristic (indicated by the POWER SWING MIDDLE FlexLogic™ operand) for an interval longer than POWER SWING PICKUP DELAY 1, the power swing blocking signal (POWER SWING BLOCK FlexLogic™ operand) is established and sealed-in. The blocking signal resets when the locus leaves the outer characteristic, but not sooner than the POWER SWING RESET DELAY 1 time.
- **Two-step operation:** If the 2-step mode is selected, the sequence is identical, but it is the outer and inner characteristics that are used to time the power swing locus.

The Out-of-Step Tripping feature operates as follows for three-step and two-step Power Swing Detection modes:

- Three-step operation: The out-of-step trip sequence identifies unstable power swings by determining if the impedance locus spends a finite time between the outer and middle characteristics and then a finite time between the middle and inner characteristics. The first step is similar to the power swing blocking sequence. After timer POWER SWING PICKUP DELAY 1 times out, Latch 1 is set as long as the impedance stays within the outer characteristic.
 - If afterwards, at any time (given the impedance stays within the outer characteristic), the locus enters the middle characteristic but stays outside the inner characteristic for a period of time defined as **POWER SWING PICKUP DELAY 2**, Latch 2 is set as long as the impedance stays inside the outer characteristic. If afterwards, at any time (given the impedance stays within the outer characteristic), the locus enters the inner characteristic and stays there for a period of time defined as **POWER SWING PICKUP DELAY 3**, Latch 2 is set as long as the impedance stays inside the outer characteristic; the element is now ready to trip.
 - If the "Early" trip mode is selected, the POWER SWING TRIP operand is set immediately and sealed-in for the interval set by the **POWER SWING SEAL-IN DELAY**. If the "Delayed" trip mode is selected, the element waits until the impedance locus leaves the inner characteristic, then times out the **POWER SWING PICKUP DELAY 2** and sets Latch 4; the element is now ready to trip. The trip operand is set later, when the impedance locus leaves the outer characteristic.
- Two-step operation: The 2-step mode of operation is similar to the 3-step mode with two exceptions. First, the initial stage monitors the time spent by the impedance locus between the outer and inner characteristics. Second, the stage involving the POWER SWING PICKUP DELAY 2 timer is bypassed. It is up to the user to integrate the blocking (POWER SWING BLOCK) and tripping (POWER SWING TRIP) FlexLogic™ operands with other protection functions and output contacts in order to make this element fully operational.

The element can be set to use either lens (mho) or rectangular (quad) characteristics as illustrated below. When set to "Mho", the element applies the right and left blinders as well. If the blinders are not required, their settings should be set high enough to effectively disable the blinders.

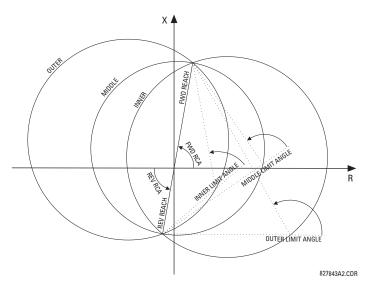


Figure 5–28: POWER SWING DETECT MHO OPERATING CHARACTERISTICS

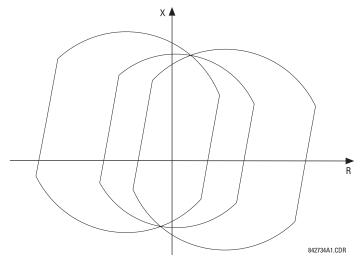


Figure 5-29: EFFECTS OF BLINDERS ON THE MHO CHARACTERISTICS

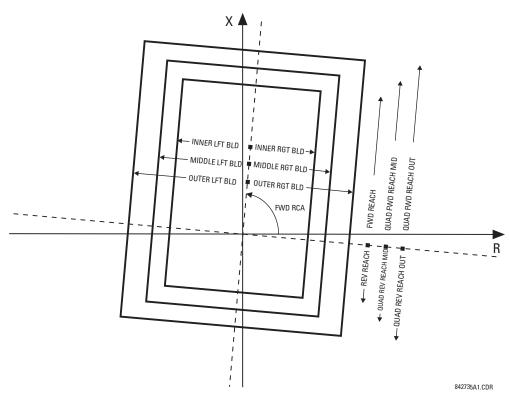


Figure 5-30: POWER SWING DETECT QUAD OPERATING CHARACTERISTICS

The FlexLogic™ output operands for the Power Swing Detect element are described below:

- The POWER SWING OUTER, POWER SWING MIDDLE, POWER SWING INNER, POWER SWING TMR2 PKP, POWER SWING TMR3 PKP, and POWER SWING TMR4 PKP FlexLogic™ operands are auxiliary operands that could be used to facilitate testing and special applications.
- The POWER SWING BLOCK FlexLogic[™] operand shall be used to block selected protection elements such as distance functions.
- The POWER SWING UN/BLOCK FlexLogic[™] operand shall be used to block those protection elements that are intended to be blocked under power swings, but subsequently unblocked should a fault occur after the power swing blocking condition has been established.
- The POWER SWING 50DD FlexLogic[™] operand indicates that an adaptive disturbance detector integrated with the element has picked up. This operand will trigger on faults occurring during power swing conditions. This includes both three-phase and single-pole-open conditions.
- The POWER SWING INCOMING FlexLogic™ operand indicates an unstable power swing with an incoming locus (the locus enters the inner characteristic).
- The POWER SWING OUTGOING FlexLogic™ operand indicates an unstable power swing with an outgoing locus (the
 locus leaving the outer characteristic). This operand can be used to count unstable swings and take certain action only
 after pre-defined number of unstable power swings.
- The POWER SWING TRIP FlexLogic[™] operand is a trip command.

The settings for the Power Swing Detect element are described below:

- **POWER SWING FUNCTION:** This setting enables/disables the entire Power Swing Detection element. The setting applies to both power swing blocking and out-of-step tripping functions.
- POWER SWING SOURCE: The source setting identifies the Signal Source for both blocking and tripping functions.
- **POWER SWING SHAPE**: This setting selects the shapes (either "Mho" or "Quad") of the outer, middle and, inner characteristics of the power swing detect element. The operating principle is not affected. The "Mho" characteristics use the left and right blinders.

5.5 GROUPED ELEMENTS 5 SETTINGS

• POWER SWING MODE: This setting selects between the 2-step and 3-step operating modes and applies to both power swing blocking and out-of-step tripping functions. The 3-step mode applies if there is enough space between the maximum load impedances and distance characteristics of the relay that all three (outer, middle, and inner) characteristics can be placed between the load and the distance characteristics. Whether the spans between the outer and middle as well as the middle and inner characteristics are sufficient should be determined by analysis of the fastest power swings expected in correlation with settings of the power swing timers.

The 2-step mode uses only the outer and inner characteristics for both blocking and tripping functions. This leaves more space in heavily loaded systems to place two power swing characteristics between the distance characteristics and the maximum load, but allows for only one determination of the impedance trajectory.

- POWER SWING SUPV: A common overcurrent pickup level supervises all three power swing characteristics. The supervision responds to the positive sequence current.
- POWER SWING FWD REACH: This setting specifies the forward reach of all three mho characteristics and the inner
 quad characteristic. For a simple system consisting of a line and two equivalent sources, this reach should be higher
 than the sum of the line and remote source positive-sequence impedances. Detailed transient stability studies may be
 needed for complex systems in order to determine this setting. The angle of this reach impedance is specified by the
 POWER SWING FWD RCA setting.
- POWER SWING QUAD FWD REACH MID: This setting specifies the forward reach of the middle quad characteristic.
 The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- POWER SWING QUAD FWD REACH OUT: This setting specifies the forward reach of the outer quad characteristic.
 The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- POWER SWING FWD RCA: This setting specifies the angle of the forward reach impedance for the mho characteristics, angles of all the blinders, and both forward and reverse reach impedances of the quad characteristics.
- POWER SWING REV REACH: This setting specifies the reverse reach of all three mho characteristics and the inner
 quad characteristic. For a simple system of a line and two equivalent sources, this reach should be higher than the
 positive-sequence impedance of the local source. Detailed transient stability studies may be needed for complex systems to determine this setting. The angle of this reach impedance is specified by the POWER SWING REV RCA setting for
 "Mho", and the POWER SWING FWD RCA setting for "Quad".
- POWER SWING QUAD REV REACH MID: This setting specifies the reverse reach of the middle quad characteristic.
 The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- POWER SWING QUAD REV REACH OUT: This setting specifies the reverse reach of the outer quad characteristic.
 The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- POWER SWING REV RCA: This setting specifies the angle of the reverse reach impedance for the mho characteristics. This setting applies to mho shapes only.
- POWER SWING OUTER LIMIT ANGLE: This setting defines the outer power swing characteristic. The convention depicted in the Power Swing Detect Characteristic diagram should be observed: values greater than 90° result in an 'apple' shaped characteristic; values less than 90° result in a lens shaped characteristic. This angle must be selected in consideration of the maximum expected load. If the maximum load angle is known, the outer limit angle should be coordinated with a 20° security margin. Detailed studies may be needed for complex systems to determine this setting. This setting applies to mho shapes only.
- POWER SWING MIDDLE LIMIT ANGLE: This setting defines the middle power swing detect characteristic. It is relevant only for the 3-step mode. A typical value would be close to the average of the outer and inner limit angles. This setting applies to mho shapes only.
- POWER SWING INNER LIMIT ANGLE: This setting defines the inner power swing detect characteristic. The inner
 characteristic is used by the out-of-step tripping function: beyond the inner characteristic out-of-step trip action is definite (the actual trip may be delayed as per the TRIP MODE setting). Therefore, this angle must be selected in consideration to the power swing angle beyond which the system becomes unstable and cannot recover.

5 SETTINGS 5.5 GROUPED ELEMENTS

The inner characteristic is also used by the power swing blocking function in the 2-step mode. In this case, set this angle large enough so that the characteristics of the distance elements are safely enclosed by the inner characteristic. This setting applies to mho shapes only.

- POWER SWING OUTER, MIDDLE, and INNER RGT BLD: These settings specify the resistive reach of the right blinder. The blinder applies to both "Mho" and "Quad" characteristics. Set these value high if no blinder is required for the "Mho" characteristic.
- POWER SWING OUTER, MIDDLE, and INNER LFT BLD: These settings specify the resistive reach of the left blinder.
 Enter a positive value; the relay automatically uses a negative value. The blinder applies to both "Mho" and "Quad" characteristics. Set this value high if no blinder is required for the "Mho" characteristic.
- POWER SWING PICKUP DELAY 1: All the coordinating timers are related to each other and should be set to detect the fastest expected power swing and produce out-of-step tripping in a secure manner. The timers should be set in consideration to the power swing detect characteristics, mode of power swing detect operation and mode of out-of-step tripping. This timer defines the interval that the impedance locus must spend between the outer and inner characteristics (2-step operating mode), or between the outer and middle characteristics (3-step operating mode) before the power swing blocking signal is established. This time delay must be set shorter than the time required for the impedance locus to travel between the two selected characteristics during the fastest expected power swing. This setting is relevant for both power swing blocking and out-of-step tripping.
- POWER SWING RESET DELAY 1: This setting defines the dropout delay for the power swing blocking signal. Detection of a condition requiring a Block output sets Latch 1 after PICKUP DELAY 1 time. When the impedance locus leaves the outer characteristic, timer POWER SWING RESET DELAY 1 is started. When the timer times-out the latch is reset. This setting should be selected to give extra security for the power swing blocking action.
- POWER SWING PICKUP DELAY 2: Controls the out-of-step tripping function in the 3-step mode only. This timer
 defines the interval the impedance locus must spend between the middle and inner characteristics before the second
 step of the out-of-step tripping sequence is completed. This time delay must be set shorter than the time required for
 the impedance locus to travel between the two characteristics during the fastest expected power swing.
- POWER SWING PICKUP DELAY 3: Controls the out-of-step tripping function only. It defines the interval the impedance locus must spend within the inner characteristic before the last step of the out-of-step tripping sequence is completed and the element is armed to trip. The actual moment of tripping is controlled by the TRIP MODE setting. This time delay is provided for extra security before the out-of-step trip action is executed.
- POWER SWING PICKUP DELAY 4: Controls the out-of-step tripping function in "Delayed" trip mode only. This timer
 defines the interval the impedance locus must spend outside the inner characteristic but within the outer characteristic
 before the element is armed for the delayed trip. The delayed trip occurs when the impedance leaves the outer characteristic. This time delay is provided for extra security and should be set considering the fastest expected power swing.
- POWER SWING SEAL-IN DELAY: The out-of-step trip FlexLogic[™] operand (POWER SWING TRIP) is sealed-in for the
 specified period of time. The sealing-in is crucial in the delayed trip mode, as the original trip signal is a very short
 pulse occurring when the impedance locus leaves the outer characteristic after the out-of-step sequence is completed.
- POWER SWING TRIP MODE: Selection of the "Early" trip mode results in an instantaneous trip after the last step in the out-of-step tripping sequence is completed. The Early trip mode will stress the circuit breakers as the currents at that moment are high (the electromotive forces of the two equivalent systems are approximately 180° apart). Selection of the "Delayed" trip mode results in a trip at the moment when the impedance locus leaves the outer characteristic. Delayed trip mode will relax the operating conditions for the breakers as the currents at that moment are low. The selection should be made considering the capability of the breakers in the system.
- **POWER SWING BLK:** This setting specifies the FlexLogic[™] operand used for blocking the out-of-step function only. The power swing blocking function is operational all the time as long as the element is enabled. The blocking signal resets the output POWER SWING TRIP operand but does not stop the out-of-step tripping sequence.

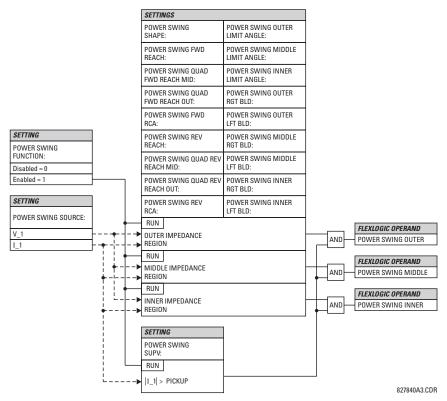


Figure 5-31: POWER SWING DETECT SCHEME LOGIC (1 of 3)

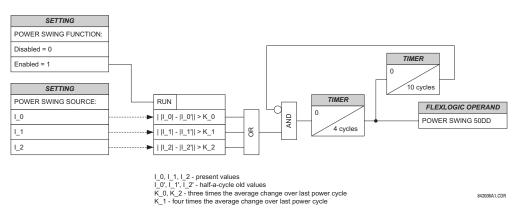


Figure 5-32: POWER SWING DETECT SCHEME LOGIC (2 of 3)

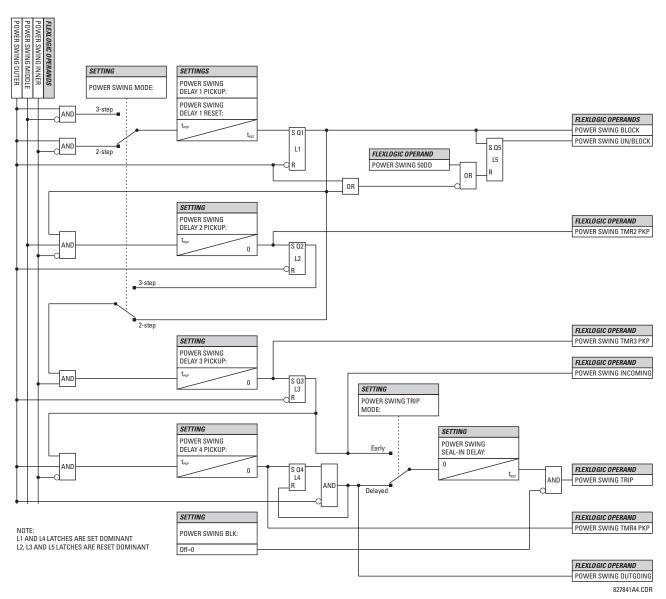
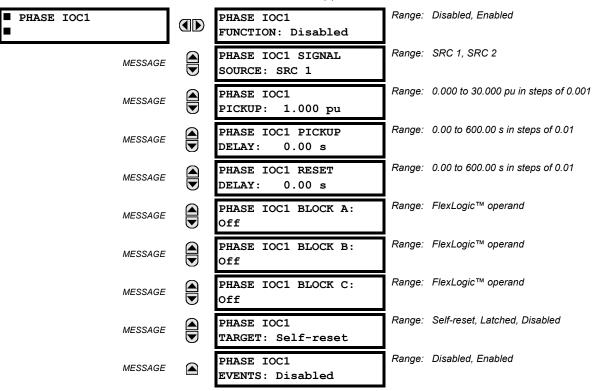



Figure 5–33: POWER SWING DETECT SCHEME LOGIC (3 of 3)

a) PHASE INSTANTANEOUS OVERCURRENT (ANSI 50P)

PATH: SETTINGS ⇒ \$\partial\$ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ PHASE CURRENT ⇒ PHASE IOC 1

The phase instantaneous overcurrent element may be used as an instantaneous element with no intentional delay or as a Definite Time element. The input current is the fundamental phasor magnitude.

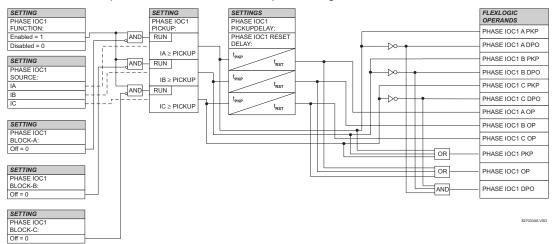
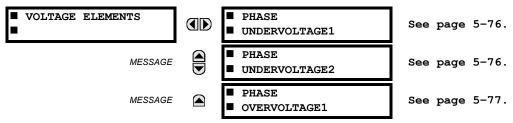



Figure 5-34: PHASE IOC1 SCHEME LOGIC

a) MAIN MENU

PATH: SETTINGS $\Rightarrow \emptyset$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \emptyset$ VOLTAGE ELEMENTS

These protection elements can be used for a variety of applications such as:

UNDERVOLTAGE DELAY setting.

Undervoltage Protection: For voltage sensitive loads, such as induction motors, a drop in voltage increases the drawn current which may cause dangerous overheating in the motor. The undervoltage protection feature can be used to either cause a trip or generate an alarm when the voltage drops below a specified voltage setting for a specified time delay.

Permissive Functions: The undervoltage feature may be used to block the functioning of external devices by operating an output relay when the voltage falls below the specified voltage setting. The undervoltage feature may also be used to block the functioning of other elements through the block feature of those elements.

Source Transfer Schemes: In the event of an undervoltage, a transfer signal may be generated to transfer a load from its normal source to a standby or emergency power source.

The undervoltage elements can be programmed to have a Definite Time delay characteristic. The Definite Time curve operates when the voltage drops below the pickup level for a specified period of time. The time delay is adjustable from 0 to 600.00 seconds in steps of 10 ms. The undervoltage elements can also be programmed to have an inverse time delay characteristic. The undervoltage delay setting defines the family of curves shown below.

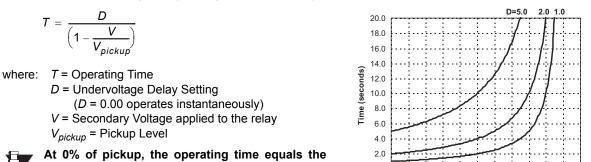
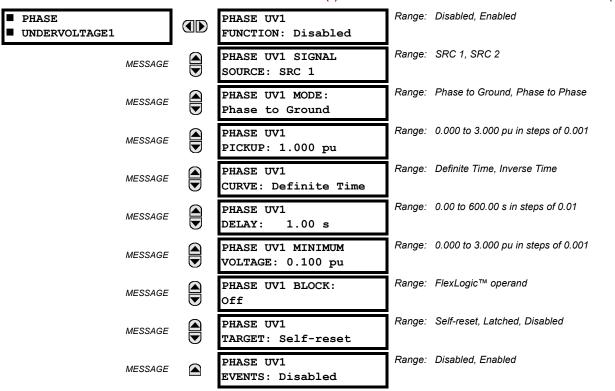


Figure 5-35: INVERSE TIME UNDERVOLTAGE CURVES


0.0

10 20 30 40 50 60 70 80 90 100 110 % of V pickup

NOTE

b) PHASE UNDERVOLTAGE (ANSI 27P)

PATH: SETTINGS $\Rightarrow \oplus$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \oplus$ VOLTAGE ELEMENTS \Rightarrow PHASE UNDERVOLTAGE1(2)

This element may be used to give a desired time-delay operating characteristic versus the applied fundamental voltage (phase-to-ground or phase-to-phase for Wye VT connection, or phase-to-phase for Delta VT connection) or as a Definite Time element. The element resets instantaneously if the applied voltage exceeds the dropout voltage. The delay setting selects the minimum operating time of the phase undervoltage. The minimum voltage setting selects the operating voltage below which the element is blocked (a setting of "0" will allow a dead source to be considered a fault condition).

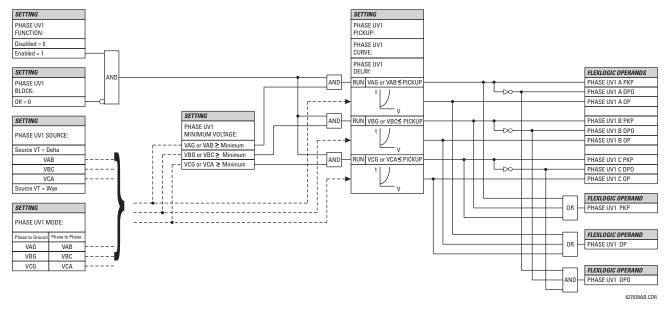
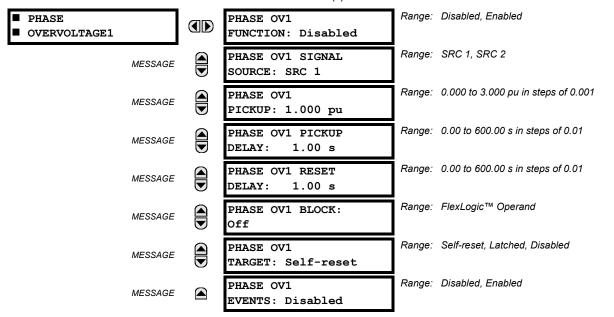



Figure 5-36: PHASE UNDERVOLTAGE1 SCHEME LOGIC

5 SETTINGS 5.5 GROUPED ELEMENTS

c) PHASE OVERVOLTAGE (ANSI 59P)

PATH: SETTINGS ⇒ ⊕ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ ⊕ VOLTAGE ELEMENTS ⇒ ⊕ PHASE OVERVOLTAGE1

The phase overvoltage element may be used as an instantaneous element with no intentional time delay or as a Definite Time element. The input voltage is the phase-to-phase voltage, either measured directly from Delta-connected VTs or as calculated from phase-to-ground (Wye) connected VTs. The specific voltages to be used for each phase are shown below.

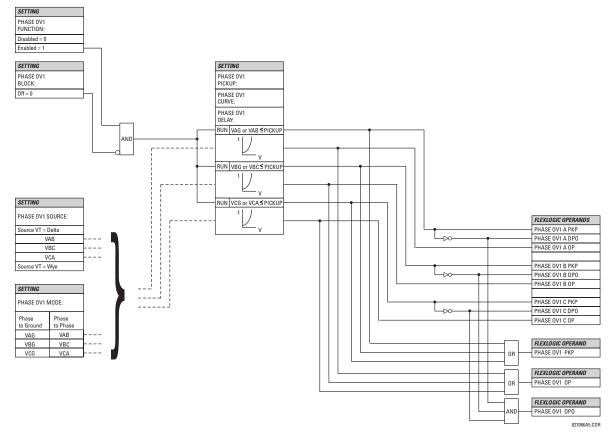
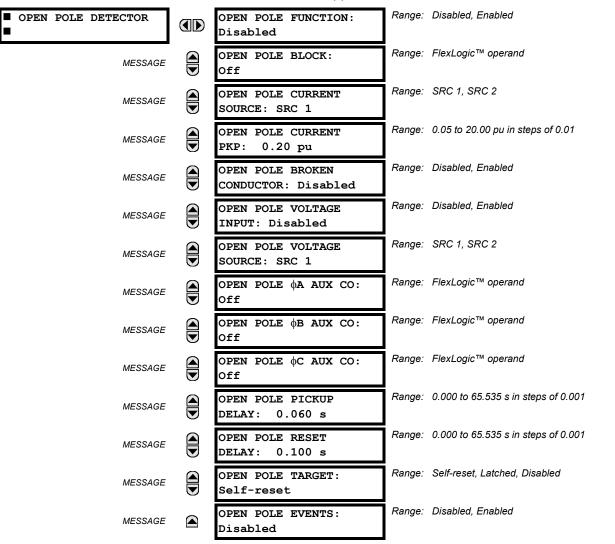



Figure 5-37: PHASE OVERVOLTAGE SCHEME LOGIC

a) OPEN POLE DETECTOR

PATH: SETTINGS $\Rightarrow \emptyset$ GROUPED ELEMENTS $\Rightarrow \emptyset$ SETTING GROUP 1(6) $\Rightarrow \emptyset$ SUPERVISING ELEMENTS $\Rightarrow \emptyset$ OPEN POLE DETECTOR

The Open Pole Detector logic is designed to detect if any pole of the associated circuit breaker is opened or the conductor is broken on the protected power line and cable. The output FlexLogic[™] operands can be used in three phase and single phase tripping schemes, in reclosing schemes, in blocking some elements (like CT failure) and in signaling or indication schemes. In single-pole tripping schemes, if OPEN POLE flag is set, any other subsequent fault should cause a three-phase trip regardless of fault type.

This element's logic is built on detecting absence of current in one phase during presence of current in other phases. Phases A, B and C breaker auxiliary contacts (if available) are used in addition to make a logic decision for single-pole tripping applications. If voltage input is available, Low Voltage function is used to detect absence of the monitoring voltage in the associated pole of the breaker.

- OPEN POLE FUNCTION: This setting is used to Enable/Disable operation of the element.
- OPEN POLE BLOCK: This setting is used to select a FlexLogic™ operand that blocks operation of the element.
- OPEN POLE CURRENT SOURCE: This setting is used to select the source for the current for the element.
- **OPEN POLE CURRENT PICKUP**: This setting is used to select the pickup value of the phase current. Pickup setting is the minimum of the range and likely to be somewhat above of the charging current of the line.

5 SETTINGS 5.5 GROUPED ELEMENTS

 OPEN POLE BROKEN CONDUCTOR: This setting enables or disables detection of Broken Conductor or Remote Pole Open conditions.

- **OPEN POLE VOLTAGE INPUT**: This setting is used to Enable/Disable voltage input in making a logical decision. If line VT (not bus VT) is available, voltage input can be set to "Enable".
- · OPEN POLE VOLTAGE SOURCE: This setting is used to select the source for the voltage for the element.
- OPEN POLE PICKUP DELAY: This setting is used to select the pickup delay of the element.
- OPEN POLE RESET DELAY: This setting is used to select the reset delay of the element. Depending on the particular
 application and whether 1-pole or 3-pole tripping mode is used, this setting should be thoroughly considered. It should
 comprise the reset time of the operating elements it used in conjunction with the breaker opening time and breaker
 auxiliary contacts discrepancy with the main contacts.

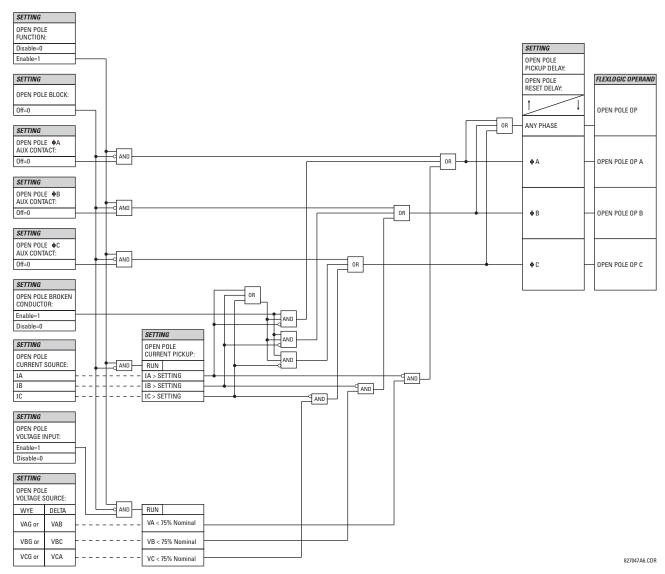
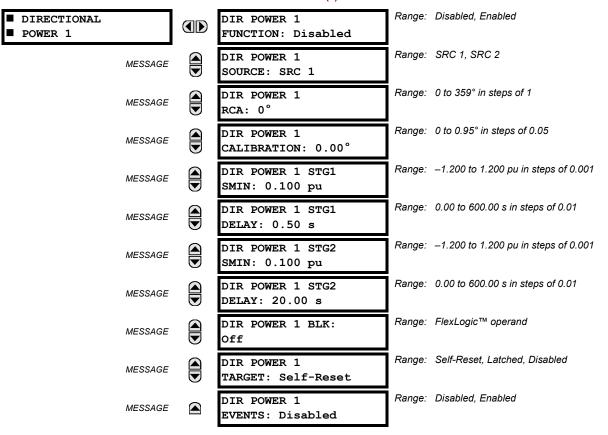



Figure 5-38: OPEN POLE DETECTOR SCHEME LOGIC

PATH: SETTINGS ⇒ ⊕ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ ⊕ SENSITIVE DIRECTIONAL... ⇒ DIRECTIONAL POWER 1(2)

The Directional Power element responds to three-phase active power and is designed for reverse power and low forward power applications for synchronous machines or interconnections involving co-generation. The relay measures the three-phase power from either full set of wye-connected VTs or full-set of delta-connected VTs. In the latter case, the two-wattmeter method is used. Refer to the *UR Metering Conventions* section in Chapter 6 for conventions regarding the active and reactive powers used by the Directional Power element.

The element has an adjustable characteristic angle and minimum operating power as shown in the Directional Power Characteristic diagram. The element responds to the following condition:

$$P\cos\theta + Q\sin\theta > SMIN$$
 (EQ 5.6)

where: *P* and *Q* are active and reactive powers as measured per the UR convention,

 θ is a sum of the element characteristic (DIR POWER 1 RCA) and calibration (DIR POWER 1 CALIBRATION) angles, and SMIN is the minimum operating power

The operating quantity is available for display as under ACTUAL VALUES \Rightarrow METERING $\Rightarrow \emptyset$ SENSITIVE DIRECTIONAL POWER 1(2). The element has two independent (as to the pickup and delay settings) stages for alarm and trip, respectively.

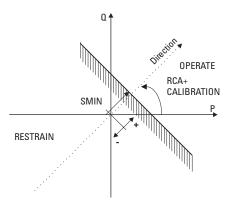


Figure 5-39: DIRECTIONAL POWER CHARACTERISTIC

By making the characteristic angle adjustable and providing for both negative and positive values of the minimum operating power a variety of operating characteristics can be achieved as presented in the figure below. For example, Figure (a) below shows settings for reverse power application, while Figure (b) shows settings for low forward power application.

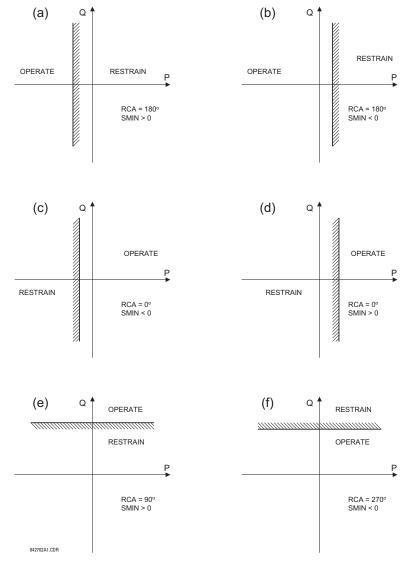


Figure 5-40: DIRECTIONAL POWER ELEMENT SAMPLE APPLICATIONS

5.5 GROUPED ELEMENTS 5 SETTINGS

 DIR POWER 1(2) RCA: Specifies the relay characteristic angle (RCA) for the directional power function. Application of this setting is threefold:

- 1. It allows the element to respond to active or reactive power in any direction (active overpower/underpower, etc.).
- Together with a precise calibration angle, it allows compensation for any CT and VT angular errors to permit more sensitive settings.
- 3. It allows for required direction in situations when the voltage signal is taken from behind a delta-wye connected power transformer and the phase angle compensation is required.

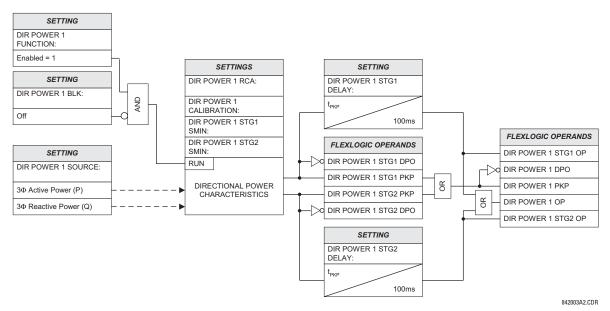
For example, the active overpower characteristic is achieved by setting **DIR POWER 1(2) RCA** to "0°", reactive overpower by setting **DIR POWER 1(2) RCA** to "90°", active underpower by setting **DIR POWER 1(2) RCA** to "180°", and reactive underpower by setting **DIR POWER 1(2) RCA** to "270°".

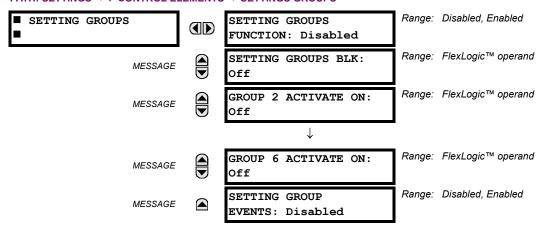
- DIR POWER 1(2) CALIBRATION: This setting allows the RCA to change in small steps of 0.05°. This may be useful
 when a small difference in VT and CT angular errors is to be compensated to permit more sensitive settings. This setting virtually enables calibration of the Directional Power function in terms of the angular error of applied VTs and CTs.
 - The element responds to the sum of the DIR POWER 1(2) RCA and DIR POWER 1(2) CALIBRATION settings.
- **DIR POWER 1(2) STG1 SMIN:** This setting specifies the minimum power as defined along the RCA angle for the stage 1 of the element. The positive values imply a shift towards the operate region along the RCA line. The negative values imply a shift towards the restrain region along the RCA line. Refer to the *Directional Power Sample Applications* figure for an illustration. Together with the RCA, this setting enables a wide range of operating characteristics. This setting applies to three-phase power and is entered in pu. The base quantity is 3 × VT pu base × CT pu base.

For example, a setting of 2% for a 200 MW machine, is 0.02×200 MW = 4 MW. If 7.967 kV is a primary VT voltage and 10 kA is a primary CT current, the source pu quantity is 239 MVA, and thus, SMIN should be set at 4 MW / 239 MVA = 0.0167 pu ≈ 0.017 pu. If the reverse power application is considered, RCA = 180° and SMIN = 0.017 pu.

The element drops out if the magnitude of the positive-sequence current becomes virtually zero, that is, it drops below the cutoff level.

 DIR POWER 1(2) STG1 DELAY: This setting specifies a time delay for Stage 1. For reverse power or low forward power applications for a synchronous machine, Stage 1 is typically applied for alarming and Stage 2 for tripping.




Figure 5-41: DIRECTIONAL POWER SCHEME LOGIC

5.6.1 OVERVIEW

Control elements are generally used for control rather than protection. See the *Introduction to Elements* section at the beginning of this chapter for further information.

5.6.2 SETTING GROUPS

The Setting Groups menu controls the activation/deactivation of up to six possible groups of settings in the **GROUPED ELE-MENTS** settings menu. The faceplate 'Settings In Use' LEDs indicate which active group (with a non-flashing energized LED) is in service.

The **SETTING GROUPS BLK** setting prevents the active setting group from changing when the FlexLogic[™] parameter is set to "On". This can be useful in applications where it is undesirable to change the settings under certain conditions, such as the breaker being open.

Each **GROUP** n **ACTIVATE ON** setting selects a FlexLogic[™] operand which, when set, will make the particular setting group active for use by any grouped element. A priority scheme ensures that only one group is active at a given time – the highest-numbered group which is activated by its **GROUP** n **ACTIVATE ON** parameter takes priority over the lower-numbered groups. There is no "activate on" setting for Group 1 (the default active group), because Group 1 automatically becomes active if no other group is active.

The relay can be set up via a FlexLogic™ equation to receive requests to activate or de-activate a particular non-default settings group. The following FlexLogic™ equation (see the figure below) illustrates requests via remote communications (e.g. VIRTUAL INPUT 1) or from a local contact input (e.g. H7a) to initiate the use of a particular settings group, and requests from several overcurrent pickup measuring elements to inhibit the use of the particular settings group. The assigned VIRTUAL OUTPUT 1 operand is used to control the "On" state of a particular settings group.

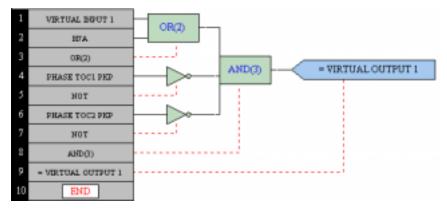
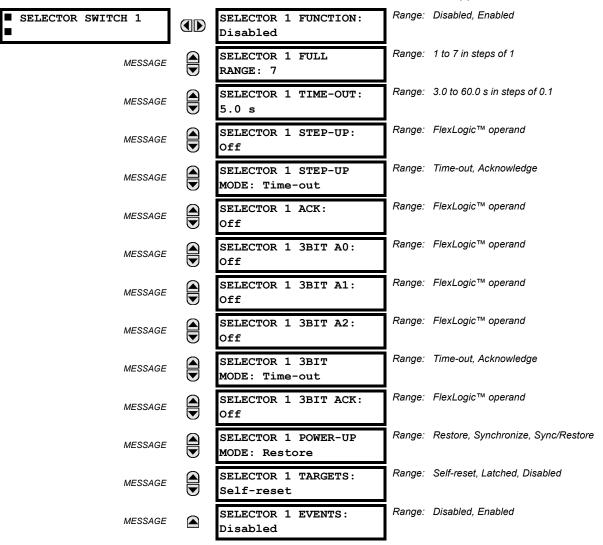



Figure 5-42: EXAMPLE FLEXLOGIC™ CONTROL OF A SETTINGS GROUP

The Selector Switch element is intended to replace a mechanical selector switch. Typical applications include setting group control or control of multiple logic sub-circuits in user-programmable logic.

The element provides for two control inputs. The step-up control allows stepping through selector position one step at a time with each pulse of the control input, such as a user-programmable pushbutton. The 3-bit control input allows setting the selector to the position defined by a 3-bit word.

The element allows pre-selecting a new position without applying it. The pre-selected position gets applied either after time-out or upon acknowledgement via separate inputs (user setting). The selector position is stored in non-volatile memory. Upon power-up, either the previous position is restored or the relay synchronizes to the current 3-bit word (user setting). Basic alarm functionality alerts the user under abnormal conditions; e.g. the 3-bit control input being out of range.

- **SELECTOR 1 FULL RANGE**: This setting defines the upper position of the selector. When stepping up through available positions of the selector, the upper position wraps up to the lower position (Position 1). When using a direct 3-bit control word for programming the selector to a desired position, the change would take place only if the control word is within the range of 1 to the **SELECTOR FULL RANGE**. If the control word is outside the range, an alarm is established by setting the SELECTOR ALARM FlexLogic[™] operand for 3 seconds.
- SELECTOR 1 TIME-OUT: This setting defines the time-out period for the selector. This value is used by the relay in the following two ways. When the SELECTOR STEP-UP MODE is "Time-out", the setting specifies the required period of

5 SETTINGS 5.6 CONTROL ELEMENTS

inactivity of the control input after which the pre-selected position is automatically applied. When the **SELECTOR STEP-UP MODE** is "Acknowledge", the setting specifies the period of time for the acknowledging input to appear. The timer is re-started by any activity of the control input. The acknowledging input must come before the **SELECTOR 1 TIME-OUT** timer expires; otherwise, the change will not take place and an alarm will be set.

- SELECTOR 1 STEP-UP: This setting specifies a control input for the selector switch. The switch is shifted to a new position at each rising edge of this signal. The position changes incrementally, wrapping up from the last (SELECTOR 1 FULL RANGE) to the first (Position 1). Consecutive pulses of this control operand must not occur faster than every 50 ms. After each rising edge of the assigned operand, the time-out timer is restarted and the SELECTOR SWITCH 1: POS Z CHNG INITIATED target message is displayed, where Z the pre-selected position. The message is displayed for the time specified by the FLASH MESSAGE TIME setting. The pre-selected position is applied after the selector times out ("Time-out" mode), or when the acknowledging signal appears before the element times out ("Acknowledge" mode). When the new position is applied, the relay displays the SELECTOR SWITCH 1: POSITION Z IN USE message. Typically, a user-programmable pushbutton is configured as the stepping up control input.
- SELECTOR 1 STEP-UP MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector will change its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require any explicit confirmation of the intent to change the selector's position. When set to "Acknowledge", the selector will change its position only after the intent is confirmed through a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector does not accept the change and an alarm is established by setting the SELECTOR STP ALARM output FlexLogic™ operand for 3 seconds.
- SELECTOR 1 ACK: This setting specifies an acknowledging input for the stepping up control input. The pre-selected
 position is applied on the rising edge of the assigned operand. This setting is active only under "Acknowledge" mode of
 operation. The acknowledging signal must appear within the time defined by the SELECTOR 1 TIME-OUT setting after the
 last activity of the control input. A user-programmable pushbutton is typically configured as the acknowledging input.
- **SELECTOR 1 3BIT A0, A1, and A2**: These settings specify a 3-bit control input of the selector. The 3-bit control word pre-selects the position using the following encoding convention:

A2	A1	Α0	POSITION
0	0	0	rest
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

The "rest" position (0, 0, 0) does not generate an action and is intended for situations when the device generating the 3-bit control word is having a problem. When **SELECTOR 1 3BIT MODE** is "Time-out", the pre-selected position is applied in **SELECTOR 1 TIME-OUT** seconds after the last activity of the 3-bit input. When **SELECTOR 1 3BIT MODE** is "Acknowledge", the pre-selected position is applied on the rising edge of the **SELECTOR 1 3BIT ACK** acknowledging input.

The stepping up control input (SELECTOR 1 STEP-UP) and the 3-bit control inputs (SELECTOR 1 3BIT A0 through A2) lockout mutually: once the stepping up sequence is initiated, the 3-bit control input is inactive; once the 3-bit control sequence is initiated, the stepping up input is inactive.

- SELECTOR 1 3BIT MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector changes its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require explicit confirmation to change the selector position. When set to "Acknowledge", the selector changes its position only after confirmation via a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector rejects the change and an alarm established by invoking the SELECTOR BIT ALARM FlexLogic™ operand for 3 seconds.
- SELECTOR 1 3BIT ACK: This setting specifies an acknowledging input for the 3-bit control input. The pre-selected position is applied on the rising edge of the assigned FlexLogic™ operand. This setting is active only under the "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the SELECTOR TIME-OUT setting after the last activity of the 3-bit control inputs. Note that the stepping up control input and 3-bit control input have independent acknowledging signals (SELECTOR 1 ACK and SELECTOR 1 3BIT ACK, accordingly).

• SELECTOR 1 POWER-UP MODE: This setting specifies behavior of the element on power up of the relay. When set to "Restore", the last selector position, stored in non-volatile memory, is restored after powering up the relay. When set to "Synchronize", the selector sets to the current 3-bit control input after powering up the relay. This operation does not wait for time-out or the acknowledging input. When powering up, the rest position (0, 0, 0) and the out-of-range 3-bit control words are also ignored, the output is set to Position 0 (no output operand selected), and an alarm is established (SELECTOR 1 PWR ALARM). If the position restored from memory is out-of-range, Position 0 (no output operand selected) is applied and an alarm is set (SELECTOR 1 PWR ALARM).

• SELECTOR 1 EVENTS: If enabled, the following events are logged:

EVENT NAME	DESCRIPTION
SELECTOR 1 POS Z	Selector 1 changed its position to Z.
SELECTOR 1 STP ALARM	The selector position pre-selected via the stepping up control input has not been confirmed before the time out.
SELECTOR 1 BIT ALARM	The selector position pre-selected via the 3-bit control input has not been confirmed before the time out.

The following figures illustrate the operation of the Selector Switch. In these diagrams, "T" represents a time-out setting.

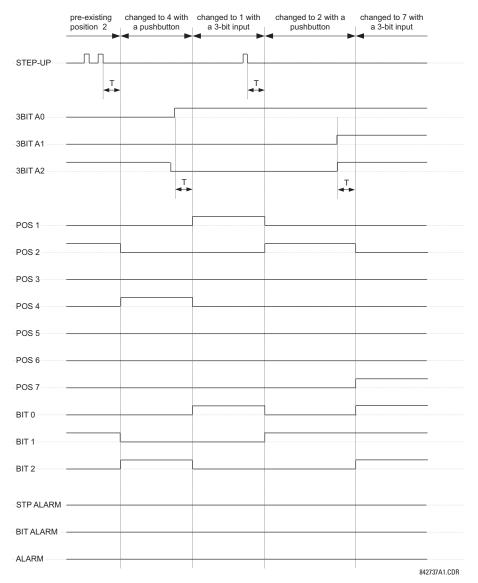


Figure 5-43: TIME-OUT MODE

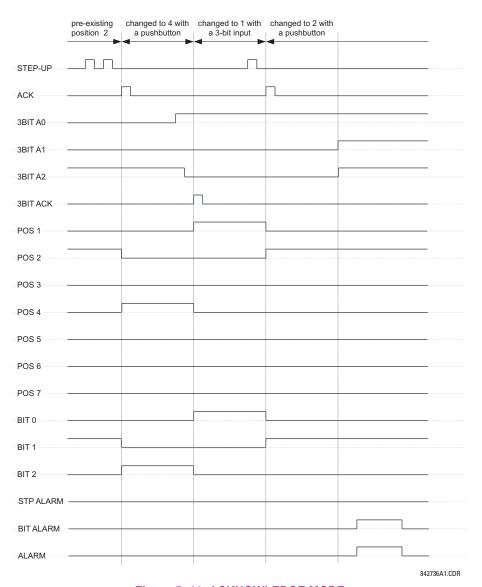


Figure 5-44: ACKNOWLEDGE MODE

APPLICATION EXAMPLE

5.6 CONTROL ELEMENTS

Consider an application where the selector switch is used to control Setting Groups 1 through 4 in the relay. The setting groups are to be controlled from both User-Programmable Pushbutton 1 and from an external device via Contact Inputs 1 through 3. The active setting group shall be available as an encoded 3-bit word to the external device and SCADA via output contacts 1 through 3. The pre-selected setting group shall be applied automatically after 5 seconds of inactivity of the control inputs. When the relay powers up, it should synchronize the setting group to the 3-bit control input.

Make the following changes to Setting Group Control in the SETTINGS ⇒ U CONTROL ELEMENTS ⇒ SETTING GROUPS menu:

SETTING GROUPS FUNCTION: "Enabled" GROUP 4 ACTIVATE ON: "SELECTOR 1 POS 4"

SETTING GROUPS BLK: "Off" GROUP 5 ACTIVATE ON: "Off" GROUP 2 ACTIVATE ON: "SELECTOR 1 POS 2" GROUP 6 ACTIVATE ON: "Off"

GROUP 3 ACTIVATE ON: "SELECTOR 1 POS 3"

Make the following changes to Selector Switch element in the SETTINGS ⇒ ⊕ CONTROL ELEMENTS ⇒ ⊕ SELECTOR SWITCH ⇒ SELECTOR SWITCH 1 menu to assign control to User Programmable Pushbutton 1 and Contact Inputs 1 through 3:

SELECTOR 1 FUNCTION: "Enabled"

SELECTOR 1 3BIT A0: "CONT IP 1 ON"

SELECTOR 1 FULL-RANGE: "4"

SELECTOR 1 STEP-UP MODE: "Time-out"

SELECTOR 1 3BIT A2: "CONT IP 3 ON"

SELECTOR 1 TIME-OUT: "5.0 s"

SELECTOR 1 3BIT MODE: "Time-out"

SELECTOR 1 STEP-UP: "PUSHBUTTON 1 ON" SELECTOR 1 3BIT ACK: "Off"

SELECTOR 1 ACK: "Off" SELECTOR 1 POWER-UP MODE: "Synchronize"

Now, assign the contact output operation (assume the H6E module) to the Selector Switch element by making the following changes in the SETTINGS ⇒ ♣ INPUTS/OUTPUTS ⇒ ♣ CONTACT OUTPUTS menu:

OUTPUT H1 OPERATE: "SELECTOR 1 BIT 0"
OUTPUT H2 OPERATE: "SELECTOR 1 BIT 1"
OUTPUT H3 OPERATE: "SELECTOR 1 BIT 2"

Finally, assign configure User-Programmable Pushbutton 1 by making the following changes in the SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE PUSHBUTTONS ⇒ USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset" PUSHBUTTON 1 DROP-OUT TIME: "0.10 s"

The logic for the selector switch is shown below:

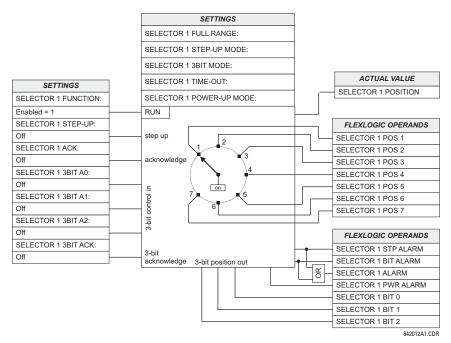
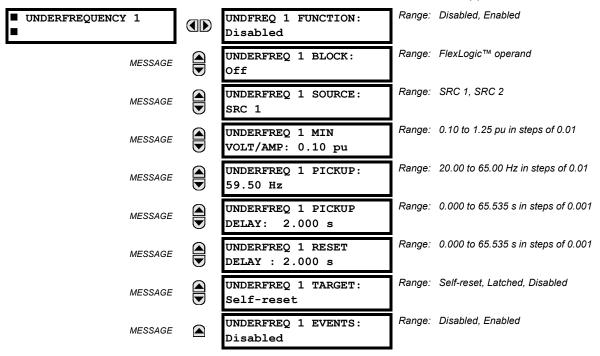



Figure 5-45: SELECTOR SWITCH LOGIC

5.6.4 UNDERFREQUENCY

PATH: SETTINGS ⇒ \$\Partial\$ CONTROL ELEMENTS ⇒ \$\Partial\$ UNDERFREQUENCY 1(6)

There are six identical underfrequency elements, numbered from 1 through 6 inclusive.

The steady-state frequency of a power system is a certain indicator of the existing balance between the generated power and the load. Whenever this balance is disrupted through the loss of an important generating unit or the isolation of part of the system from the rest of the system, the effect will be a reduction in frequency. If the control systems of the system generators do not respond fast enough, the system may collapse. A reliable method to quickly restore the balance between load and generation is to automatically disconnect selected loads, based on the actual system frequency. This technique, called "load-shedding", maintains system integrity and minimize widespread outages. After the frequency returns to normal, the load may be automatically or manually restored.

The **UNDERFREQ 1 SOURCE** setting is used to select the source for the signal to be measured. The element first checks for a live phase voltage available from the selected Source. If voltage is not available, the element attempts to use a phase current. If neither voltage nor current is available, the element will not operate, as it will not measure a parameter above the minimum voltage/current setting.

The **UNDERFREQ 1 MIN VOLT/AMP** setting selects the minimum per unit voltage or current level required to allow the underfrequency element to operate. This threshold is used to prevent an incorrect operation because there is no signal to measure.

This **UNDERFREQ 1 PICKUP** setting is used to select the level at which the underfrequency element is to pickup. For example, if the system frequency is 60 Hz and the load shedding is required at 59.5 Hz, the setting will be 59.50 Hz.

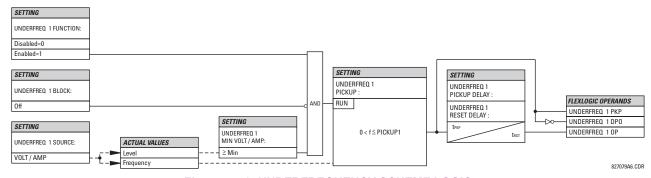
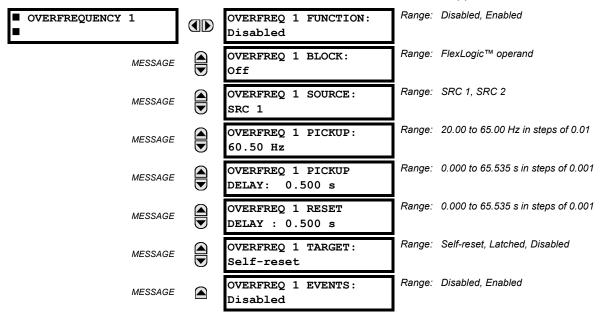



Figure 5-46: UNDERFREQUENCY SCHEME LOGIC

PATH: SETTINGS ⇒ U CONTROL ELEMENTS ⇒ U OVERFREQUENCY ⇒ OVERFREQUENCY 1(4)

There are four overfrequency elements, numbered 1 through 4.

A frequency calculation for a given source is made on the input of a voltage or current channel, depending on which is available. The channels are searched for the signal input in the following order: voltage channel A, auxiliary voltage channel, current channel A, ground current channel. The first available signal is used for frequency calculation.

The steady-state frequency of a power system is an indicator of the existing balance between the generated power and the load. Whenever this balance is disrupted through the disconnection of significant load or the isolation of a part of the system that has a surplus of generation, the effect will be an increase in frequency. If the control systems of the generators do not respond fast enough, to quickly ramp the turbine speed back to normal, the overspeed can lead to the turbine trip. The overfrequency element can be used to control the turbine frequency ramp down at a generating location. This element can also be used for feeder reclosing as part of the "after load shedding restoration".

The **OVERFREQ 1 SOURCE** setting selects the source for the signal to be measured. The **OVERFREQ 1 PICKUP** setting selects the level at which the overfrequency element is to pickup.

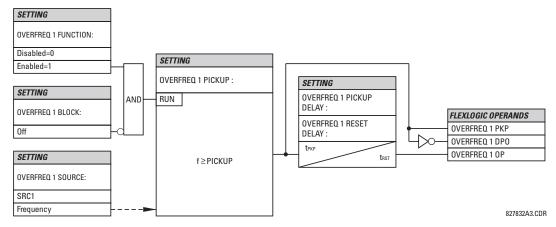
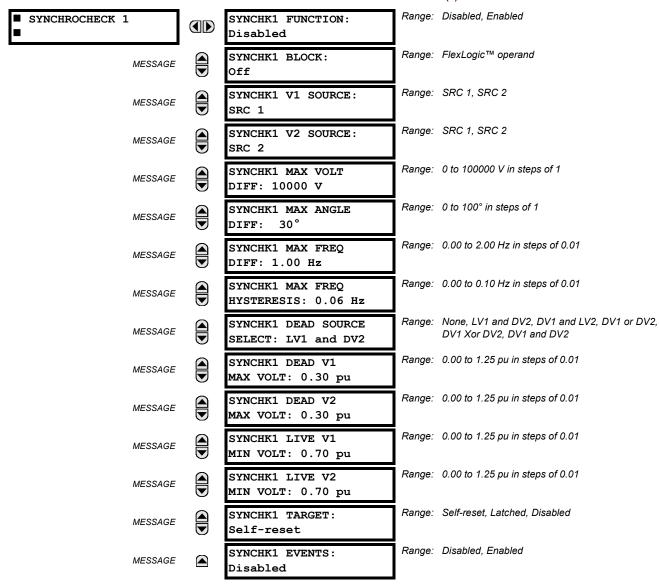



Figure 5-47: OVERFREQUENCY SCHEME LOGIC

PATH: SETTINGS ⇒ \$\Partial\$ CONTROL ELEMENTS ⇒ \$\Partial\$ SYNCHROCHECK 1(2)

The are two identical synchrocheck elements available, numbered 1 and 2.

The synchronism check function is intended for supervising the paralleling of two parts of a system which are to be joined by the closure of a circuit breaker. The synchrocheck elements are typically used at locations where the two parts of the system are interconnected through at least one other point in the system.

Synchrocheck verifies that the voltages (V1 and V2) on the two sides of the supervised circuit breaker are within set limits of magnitude, angle and frequency differences. The time that the two voltages remain within the admissible angle difference is determined by the setting of the phase angle difference $\Delta\Phi$ and the frequency difference ΔF (slip frequency). It can be defined as the time it would take the voltage phasor V1 or V2 to traverse an angle equal to $2 \times \Delta\Phi$ at a frequency equal to the frequency difference ΔF . This time can be calculated by:

$$T = \frac{1}{\frac{360^{\circ}}{2 \times \Delta \Phi} \times \Delta F}$$
 (EQ 5.7)

where: $\Delta\Phi$ = phase angle difference in degrees; ΔF = frequency difference in Hz.

As an example; for the default values ($\Delta\Phi$ = 30°, Δ F = 0.1 Hz), the time while the angle between the two voltages will be less than the set value is:

$$T = \frac{1}{\frac{360^{\circ}}{2 \times \Delta \Phi} \times \Delta F} = \frac{1}{\frac{360^{\circ}}{2 \times 30^{\circ}} \times 0.1 \text{ Hz}} = 1.66 \text{ sec.}$$
 (EQ 5.8)

If one or both sources are de-energized, the synchrocheck programming can allow for closing of the circuit breaker using undervoltage control to by-pass the synchrocheck measurements (Dead Source function).

- SYNCHK1 V1 SOURCE: This setting selects the source for voltage V1 (see NOTES below).
- SYNCHK1 V2 SOURCE: This setting selects the source for voltage V2, which must not be the same as used for the V1 (see NOTES below).
- SYNCHK1 MAX VOLT DIFF: This setting selects the maximum primary voltage difference in 'kV' between the two sources. A primary voltage magnitude difference between the two input voltages below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX ANGLE DIFF: This setting selects the maximum angular difference in degrees between the two sources. An angular difference between the two input voltage phasors below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX FREQ DIFF: This setting selects the maximum frequency difference in 'Hz' between the two sources.
 A frequency difference between the two input voltage systems below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX FREQ HYSTERESIS: This setting specifies the required hysteresis for the maximum frequency difference condition. The condition becomes satisfied when the frequency difference becomes lower than SYNCHK1 MAX FREQ DIFF. Once the Synchrocheck element has operated, the frequency difference must increase above the SYNCHK1 MAX FREQ DIFF + SYNCHK1 MAX FREQ HYSTERESIS sum to drop out (assuming the other two conditions, voltage and angle, remain satisfied).
- SYNCHK1 DEAD SOURCE SELECT: This setting selects the combination of dead and live sources that will by-pass synchronism check function and permit the breaker to be closed when one or both of the two voltages (V1 or/and V2) are below the maximum voltage threshold. A dead or live source is declared by monitoring the voltage level. Six options are available:

None: Dead Source function is disabled

LV1 and DV2: Live V1 and Dead V2
DV1 and LV2: Dead V1 and Live V2
DV1 or DV2: Dead V1 or Dead V2

DV1 Xor DV2: Dead V1 exclusive-or Dead V2 (one source is Dead and the other is Live)

DV1 and DV2: Dead V1 and Dead V2

- SYNCHK1 DEAD V1 MAX VOLT: This setting establishes a maximum voltage magnitude for V1 in 1 'pu'. Below this magnitude, the V1 voltage input used for synchrocheck will be considered "Dead" or de-energized.
- SYNCHK1 DEAD V2 MAX VOLT: This setting establishes a maximum voltage magnitude for V2 in 'pu'. Below this magnitude, the V2 voltage input used for synchrocheck will be considered "Dead" or de-energized.
- SYNCHK1 LIVE V1 MIN VOLT: This setting establishes a minimum voltage magnitude for V1 in 'pu'. Above this magnitude, the V1 voltage input used for synchrocheck will be considered "Live" or energized.
- SYNCHK1 LIVE V2 MIN VOLT: This setting establishes a minimum voltage magnitude for V2 in 'pu'. Above this magnitude, the V2 voltage input used for synchrocheck will be considered "Live" or energized.

NOTES ON THE SYNCHROCHECK FUNCTION:

1. The selected sources for synchrocheck inputs V1 and V2 (which must not be the same source) may include both a three-phase and an auxiliary voltage. The relay will automatically select the specific voltages to be used by the synchrocheck element in accordance with the following table.

NO.	V1 OR V2 (SOURCE Y)	V2 OR V1 (SOURCE Z)	AUTO-SELECTED COMBINATION		AUTO-SELECTED VOLTAGE
			SOURCE Y	SOURCE Z	
1	Phase VTs and Auxiliary VT	Phase VTs and Auxiliary VT	Phase	Phase	VAB
2	Phase VTs and Auxiliary VT	Phase VT	Phase	Phase	VAB
3	Phase VT	Phase VT	Phase	Phase	VAB
4	Phase VT and Auxiliary VT	Auxiliary VT	Phase	Auxiliary	V auxiliary (as set for Source z)
5	Auxiliary VT	Auxiliary VT	Auxiliary	Auxiliary	V auxiliary (as set for selected sources)

The voltages V1 and V2 will be matched automatically so that the corresponding voltages from the two sources will be used to measure conditions. A phase to phase voltage will be used if available in both sources; if one or both of the Sources have only an auxiliary voltage, this voltage will be used. For example, if an auxiliary voltage is programmed to VAG, the synchrocheck element will automatically select VAG from the other source. If the comparison is required on a specific voltage, the user can externally connect that specific voltage to auxiliary voltage terminals and then use this "Auxiliary Voltage" to check the synchronism conditions.

If using a single CT/VT module with both phase voltages and an auxiliary voltage, ensure that <u>only</u> the auxiliary voltage is programmed in one of the sources to be used for synchrocheck.

Exception: Synchronism cannot be checked between Delta connected phase VTs and a Wye connected auxiliary voltage.

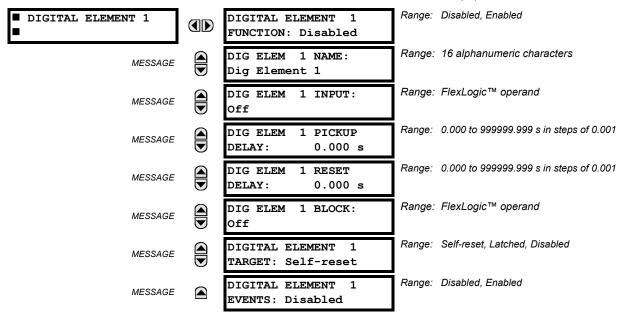

2. The relay measures frequency and Volts/Hz from an input on a given source with priorities as established by the configuration of input channels to the source. The relay will use the phase channel of a three-phase set of voltages if programmed as part of that source. The relay will use the auxiliary voltage channel only if that channel is programmed as part of the Source and a three-phase set is not.

Figure 5-48: SYNCHROCHECK SCHEME LOGIC

5.6.7 DIGITAL ELEMENTS

PATH: SETTINGS ⇒ \$\Partial\$ CONTROL ELEMENTS ⇒ \$\Partial\$ DIGITAL ELEMENT 3(16)

There are 16 identical Digital Elements available, numbered 1 to 16. A digital element can monitor any FlexLogic™ operand and present a target message and/or enable events recording depending on the output operand state. The digital element settings include a 'name' which will be referenced in any target message, a blocking input from any selected FlexLogic™ operand, and a timer for pickup and reset delays for the output operand.

- DIGITAL ELEMENT 1 INPUT: Selects a FlexLogic[™] operand to be monitored by the digital element.
- DIGITAL ELEMENT 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set to "0".
- DIGITAL ELEMENT 1 RESET DELAY: Sets the time delay to reset. If a reset delay is not required, set to "0".

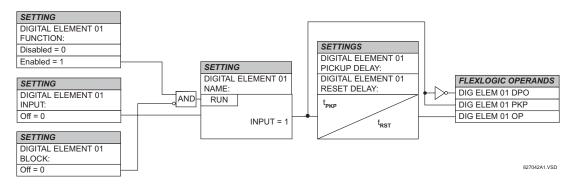


Figure 5-49: DIGITAL ELEMENT SCHEME LOGIC

CIRCUIT MONITORING APPLICATIONS:

Some versions of the digital input modules include an active Voltage Monitor circuit connected across Form-A contacts. The voltage monitor circuit limits the trickle current through the output circuit (see technical specifications for Form-A).

As long as the current through the Voltage Monitor is above a threshold (see technical specifications for Form-A), the Flex-Logic™ operand "Cont Op # VOn" will be set. (# represents the output contact number). If the output circuit has a high resistance or the DC current is interrupted, the trickle current will drop below the threshold and the FlexLogic™ operand "Cont Op # VOff" will be set. Consequently, the state of these operands can be used as indicators of the integrity of the circuits in which Form-A contacts are inserted.

EXAMPLE 1: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

In many applications it is desired to monitor the breaker trip circuit integrity so problems can be detected before a trip operation is required. The circuit is considered to be healthy when the voltage monitor connected across the trip output contact detects a low level of current, well below the operating current of the breaker trip coil. If the circuit presents a high resistance, the trickle current will fall below the monitor threshold and an alarm would be declared.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact which is open when the breaker is open (see diagram below). To prevent unwanted alarms in this situation, the trip circuit monitoring logic must include the breaker position.

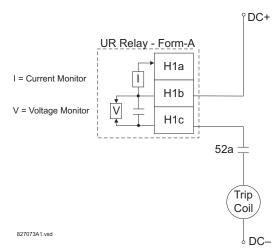
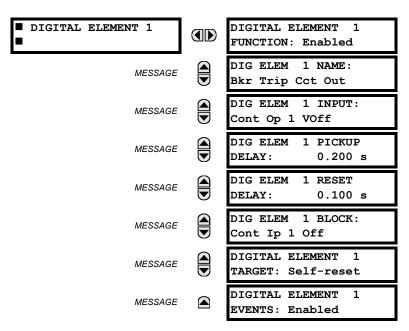
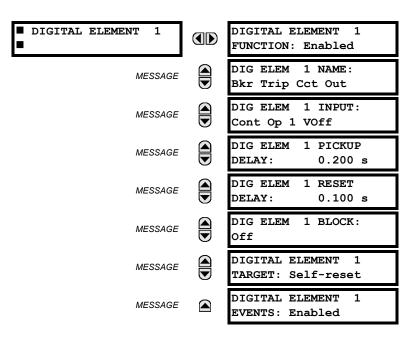



Figure 5-50: TRIP CIRCUIT EXAMPLE 1

Assume the output contact H1 is a trip contact. Using the contact output settings, this output will be given an ID name, e.g. "Cont Op 1". Assume a 52a breaker auxiliary contact is connected to contact input H7a to monitor breaker status. Using the contact input settings, this input will be given an ID name, e.g. "Cont Ip 1" and will be set "On" when the breaker is closed. Using Digital Element 1 to monitor the breaker trip circuit, the settings will be:



The PICKUP DELAY setting should be greater than the operating time of the breaker to avoid nuisance alarms.

5 SETTINGS 5.6 CONTROL ELEMENTS

EXAMPLE 2: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

If it is required to monitor the trip circuit continuously, independent of the breaker position (open or closed), a method to maintain the monitoring current flow through the trip circuit when the breaker is open must be provided (as shown in the figure below). This can be achieved by connecting a suitable resistor (see figure below) across the auxiliary contact in the trip circuit. In this case, it is not required to supervise the monitoring circuit with the breaker position – the **BLOCK** setting is selected to "Off". In this case, the settings will be:

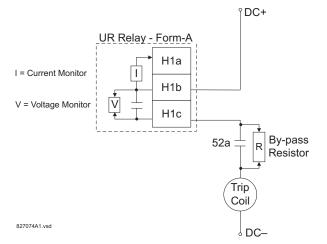
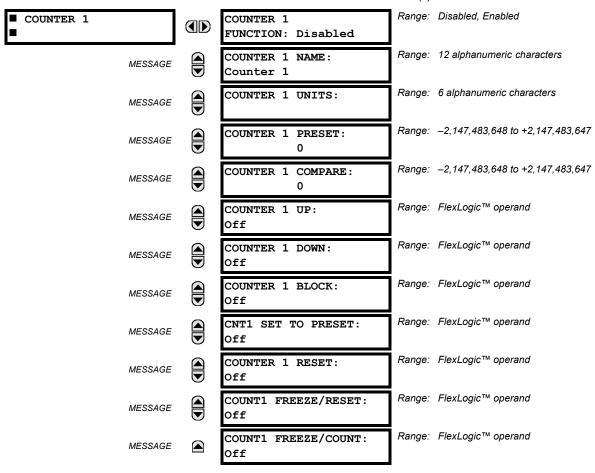



Table 5-8: VALUES OF RESISTOR 'R'

POWER SUPPLY (V DC)	RESISTANCE (OHMS)	POWER (WATTS)
24	1000	2
30	5000	2
48	10000	2
110	25000	5
125	25000	5
250	50000	5

Figure 5-51: TRIP CIRCUIT EXAMPLE 2

PATH: SETTINGS ⇔ U CONTROL ELEMENTS ⇔ DIGITAL COUNTERS ⇔ COUNTER 1(8)

There are 8 identical digital counters, numbered from 1 to 8. A digital counter counts the number of state transitions from Logic 0 to Logic 1. The counter is used to count operations such as the pickups of an element, the changes of state of an external contact (e.g. breaker auxiliary switch), or pulses from a watt-hour meter.

- **COUNTER 1 UNITS:** Assigns a label to identify the unit of measure pertaining to the digital transitions to be counted. The units label will appear in the corresponding actual values status.
- **COUNTER 1 PRESET:** Sets the count to a required preset value before counting operations begin, as in the case where a substitute relay is to be installed in place of an in-service relay, or while the counter is running.
- COUNTER 1 COMPARE: Sets the value to which the accumulated count value is compared. Three FlexLogic™ output operands are provided to indicate if the present value is 'more than (HI)', 'equal to (EQL)', or 'less than (LO)' the set value.
- **COUNTER 1 UP:** Selects the FlexLogic[™] operand for incrementing the counter. If an enabled UP input is received when the accumulated value is at the limit of +2,147,483,647 counts, the counter will rollover to -2,147,483,648.
- **COUNTER 1 DOWN:** Selects the FlexLogic[™] operand for decrementing the counter. If an enabled DOWN input is received when the accumulated value is at the limit of -2,147,483,648 counts, the counter will rollover to +2,147,483,647.
- COUNTER 1 BLOCK: Selects the FlexLogic[™] operand for blocking the counting operation. All counter operands are blocked.

5 SETTINGS 5.6 CONTROL ELEMENTS

• **CNT1 SET TO PRESET:** Selects the FlexLogic[™] operand used to set the count to the preset value. The counter will be set to the preset value in the following situations:

- 1. When the counter is enabled and the **CNT1 SET TO PRESET** operand has the value 1 (when the counter is enabled and **CNT1 SET TO PRESET** operand is 0, the counter will be set to 0).
- 2. When the counter is running and the CNT1 SET TO PRESET operand changes the state from 0 to 1 (CNT1 SET TO PRESET changing from 1 to 0 while the counter is running has no effect on the count).
- 3. When a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 1 (when a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 0, the counter will be set to 0).
- COUNTER 1 RESET: Selects the FlexLogic™ operand for setting the count to either "0" or the preset value depending on the state of the CNT1 SET TO PRESET operand.
- COUNTER 1 FREEZE/RESET: Selects the FlexLogic™ operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and resetting the count to "0".
- COUNTER 1 FREEZE/COUNT: Selects the FlexLogic™ operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and continuing counting. The present accumulated value and captured frozen value with the associated date/time stamp are available as actual values. If control power is interrupted, the accumulated and frozen values are saved into non-volatile memory during the power down operation.

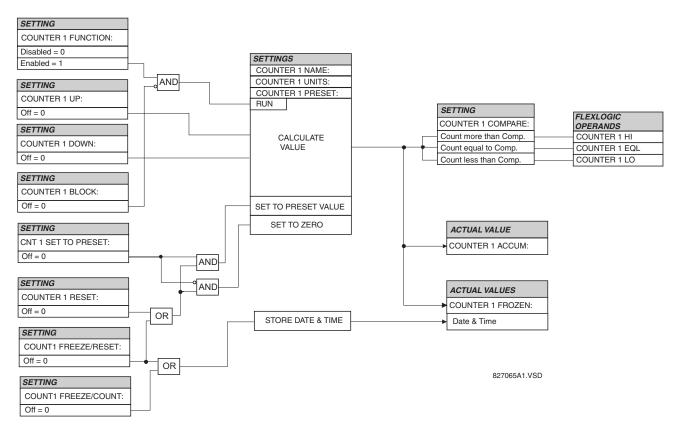


Figure 5-52: DIGITAL COUNTER SCHEME LOGIC

5.6.9 MONITORING ELEMENTS

a) VT FUSE FAILURE

PATH: SETTINGS ⇒ ♣ CONTROL ELEMENTS ⇒ ♣ MONITORING ELEMENTS ⇒ ♣ VT FUSE FAILURE 1(6)

Every signal source includes a fuse failure scheme.

The VT fuse failure detector can be used to raise an alarm and/or block elements that may operate incorrectly for a full or partial loss of AC potential caused by one or more blown fuses. Some elements that might be blocked (via the BLOCK input) are distance, voltage restrained overcurrent, and directional current.

There are two classes of fuse failure that may occur:

Class A: Loss of one or two phases.

Class B: Loss of all three phases.

Different means of detection are required for each class. An indication of Class A failures is a significant level of negative sequence voltage, whereas an indication of Class B failures is when positive sequence current is present and there is an insignificant amount of positive sequence voltage. These noted indications of fuse failure could also be present when faults are present on the system, so a means of detecting faults and inhibiting fuse failure declarations during these events is provided. Once the fuse failure condition is declared, it will be sealed-in until the cause that generated it disappears.

An additional condition is introduced to inhibit a fuse failure declaration when the monitored circuit is de-energized; positive sequence voltage and current are both below threshold levels.

The VT FUSE FAILURE 1(6) FUNCTION setting enables/disables the fuse failure feature for each source.

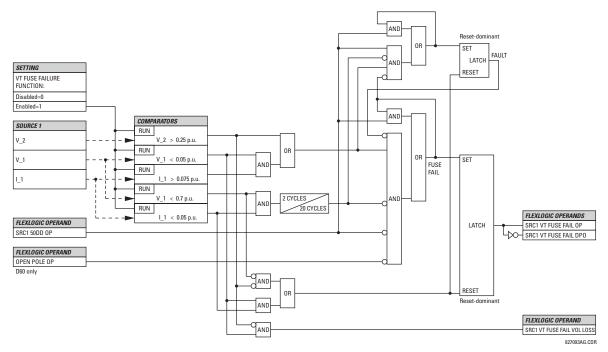
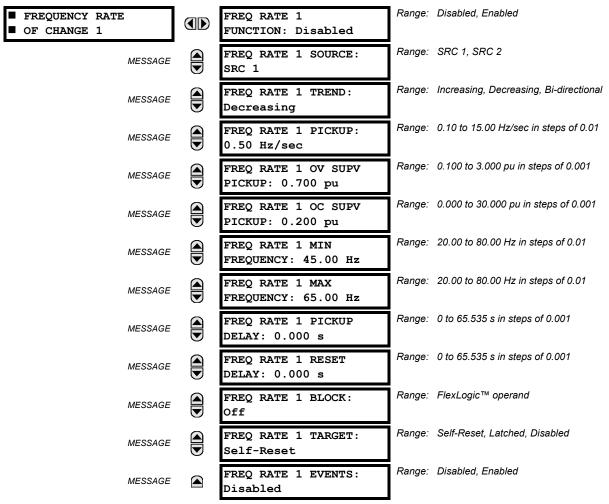



Figure 5-53: VT FUSE FAIL SCHEME LOGIC

5.6.10 FREQUENCY RATE OF CHANGE

PATH: SETTINGS $\Rightarrow \oplus$ CONTROL ELEMENTS $\Rightarrow \oplus$ FREQUENCY RATE OF CHANGE \Rightarrow FREQUENCY RATE OF CHANGE 1(4)

Four (4) independent Rate of Change of Frequency elements are available. The element responds to rate of change of frequency with voltage, current and frequency supervision.

- FREQ RATE 1 TREND: This setting allows configuring the element to respond to increasing or decreasing frequency, or to frequency change in either direction.
- FREQ RATE 1 PICKUP: This setting specifies an intended df/dt pickup threshold. For applications monitoring a
 decreasing trend, set FREQ RATE 1 TREND to "Decreasing" and specify the pickup threshold accordingly. The operating
 condition is: -df/dt > Pickup.

For applications monitoring an increasing trend, set **FREQ RATE 1 TREND** to "Increasing" and specify the pickup threshold accordingly. The operating condition is: df/dt > Pickup .

For applications monitoring rate of change of frequency in any direction set **FREQ RATE 1 TREND** to "Bi-Directional" and specify the pickup threshold accordingly. The operating condition is: abs(df/dt) > Pickup

- FREQ RATE 1 OV SUPV PICKUP: This setting defines minimum voltage level required for operation of the element.
 The supervising function responds to the positive-sequence voltage. Overvoltage supervision should be used to prevent operation under specific system conditions such as faults.
- **FREQ RATE 1 OC SUPV PICKUP:** This setting defines minimum current level required for operation of the element. The supervising function responds to the positive-sequence current. Typical application includes load shedding. Set the pickup threshold to zero if no overcurrent supervision is required.

5.6 CONTROL ELEMENTS 5 SETTINGS

FREQ RATE 1 MIN FREQUENCY: This setting defines minimum frequency level required for operation of the element.
The setting may be used to effectively block the feature based on frequency. For example, if the intent is to monitor an increasing trend but only if the frequency is already above certain level, this setting should be set to the required frequency level.

FREQ RATE 1 MAX FREQUENCY: This setting defines maximum frequency level required for operation of the element. The setting may be used to effectively block the feature based on frequency. For example, if the intent is to monitor a decreasing trend but only if the frequency is already below certain level (such as for load shedding), this setting should be set to the required frequency level.

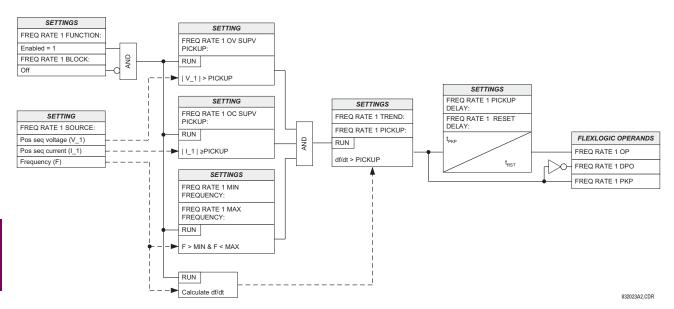
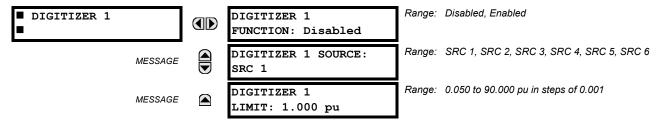



Figure 5-54: FREQUENCY RATE OF CHANGE SCHEME LOGIC

5.6.11 DIGITIZERS

There are five (5) digitizer elements. The Digitizer truncates the input signal to user-specified symmetrical limits and digitizes the outcome with an 8-bit resolution. The basic operation of the element is described by the following equations:

$$x_{truncated} = \begin{cases} -LIMIT, & \text{if } x < -LIMIT \\ LIMIT, & \text{if } x > LIMIT \\ x, & \text{otherwise} \end{cases}$$
 (EQ 5.9)

$$N_{out} = \text{round}\left(\frac{X_{truncated}}{\text{LIMIT}} \times 127\right)$$
 (EQ 5.10)

where: x is an input signal specified by the **DIGITIZER 1(5) SOURCE** setting **LIMIT** is defined by the **DIGITIZER 1(5) LIMIT** setting round is an operand that rounds up to the nearest integer N_{out} is an integer output of the digitizer (from –127 to 127)

The output characteristic of the Digitizer element is illustrated below:

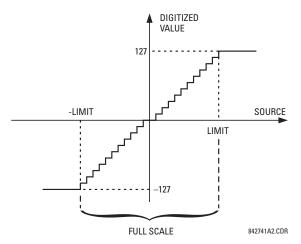


Figure 5-55: DIGITIZER OUTPUT CHARACTERISTIC

The output integer number is represented by eight (8) FlexLogic™ operands encoding the input value per the following convention:

$$N_{out} = (-1)^{b_7} \times (2^6 b_6 + 2^5 b_5 + 2^4 b_4 + 2^3 b_3 + 2^2 b_2 + 2^1 b_1 + 2^0 b_0)$$
 (EQ 5.11)

The output operands can be configured to drive relay outputs, such as remote outputs, direct outputs, contact outputs, or any combination of these, in order to relay the analog quantity to other UR-series IEDs for further processing.

The digitizer averages the signal prior to digitization for increased accuracy. The extra filtering is in effect only under steady-state conditions or during slow changes of the input value. When the input signal changes significantly, the filtering is removed to maintain the response speed of the element.

5.6 CONTROL ELEMENTS 5 SETTINGS

For critical applications, users should ensure the validity of the digitizer input signal to prevent an undesired response of the relaying system. For example, configuring the VT Fuse Failure condition when the digitizer uses the voltage signal.

The digitized output value is available as an actual value for testing, troubleshooting and special applications (refer to the **ACTUAL VALUES** ⇒ ♣ **METERING** ⇒ ♣ **DIGITIZERS** values for details).

- DIGITIZER 1 SOURCE: This setting specifies an internal analog value to be digitized. A variety of analog actual values
 (FlexAnalog parameters), such as power, current amplitude, voltage amplitude, power factor, etc., can be configured
 as the digitizer source. Refer to Appendix A for a complete list of FlexAnalog parameters available for the N60.
- **DIGITIZER 1 LIMIT**: This setting allows setting symmetrical limits for the input signal. The input signal is truncated to an interval from **–LIMIT** to **+LIMIT** before the effective digitization. The base units are defined in the exact manner as FlexElements™ (see the FlexElements™ section for details).

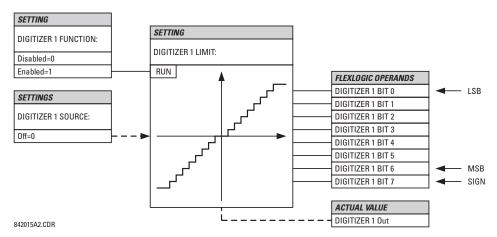


Figure 5-56: DIGITIZER LOGIC

APPLICATION EXAMPLE 1:

A three phase active power on a 13.8kV system measured via UR source 1 is to be sent via Direct Outputs, bits 20 through 27, to a remote location. The following settings are applied on the relay: CT ratio = 1200:5, VT ratio = 120, and VT secondary = 66.4 V. The nominal current is 800 A primary and the nominal power factor is 0.90. The power is to be monitored in both importing and exporting directions and allow for 20% overload as compared with the nominal.

- Nominal three-phase power: $P = \sqrt{3} \times 13.8 \text{ kV} \times 0.8 \text{ kA} \times 0.9 = 17.21 \text{ MW}$.
- Three-phase power with the 20% overload margin: $P_{max} = 1.2 \times 17.21 \text{ MW} = 20.65 \text{ MW}$.
- UR base unit for power: P_{BASE} = VT ratio × VT secondary × CT primary = 120 × 66.4 V × 1.2 kA = 9.56 MW (see the FlexElements section for further details).
- Maximum power to be monitored (pu): 20.65 MW / 9.56 MW = 2.160 pu.

The following settings should be applied: DIGITIZER 1 SOURCE: "SRC 1" and DIGITIZER 1 LIMIT: "2.160 pu".

Using the above settings, the output represents power with the scale of 127 per 20.65 MW; for example, 1 count of a digitizer output represent 20.65 MW / 127 = 162.6 kW.

The Direct Outputs should be configured as follows:

```
DIRECT OUT 20 OPERAND: "DIGITIZER 1 BIT 0"

DIRECT OUT 21 OPERAND: "DIGITIZER 1 BIT 1"

DIRECT OUT 22 OPERAND: "DIGITIZER 1 BIT 2"

DIRECT OUT 23 OPERAND: "DIGITIZER 1 BIT 3"

DIRECT OUT 27 OPERAND: "DIGITIZER 1 BIT 7"
```

On the receiving location, bits 20 through 27 should be configured to drive eight Direct Inputs. The latter should be configured accordingly to use the incoming information (typically via the 8-Bit Comparator feature).

The following table illustrates this application for four sample power values.

POWER	N _{out}	B7 B0	
15.00 MW	92	01011100	
20.00 MW	123	01111011	
-5.00 MW	–31	10011111	
-12.00 MW	-74	11001010	

APPLICATION EXAMPLE 2:

The phase A current (true RMS value) is to be sent via Remote Outputs (MMS GOOSE) to several remote IEDs (DNA points 14 through 20). The CT ratio is 5000:5 and the maximum load current is 4200 A. The current should be monitored allowing for 50% overload.

- Phase current with the 50% overload margin: $I_{max} = 1.5 \times 4.2 \text{ kA} = 6.3 \text{ kA}$.
- UR base unit for current: $I_{BASE} = 5 \text{ kA}$ (see FlexElements section for further details).
- Minimum current to be monitored (pu): 6.3 kA/5 kA = 1.26 pu

The following settings should be applied: DIGITIZER 1 SOURCE: "SRC 1 Ia RMS" and DIGITIZER 1 LIMIT: "1.260 pu"

Using the above settings, the output represents current magnitude with the scale of 127 per 6.3kA; for example, 1 count of a digitizer output represents 6.3 kA / 127 = 49.6 A.

The Remote Outputs should be configured as follows:

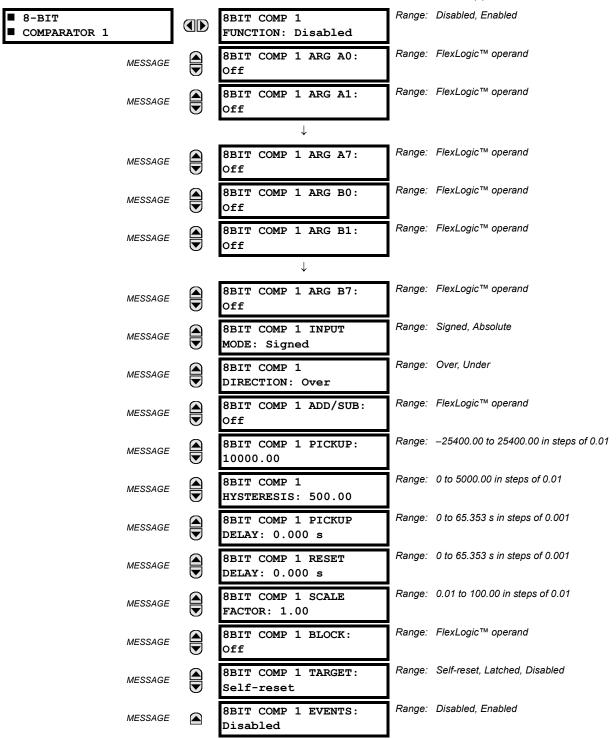
DNA- 14 OPERAND: "DIGITIZER 1 BIT 0"

DNA- 15 OPERAND: "DIGITIZER 1 BIT 1"

DNA- 16 OPERAND: "DIGITIZER 1 BIT 2"

DNA- 17 OPERAND: "DIGITIZER 1 BIT 3"

DNA- 17 OPERAND: "DIGITIZER 1 BIT 3"


DNA- 20 OPERAND: "DIGITIZER 1 BIT 6"

As the input signal (true RMS) is always positive, the sign bit could be ignored and only 7 points need to be exchanged. On the receiving location, incoming bits 14 through 20 should be configured to drive Remote Inputs. The latter together with the FlexLogic™ constant "Off" for the sign bit should be configured accordingly to use the incoming information (typically via the 8-Bit Comparator feature).

The following table illustrates this application for four sample current values.

CURRENT	N _{out}	B7 B0		
1.00 kA	20	00010100		
2.50 kA	50	00110010		
4.20 kA	85	01010101		
6.00 kA	121	01111001		

This feature allows simple manipulations on 8-bit numbers. In particular two numbers can be added or subtracted depending on a user-programmable dynamic condition. User-programmable threshold, hysteresis, direction of comparison, pickup and dropout time delays can be applied.

5 SETTINGS 5.6 CONTROL ELEMENTS

The two input arguments are user-configurable as collections of FlexLogic™ operands using the binary encoding convention. This allows bringing analog values from remote locations via communication-based inputs/outputs to facilitate telemetry and other advanced applications. The two values to be added or subtracted should have a common scaling and should be of the same type. For example, adding voltage and current will not yield meaningful results.

Typically this element is applied in conjunction with the Digitizer feature.

• 8BIT COMP 1 ARG A0 to 8BIT COMP 1 ARG A7: These settings specify FlexLogic™ operands that provide an 8-bit representation of the first argument, A, of the comparator. The 8BIT COMP 1 ARG A0 setting represents the least significant bit, while the 8BIT COMP 1 ARG A6 setting represents the most significant bit. The 8BIT COMP 1 ARG A7 setting represents the sign bit (asserted for negative values). In other words, the following convention is used:

$$A = (-1)^{a_7} \times (2^6 a_6 + 2^5 a_5 + 2^4 a_4 + 2^3 a_3 + 2^2 a_2 + 2^1 a_1 + 2^0 a_0)$$
 (EQ 5.12)

Care must be taken to avoid race conditions for the used bits (FlexLogic[™] operands). If the 8 bits are not changing simultaneously (for example, when some of the bits arrive via contact inputs and the others arrive via direct inputs) a race condition may occur, leading to severe over- or under-estimation of the resulting 8-bit number. For example, assume the integer value changes from 15 to 16, i.e. from 00001111 to 00010000, but transiently the A4 bit asserts before the A3 through A0 bits de-assert. As a result, a value of 00011111, or 31, is produced, resulting in almost 100% overestimation compared to a true value of 16.

To prevent problems, pickup and dropout time delays must be applied to avoid misoperation, or all 8 bits must be configured to change simultaneously (for example, applied to the relay via the same communications).

• BIT COMP 1 ARG B0 to 8BIT COMP 1 ARG B7: These settings specify FlexLogic™ operands that provide an 8-bit representation of the second argument, B, of the comparator. The 8BIT COMP 1 ARG B0 setting represents the least significant bit, while the 8BIT COMP 1 ARG B6 setting represents the most significant bit. The 8BIT COMP 1 ARG B7 setting is the sign bit (asserted for negative values). In other words the following convention is used:

$$B = (-1)^{b_7} \times (2^6 b_6 + 2^5 b_5 + 2^4 b_4 + 2^3 b_3 + 2^2 b_2 + 2^1 b_1 + 2^0 b_0)$$
 (EQ 5.13)

• **8BIT COMP 1 INPUT MODE**: This setting specifies whether a signed or absolute value should be used for comparison with the pickup threshold. This setting applies to the effective operating signal (that is, either *A* – *B* or *A* + *B*) and not to the individual inputs. The figure below illustrates an effective operating characteristic resulting from this setting.

The 8BIT COMP 1 Out actual value, as well as the 8BIT COMP1 BIT0 through 8BIT COMP1 BIT7 FlexLogic™ operands, are derived without reference to this setting.

• **8BIT COMP 1 DIRECTION**: This setting specifies if the element should operate if the effective operating signal is above ("Over") or below ("Under") the threshold as illustrated in the following figure.

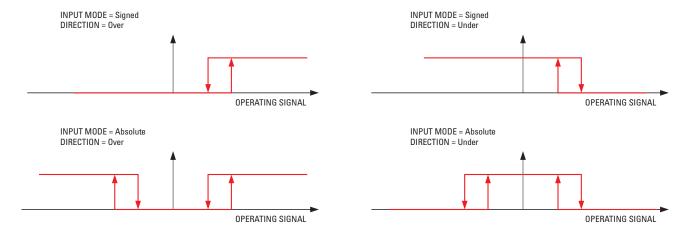


Figure 5-57: OPERATING CHARACTERISTICS OF THE 8-BIT COMPARATOR

842740A1.CDR

5.6 CONTROL ELEMENTS 5 SETTINGS

• **8BIT COMP 1 ADD/SUB**: This setting specifies if the two arguments, A and B, should be added or subtracted to form the effective operating signal. If the FlexLogicTM operand configured under this setting is logic 0 ("Off"), the operating signal is A - B. If the FlexLogicTM operand configured under this setting is logic 1 ("On"), the operating signal is A + B. The element will switch between adding and subtracting instantly, without any additional delay.

- 8BIT COMP 1 PICKUP: This setting specifies the pickup threshold for the comparator. This setting applies to the value scaled via the 8BIT COMP 1 SCALE FACTOR setting.
- 8BIT COMP 1 HYSTERESIS: Specifies the width of hysteresis for the comparator. The following logic applies:

If 8BIT COMP 1 DIRECTION = "Over", then Dropout := 8BIT COMP 1 PICKUP - 8BIT COMP 1 HYSTERESIS If 8BIT COMP1 DIRECTION = "Under", then Dropout := 8BIT COMP 1 PICKUP + 8BIT COMP 1 HYSTERESIS

- 8BIT COMP 1 PICKUP DELAY: Specifies a pickup time delay for the 8BIT COMP 1 OP FlexLogic™ operand.
- 8BIT COMP 1 RESET DELAY: Specifies a reset time delay for the 8BIT COMP 1 OP FlexLogic™ operand.
- **8BIT COMP 1 SCALE FACTOR**: This setting allows re-scaling the two input arguments and the effective operating quantity. The same scaling factor applies to all three actual values: **8BIT COMP 1 A**, **8BIT COMP 1 B** and **8BIT COMP 1 OUT**. The scaling enables easier application, testing and troubleshooting. Also, it facilitates telemetry applications.
- 8BIT COMP 1 BLOCK: This setting specifies a FlexLogic[™] operand for blocking the feature based on user-programmable conditions. When the blocking input is asserted, the element resets its timers, de-asserts the 8BIT COMP 1 PKP and 8BIT COMP1 OP operands (if asserted), clears self-reset targets, logs a 'blocked' event if Events are enabled, and becomes inactive. When unblocked, the element will start operating instantly. If exposed to pickup conditions for an extended period of time and unblocked, the element will pickup and start timing out at the moment of unblocking.

Typical applications of the 8BIT COMP 1 BLOCK setting include conditions when the input signals are not reliable. For example, remote power may be digitized using the Digitizer feature and sent via Remote I/Os to be used locally by the 8-Bit Comparator. The VT Fuse Fail at the remote location, or the Remote Device Offline indication may be used to block this element.

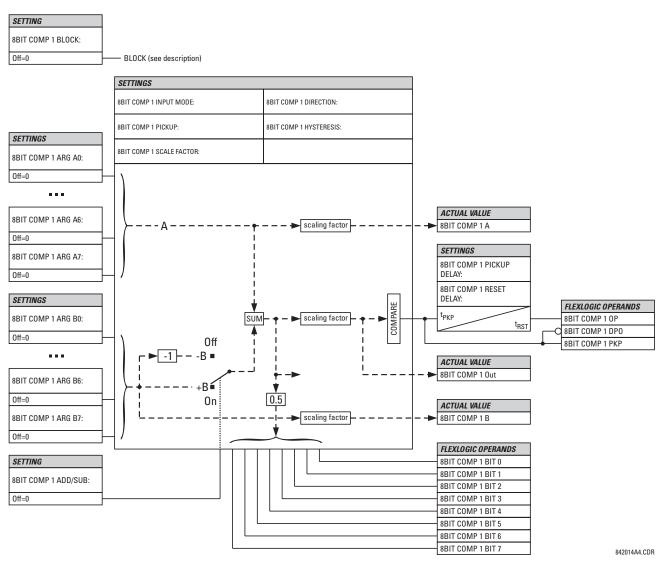


Figure 5-58: 8-BIT COMPARATOR LOGIC

APPLICATION EXAMPLE:

A three phase active power measured via SRC 1 on the UR-1 IED is to be sent to a remote location UR-2 via the Direct Inputs/Outputs feature. Upon reception the remote power is to be added to a three phase active power measured locally by the UR-2 IED via SRC 4. The application should work accurately under an overload of 25% and a power factor of 1.0 at either location.

An alarm should be established at the UR-2 location if the total power is above 2500 MW for 50 ms. The alarm should be cleared if the power is below 2000 MW for 1 second.

The following settings and conditions are given.

- UR-1: Nominal system voltage = 345 kV, SRC 1 CT ratio = 2000:5, Normal load current = 1.8 kA.
- UR-2: Nominal system voltage = 220 kV, SRC 4 CT ratio = 3000:5, Normal load current = 2.5 kA.

The application requires the following features:

For UR-1: Digitizer to prepare the measured power for sending to the UR-2 IED, and Direct Outputs to send the digitized power to the UR-2 IED.

5.6 CONTROL ELEMENTS 5 SETTINGS

For UR-2: Digitizer to prepare the measured power for adding to the remote power, Direct Inputs to receive the remote power from the UR-1 IED,

8-Bit Comparator to sum the power values and apply a threshold, and User-definable display messages for telemetry (optional).

The maximum active power at the UR-1 location is: $P = \sqrt{3} \times 345 \text{ kV} \times 1.25 \times 1.8 \text{ kA} \times 1.0 = 1345 \text{ MW}$

The maximum active power at the UR-2 location is: $P = \sqrt{3} \times 220 \text{ kV} \times 1.25 \times 2.5 \text{ kA} \times 1.0 = 1345 \text{ MW}$

For the two power values to be subsequently added, a common base must be selected for digitization. For this example, an arbitrary value of 1500 MW is selected as a base and maximum value for digitization. Consequently, 1 count of digitized power at either location is worth 1500 MW / 127 = 11.811 MW (refer to the Digitizers section in this chapter for details).

For the Digitizer at UR-1:

- UR base unit for power given by P_{BASE} = 345 kV × 2 kA = 690 MW (refer to the FlexElements™ section for details).
- 2. The maximum power to be monitored (in pu) given by 1500 MW/690 MW = 2.174 pu.
- 3. The following settings should be applied:

```
DIGITIZER 1 SOURCE: "SRC 1" and DIGITIZER 1 LIMIT = "2.174 pu"
```

For the Digitizer at UR-2:

- 1. UR base unit for power given by $P_{BASE} = 220 \text{ kV} \times 3 \text{ kA} = 660 \text{ MW}$ (refer to the FlexElements™ section for details).
- 2. The maximum power to be monitored (in pu) given by 1500 MW/660 MW = 2.273 pu.
- 3. The following settings should be applied:

```
DIGITIZER 1 SOURCE: "SRC 4" and DIGITIZER 1 LIMIT = "2.273 pu"
```

For the Direct Outputs at UR-1:

- Assume the UR-1 IED is labeled as Direct Device 1 (DIRECT OUTPUT DEVICE ID = "1").
- 2. Assume bits 1 to 8 are used for sending the required power to the UR-2 IED. The following settings should be applied:

```
DIRECT OUT 1 OPERAND: "DIGITIZER 1 BIT 0"

DIRECT OUT 2 OPERAND: "DIGITIZER 1 BIT 1"

DIRECT OUT 3 OPERAND: "DIGITIZER 1 BIT 2"

DIRECT OUT 4 OPERAND: "DIGITIZER 1 BIT 3"

DIRECT OUT 8 OPERAND: "DIGITIZER 1 BIT 7"
```

For the Direct Inputs at UR-2:

1. Apply the following settings (Direct Inputs 10 through 17 are used) to receive the digitized power from the UR-1 IED:

```
DIRECT INPUT 10 DEVICE ID: "1"
                                        DIRECT INPUT 10 BIT NUMBER: "1"
DIRECT INPUT 11 DEVICE ID: "1"
                                        DIRECT INPUT 11 BIT NUMBER: "2"
DIRECT INPUT 12 DEVICE ID: "1"
                                        DIRECT INPUT 12 BIT NUMBER: "3"
DIRECT INPUT 13 DEVICE ID: "1"
                                        DIRECT INPUT 13 BIT NUMBER: "4"
DIRECT INPUT 14 DEVICE ID: "1"
                                        DIRECT INPUT 14 BIT NUMBER: "5"
DIRECT INPUT 15 DEVICE ID: "1"
                                        DIRECT INPUT 15 BIT NUMBER: "6"
DIRECT INPUT 16 DEVICE ID: "1"
                                        DIRECT INPUT 16 BIT NUMBER: "7"
DIRECT INPUT 17 DEVICE ID: "1"
                                        DIRECT INPUT 17 BIT NUMBER: "8"
```

2. The remote power will be available as the DIRECT INPUT 10 On (the least significant bit) through DIRECT INPUT 16 On (the most significant bit) and DIRECT INPUT 17 On (the sign bit) FlexLogic™ operands.

For the 8-Bit Comparator at UR-2:

1. Remote power from UR-1 IED received on Direct Inputs is the first argument for the comparator. As such, the following settings should be applied:

```
8 BIT COMP 1 ARG A0: "DIRECT INPUT 1 On"
8 BIT COMP 1 ARG A1: "DIRECT INPUT 2 On"
8 BIT COMP 1 ARG A2: "DIRECT INPUT 3 On"
8 BIT COMP 1 ARG A2: "DIRECT INPUT 3 On"
8 BIT COMP 1 ARG A3: "DIRECT INPUT 4 On"
8 BIT COMP 1 ARG A7: "DIRECT INPUT 8 On"
```

2. Local power from the UR-2 IED available internally is the second argument for the comparator. Thus, the following settings should be applied:

5 SETTINGS 5.6 CONTROL ELEMENTS

```
8 BIT COMP 1 ARG B0: "DIGITIZER 1 BIT 0"
8 BIT COMP 1 ARG B1: "DIGITIZER 1 BIT 1"
8 BIT COMP 1 ARG B2: "DIGITIZER 1 BIT 2"
8 BIT COMP 1 ARG B2: "DIGITIZER 1 BIT 2"
8 BIT COMP 1 ARG B3: "DIGITIZER 1 BIT 3"
8 BIT COMP 1 ARG B7: "DIGITIZER 1 BIT 7"
```

- The two power values are to be added, therefore set 8BIT COMP 1 ADD/SUB to "Off".
- The alarm should be established when the total power in either direction (import or export) is above the threshold, therefore set 8BIT COMP 1 INPUT MODE to "Absolute".
- The alarm should also be established when the total power is above the threshold, therefore set the 8BIT COMP 1 DIRECTION to "Over".
- 6. The digitized power values should be scaled to meaningful values. Assuming that MW are to be used for comparison and display, set 8BIT COMP 1 SCALE FACTOR to "11.81". In this way, the 8BIT COMP 1 A, 8BIT COMP 1 B, and 8BIT COMP 1 Out actual values represent the remote (UR-1), local (UR-2), and total power values in MW.
- The alarm should also be established when the total power is greater than 2500 MW. As such, set 8BIT COMP 1 PICKUP to "2500.00".
- 8. The alarm should be cleared when the total power is less than 2000 MW. As such, the hysteresis setting should be 2500 2000 = 500 MW. Set 8BIT COMP 1 HYSTERESIS to "500".
- 9. Using the timing requirements, set 8BIT COMP 1 PICKUP DELAY to "0.050" and 8BIT COMP 1 RESET DELAY to "1.000". The 8BIT COMP 1 OP FlexLogic™ operand should be used to set the alarm.
- 10. For monitoring and telemetry purposes, the digitized power values should be scaled to meaningful values. Assuming MW to be displayed, set 8BIT COMP 1 SCALE FACTOR to "11.81". In this way, the actual values 8BIT COMP 1 A, 8BIT COMP 1 B and 8BIT COMP 1 Out will represent the remote (UR-1), local (UR-2), and total power values in MW.

For the User-definable displays at UR-2 (optional):

To display the remote and total power values the following screen may be set up:

```
DISP 1 TOP LINE: "REMOTE MW: ~"
DISP 1 BOTTOM LINE: "TOTAL MW: ~"
DISP 1 ITEM 1: "8100" (Modbus register address of 8BIT COMP 1 A)
DISP 1 ITEM 2: "8104" (Modbus register address of 8BIT COMP 1 Out)
```

Analysis of metering errors at UR-2:

The remote and local power values are measured with the maximum error of $\pm 1\%$ of reading (at power factors above 0.8). The digitization (round up) error is 0.2% of full scale, or 0.002 × 2 × 1500 MW = 6 MW. Consequently,

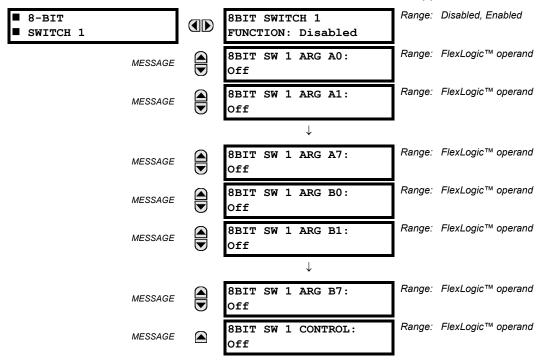
- Remote power is measured at UR-2 with a worst-case error of ± (1% of reading + 6 MW).
- Total power is measured at UR-2 with a worst-case error of ± (1% of UR-1 reading + 1% of UR-2 reading + 12 MW).

For example, with a reading of 1020 MW at UR-1 and 800 MW at UR-2, the remote power is measured at UR-2 with the worst-case error of \pm (0.01 × 1020 MW + 6 MW) = \pm 16.2 MW, or \pm 1.6%. The reading for remote power at UR-2 is the product of the digitized value sent from UR-1 and received at UR-2 and the scale factor setting; that is,

Total Power at UR-1 =
$$\left(\text{round}\left(\frac{1020 \text{ MW}}{1500 \text{ MW}}\right) \times 127\right) \times 11.81 \text{ MW}$$

= 86 × 11.81 MW = 1015.7 MW

Therefore, the reading for the remote power at UR-2 is 1015.7 MW, versus 1020 MW at the point of origin (UR-1).


The total power is measured at UR-2 with the worst-case error of \pm (0.01 \times 1020 MW + 0.01 \times 800 MW + 12 MW) = \pm 30.2MW, or \pm 1.7%. The reading for the total power at UR-2 is the sum of the digitized value sent from UR-1 and received at UR-2 and the digitized value at UR-2 multiplied by the scaling factor; that is,

Total Power at UR-2 =
$$\left(\text{round}\left(\frac{1020 \text{ MW}}{1500 \text{ MW}} \times 127\right) + \text{round}\left(\frac{800 \text{ MW}}{1500 \text{ MW}} \times 127\right)\right) \times 11.81 \text{ MW}$$

= $(86 + 68) \times 11.81 \text{ MW} = 1818.7 \text{ MW}$

Therefore, the reading for the total power at UR-2 is 1818.7 MW, versus a true total of 1020 MW+800 MW = 1820 MW.

5.6.13 8-BIT SWITCHES

This feature allows switching between two input arguments defined by 8 bits each. The bits are specified by FlexLogic™ operands. The feature could be viewed as an integrated two-position switch for 8 logic signals.

Typically this element is applied in conjunction with the Digitizer and 8-bit Comparator features.

- 8BIT SW 1 ARG A0 to 8BIT SW 1 ARG A7: These settings specify FlexLogic™ operands that constitute the first (A) input of the switch. These operands are routed to the output operands if the control input is in the "Off" position.
- BIT SW 1 ARG B0 to 8BIT SW 1 ARG B7: These settings specify FlexLogic™ operands that constitute the second (B) input of the switch. These operands are routed to the output operands if the control input is in the "On" position.
- **8BIT SW 1 CONTROL**: This setting specifies FlexLogic[™] operands to control the routing between the A and B inputs of the switch. If the control operand is in the "Off" state, the first (A) input is switched to the output. If the control operand is in the "On" state, the second (B) input is switched to the output. The switching takes place instantaneously.

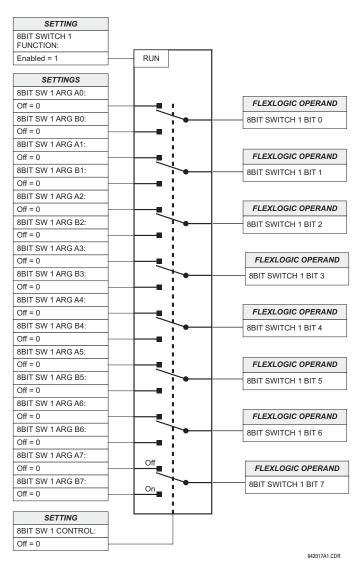
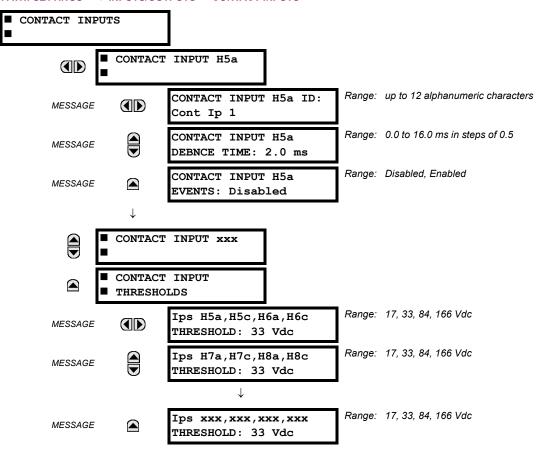



Figure 5-59: 8-BIT SWITCH LOGIC

The contact inputs menu contains configuration settings for each contact input as well as voltage thresholds for each group of four contact inputs. Upon startup, the relay processor determines (from an assessment of the installed modules) which contact inputs are available and then display settings for only those inputs.

An alphanumeric ID may be assigned to a contact input for diagnostic, setting, and event recording purposes. The CONTACT IP X On" (Logic 1) FlexLogic™ operand corresponds to contact input "X" being closed, while CONTACT IP X Off corresponds to contact input "X" being open. The **CONTACT INPUT DEBNCE TIME** defines the time required for the contact to overcome 'contact bouncing' conditions. As this time differs for different contact types and manufacturers, set it as a maximum contact debounce time (per manufacturer specifications) plus some margin to ensure proper operation. If **CONTACT INPUT EVENTS** is set to "Enabled", every change in the contact input state will trigger an event.

A raw status is scanned for all Contact Inputs synchronously at the constant rate of 0.5 ms as shown in the figure below. The DC input voltage is compared to a user-settable threshold. A new contact input state must be maintained for a user-settable debounce time in order for the N60 to validate the new contact state. In the figure below, the debounce time is set at 2.5 ms; thus the 6th sample in a row validates the change of state (mark no. 1 in the diagram). Once validated (debounced), the contact input asserts a corresponding FlexLogic[™] operand and logs an event as per user setting.

A time stamp of the first sample in the sequence that validates the new state is used when logging the change of the contact input into the Event Recorder (mark no. 2 in the diagram).

Protection and control elements, as well as FlexLogic™ equations and timers, are executed eight times in a power system cycle. The protection pass duration is controlled by the frequency tracking mechanism. The FlexLogic™ operand reflecting the debounced state of the contact is updated at the protection pass following the validation (marks no. 3 and 4 on the figure below). The update is performed at the beginning of the protection pass so all protection and control functions, as well as FlexLogic™ equations, are fed with the updated states of the contact inputs.

5 SETTINGS 5.7 INPUTS/OUTPUTS

The FlexLogic™ operand response time to the contact input change is equal to the debounce time setting plus up to one protection pass (variable and depending on system frequency if frequency tracking enabled). If the change of state occurs just after a protection pass, the recognition is delayed until the subsequent protection pass; that is, by the entire duration of the protection pass. If the change occurs just prior to a protection pass, the state is recognized immediately. Statistically a delay of half the protection pass is expected. Owing to the 0.5 ms scan rate, the time resolution for the input contact is below 1msec.

For example, 8 protection passes per cycle on a 60 Hz system correspond to a protection pass every 2.1 ms. With a contact debounce time setting of 3.0 ms, the FlexLogicTM operand-assert time limits are: 3.0 + 0.0 = 3.0 ms and 3.0 + 2.1 = 5.1 ms. These time limits depend on how soon the protection pass runs after the debouncing time.

Regardless of the contact debounce time setting, the contact input event is time-stamped with a 1 μs accuracy using the time of the first scan corresponding to the new state (mark no. 2 below). Therefore, the time stamp reflects a change in the DC voltage across the contact input terminals that was not accidental as it was subsequently validated using the debounce timer. Keep in mind that the associated FlexLogicTM operand is asserted/de-asserted later, after validating the change.

The debounce algorithm is symmetrical: the same procedure and debounce time are used to filter the LOW-HIGH (marks no.1, 2, 3, and 4 in the figure below) and HIGH-LOW (marks no. 5, 6, 7, and 8 below) transitions.

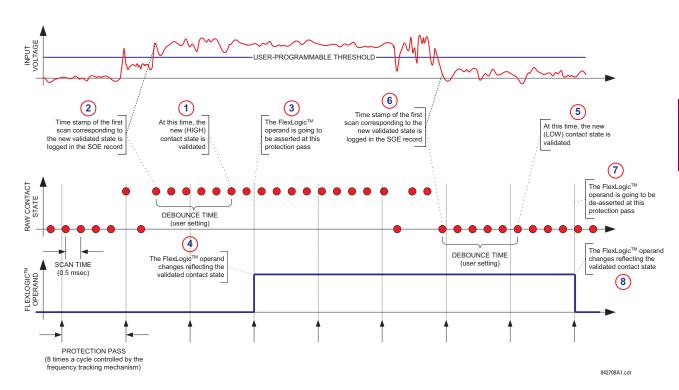
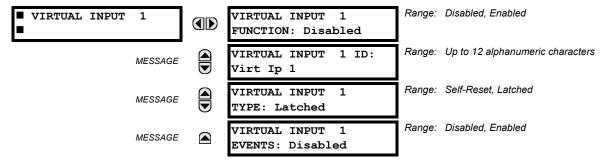


Figure 5-60: INPUT CONTACT DEBOUNCING MECHANISM AND TIME-STAMPING SAMPLE TIMING


Contact inputs are isolated in groups of four to allow connection of wet contacts from different voltage sources for each group. The **CONTACT INPUT THRESHOLDS** determine the minimum voltage required to detect a closed contact input. This value should be selected according to the following criteria: 17 for 24 V sources, 33 for 48 V sources, 84 for 110 to 125 V sources and 166 for 250 V sources.

For example, to use contact input H5a as a status input from the breaker 52b contact to seal-in the trip relay and record it in the Event Records menu, make the following settings changes:

CONTACT INPUT H5A ID: "Breaker Closed (52b)"
CONTACT INPUT H5A EVENTS: "Enabled"

Note that the 52b contact is closed when the breaker is open and open when the breaker is closed.

PATH: SETTINGS ⇒ \$\Partial\$ INPUTS/OUTPUTS \$\Partial\$ VIRTUAL INPUTS \$\Partial\$ VIRTUAL INPUT 1(32)

There are 32 virtual inputs that can be individually programmed to respond to input signals from the keypad (Commands menu) and communications protocols. All virtual input operands are defaulted to OFF = 0 unless the appropriate input signal is received. **Virtual input states are preserved through a control power loss**.

If the **VIRTUAL INPUT x FUNCTION** is to "Disabled", the input will be forced to 'Off' (Logic 0) regardless of any attempt to alter the input. If set to "Enabled", the input operates as shown on the logic diagram and generates output FlexLogicTM operands in response to received input signals and the applied settings.

There are two types of operation: Self-Reset and Latched. If **VIRTUAL INPUT x TYPE** is "Self-Reset", when the input signal transits from OFF = 0 to ON = 1, the output operand will be set to ON = 1 for only one evaluation of the FlexLogicTM equations and then return to OFF = 0. If set to "Latched", the virtual input sets the state of the output operand to the same state as the most recent received input, ON = 1 or OFF = 0.

The "Self-Reset" operating mode generates the output operand for a single evaluation of the FlexLogic™ equations. If the operand is to be used anywhere other than internally in a FlexLogic™ equation, it will likely have to be lengthened in time. A FlexLogic™ timer with a delayed reset can perform this function.

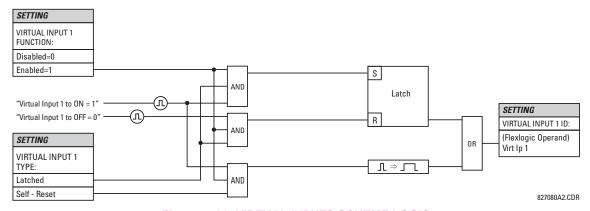
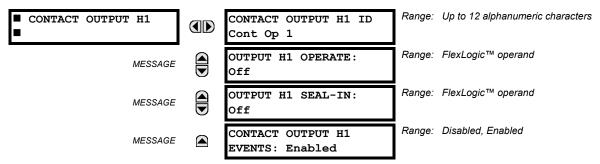



Figure 5-61: VIRTUAL INPUTS SCHEME LOGIC

5.7.3 CONTACT OUTPUTS

PATH: SETTINGS ⇒ \$\Partial\$ INPUTS/OUTPUTS \$\Partial\$ CONTACT OUTPUTS \$\Partial\$ CONTACT OUTPUT H1

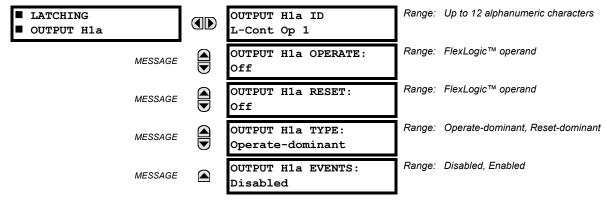
Upon startup of the relay, the main processor will determine from an assessment of the modules installed in the chassis which contact outputs are available and present the settings for only these outputs.

An ID may be assigned to each contact output. The signal that can **OPERATE** a contact output may be any FlexLogic[™] operand (virtual output, element state, contact input, or virtual input). An additional FlexLogic[™] operand may be used to **SEAL-IN** the relay. Any change of state of a contact output can be logged as an Event if programmed to do so.

For example, the trip circuit current is monitored by providing a current threshold detector in series with some Form-A contacts (see the trip circuit example in the *Digital Elements* section). The monitor will set a flag (see the specifications for Form-A). The name of the FlexLogic[™] operand set by the monitor, consists of the output relay designation, followed by the name of the flag; e.g. 'Cont Op 1 IOn' or 'Cont Op 1 IOff'.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact used to interrupt current flow after the breaker has tripped, to prevent damage to the less robust initiating contact. This can be done by monitoring an auxiliary contact on the breaker which opens when the breaker has tripped, but this scheme is subject to incorrect operation caused by differences in timing between breaker auxiliary contact change-of-state and interruption of current in the trip circuit. The most dependable protection of the initiating contact is provided by directly measuring current in the tripping circuit, and using this parameter to control resetting of the initiating relay. This scheme is often called 'trip seal-in'.

This can be realized in the N60 using the 'Cont Op 1 IOn' FlexLogic™ operand to seal-in the contact output as follows:


CONTACT OUTPUT H1 ID: "Cont Op 1"

OUTPUT H1 OPERATE: any suitable FlexLogic™ operand

OUTPUT H1 SEAL-IN: "Cont Op 1 IOn"
CONTACT OUTPUT H1 EVENTS: "Enabled"

5.7.4 LATCHING OUTPUTS

PATH: SETTINGS $\Rightarrow \emptyset$ INPUTS/OUTPUTS $\Rightarrow \emptyset$ LATCHING OUTPUTS \Rightarrow LATCHING OUTPUT H1a

5.7 INPUTS/OUTPUTS 5 SETTINGS

The N60 latching output contacts are mechanically bi-stable and controlled by two separate (open and close) coils. As such they retain their position even if the relay is not powered up. The relay recognizes all latching output contact cards and populates the setting menu accordingly. On power up, the relay reads positions of the latching contacts from the hardware before executing any other functions of the relay (such as protection and control features or FlexLogic[™]).

The latching output modules, either as a part of the relay or as individual modules, are shipped from the factory with all latching contacts opened. It is highly recommended to double-check the programming and positions of the latching contacts when replacing a module.

Since the relay asserts the output contact and reads back its position, it is possible to incorporate self-monitoring capabilities for the latching outputs. If any latching outputs exhibits a discrepancy, the **LATCHING OUTPUT ERROR** self-test error is declared. The error is signaled by the LATCHING OUT ERROR FlexLogicTM operand, event, and target message.

- OUTPUT H1a OPERATE: This setting specifies a FlexLogic[™] operand to operate the 'close coil' of the contact. The relay will seal-in this input to safely close the contact. Once the contact is closed and the RESET input is logic 0 (off), any activity of the OPERATE input, such as subsequent chattering, will not have any effect. With both the OPERATE and RESET inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- OUTPUT H1a RESET: This setting specifies a FlexLogic™ operand to operate the 'trip coil' of the contact. The relay will seal-in this input to safely open the contact. Once the contact is opened and the OPERATE input is logic 0 (off), any activity of the RESET input, such as subsequent chattering, will not have any effect. With both the OPERATE and RESET inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- **OUTPUT H1a TYPE**: This setting specifies the contact response under conflicting control inputs; that is, when both the **OPERATE** and **RESET** signals are applied. With both control inputs applied simultaneously, the contact will close if set to "Operate-dominant" and will open if set to "Reset-dominant".

Application Example 1:

A latching output contact H1a is to be controlled from two user-programmable pushbuttons (buttons number 1 and 2). The following settings should be applied.

Program the Latching Outputs by making the following changes in the SETTINGS ⇒ ♣ INPUTS/OUTPUT ⇒ ♣ LATCHING OUTPUTS ⇒ LATCHING OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "PUSHBUTTON 1 ON"
OUTPUT H1a RESET: "PUSHBUTTON 2 ON"

Program the pushbuttons by making the following changes in the PRODUCT SETUP ⇒ USER-PROGRAMMABLE PUSHBUTTONS ⇒ USER PUSHBUTTON 1 and USER PUSHBUTTON 2 menus:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBUTTON 2 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.00 s"
PUSHBTN 2 DROP-OUT TIME: "0.00 s"

Application Example 2:

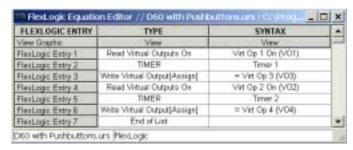
A relay, having two latching contacts H1a and H1c, is to be programmed. The H1a contact is to be a Type-a contact, while the H1c contact is to be a Type-b contact (Type-a means closed after exercising the operate input; Type-b means closed after exercising the reset input). The relay is to be controlled from virtual outputs: VO1 to operate and VO2 to reset.

Program the Latching Outputs by making the following changes in the SETTINGS ⇒ ♣ INPUTS/OUTPUT ⇒ ♣ LATCHING OUTPUT H1¢ menus (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1"

OUTPUT H1a RESET: "VO2"

OUTPUT H1c RESET: "VO1"


Since the two physical contacts in this example are mechanically separated and have individual control inputs, they will not operate at exactly the same time. A discrepancy in the range of a fraction of a maximum operating time may occur. Therefore, a pair of contacts programmed to be a multi-contact relay will not guarantee any specific sequence of operation (such as make before break). If required, the sequence of operation must be programmed explicitly by delaying some of the control inputs as shown in the next application example.

Application Example 3:

A make before break functionality must be added to the preceding example. An overlap of 20 ms is required to implement this functionality as described below:

5 SETTINGS 5.7 INPUTS/OUTPUTS

Write the following FlexLogic™ equation (enerVista UR Setup example shown):

Both timers (Timer 1 and Timer 2) should be set to 20 ms pickup and 0 ms dropout.

Program the Latching Outputs by making the following changes in the SETTINGS ⇒ ♣ INPUTS/OUTPUT ⇒ ♣ LATCHING OUTPUT H1¢ menus (assuming an H4L module):

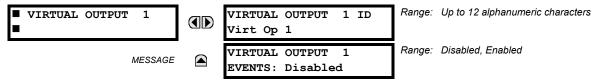
OUTPUT H1a OPERATE: "VO1"
OUTPUT H1a RESET: "VO4"

OUTPUT H1c OPERATE: "VO2"
OUTPUT H1c RESET: "VO3"

Application Example 4:

A latching contact H1a is to be controlled from a single virtual output VO1. The contact should stay closed as long as VO1 is high, and should stay opened when VO1 is low. Program the relay as follows.

Write the following FlexLogic™ equation (enerVista UR Setup example shown):



Program the Latching Outputs by making the following changes in the SETTINGS ⇒ ♣ INPUTS/OUTPUT ⇒ ♣ LATCHING OUTPUTS ⇒ LATCHING OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1"
OUTPUT H1a RESET: "VO2"

5.7.5 VIRTUAL OUTPUTS

PATH: SETTINGS $\Rightarrow \oplus$ INPUTS/OUTPUTS $\Rightarrow \oplus$ VIRTUAL OUTPUTS \Rightarrow VIRTUAL OUTPUT 1(64)

There are 64 virtual outputs that may be assigned via $FlexLogic^{TM}$. If not assigned, the output will be forced to 'OFF' (Logic 0). An ID may be assigned to each virtual output. Virtual outputs are resolved in each pass through the evaluation of the $FlexLogic^{TM}$ equations. Any change of state of a virtual output can be logged as an event if programmed to do so.

For example, if Virtual Output 1 is the trip signal from FlexLogic™ and the trip relay is used to signal events, the settings would be programmed as follows:

VIRTUAL OUTPUT 1 ID: "Trip"

VIRTUAL OUTPUT 1 EVENTS: "Disabled"

5.7.6 REMOTE DEVICES

a) REMOTE INPUTS/OUTPUTS OVERVIEW

Remote inputs and outputs, which are a means of exchanging information regarding the state of digital points between remote devices, are provided in accordance with the IEC 61850 "Generic Object Oriented Substation Event (GSSE)" specifications.

The IEC 61850 specification requires that communications between devices be implemented on Ethernet communications facilities. For UR-series relays, Ethernet communications is provided only on the type 9G and 9H versions of the CPU module.

The sharing of digital point state information between GSSE equipped relays is essentially an extension to FlexLogic™ to allow distributed FlexLogic™ by making operands available to/from devices on a common communications network. In addition to digital point states, GSSE messages identify the originator of the message and provide other information required by the communication specification. All devices listen to network messages and capture data from only those messages that have originated in selected devices.

GSSE messages are designed to be short, high priority and with a high level of reliability. The GSSE message structure contains space for 128 bit pairs representing digital point state information. The IEC 61850 specification provides 32 "DNA" bit pairs, which are status bits representing pre-defined events. All remaining bit pairs are "UserSt" bit pairs, which are status bits representing user-definable events. The N60 implementation provides 32 of the 96 available UserSt bit pairs.

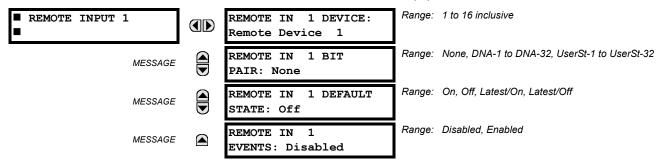
The IEC 61850 specification includes features that are used to cope with the loss of communication between transmitting and receiving devices. Each transmitting device will send a GSSE message upon a successful power-up, when the state of any included point changes, or after a specified interval (the 'default update' time) if a change-of-state has not occurred. The transmitting device also sends a 'hold time' which is set to three times the programmed default time, which is required by the receiving device.

Receiving devices are constantly monitoring the communications network for messages they require, as recognized by the identification of the originating device carried in the message. Messages received from remote devices include the message 'hold' time for the device. The receiving relay sets a timer assigned to the originating device to the 'hold' time interval, and if it has not received another message from this device at time-out, the remote device is declared to be non-communicating, so it will use the programmed default state for all points from that specific remote device. This mechanism allows a receiving device to fail to detect a single transmission from a remote device which is sending messages at the slowest possible rate, as set by its 'default update' timer, without reverting to use of the programmed default states. If a message is received from a remote device before the 'hold' time expires, all points for that device are updated to the states contained in the message and the hold timer is restarted. The status of a remote device, where "Offline" indicates non-communicating, can be displayed.

The GSSE facility provides for 64 remote inputs and 64 remote outputs.

b) LOCAL DEVICES: ID OF DEVICE FOR TRANSMITTING GSSE MESSAGES

In a N60 relay, the device ID that identifies the originator of the message is programmed in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ INSTALLATION $\Rightarrow \emptyset$ RELAY NAME setting.


c) REMOTE DEVICES: ID OF DEVICE FOR RECEIVING GSSE MESSAGES

Sixteen remote devices, numbered from 1 to 16, can be selected for setting purposes. A receiving relay must be programmed to capture messages from only those originating remote devices of interest. This setting is used to select specific remote devices by entering (bottom row) the exact identification (ID) assigned to those devices.

5.7.7 REMOTE INPUTS

PATH: SETTINGS ⇒ \$\Partial\$ INPUTS/OUTPUTS \$\Partial\$ REMOTE INPUTS \$\Partial\$ REMOTE INPUT 1(64)

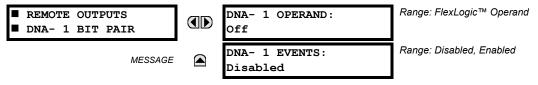
Remote Inputs which create FlexLogic™ operands at the receiving relay, are extracted from GSSE messages originating in remote devices. The relay provides 64 remote inputs, each of which can be selected from a list consisting of 64 selections: DNA-1 through DNA-32 and UserSt-1 through UserSt-32. The function of DNA inputs is defined in the IEC 61850 specification and is presented in the IEC 61850 DNA Assignments table in the *Remote Outputs* section. The function of UserSt inputs is defined by the user selection of the FlexLogic™ operand whose state is represented in the GSSE message. A user must program a DNA point from the appropriate FlexLogic™ operand.

Remote Input 1 must be programmed to replicate the logic state of a specific signal from a specific remote device for local use. This programming is performed via the three settings shown above.

REMOTE IN 1 DEVICE selects the number (1 to 16) of the remote device which originates the required signal, as previously assigned to the remote device via the setting **REMOTE DEVICE NN ID** (see the *Remote Devices* section). **REMOTE IN 1 BIT PAIR** selects the specific bits of the GSSE message required.

The **REMOTE IN 1 DEFAULT STATE** setting selects the logic state for this point if the local relay has just completed startup or the remote device sending the point is declared to be non-communicating. The following choices are available:

- Setting REMOTE IN 1 DEFAULT STATE to "On" value defaults the input to Logic 1.
- Setting REMOTE IN 1 DEFAULT STATE to "Off" value defaults the input to Logic 0.
- Setting **REMOTE IN 1 DEFAULT STATE** to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 1. When communication resumes, the input becomes fully operational.
- Setting **REMOTE IN 1 DEFAULT STATE** to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0. When communication resumes, the input becomes fully operational.



For additional information on the GSSE specification, refer to the Remote Devices section in this chapter.

5

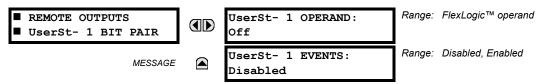
a) DNA BIT PAIRS

PATH: SETTINGS ⇒ \$\Partial\$ INPUTS/OUTPUTS \$\Rightarrow\$ REMOTE OUTPUTS DNA BIT PAIRS \$\Rightarrow\$ REMOTE OUPUTS DNA-1(32) BIT PAIR

Remote Outputs (1 to 32) are FlexLogic™ operands inserted into GSSE messages that are transmitted to remote devices on a LAN. Each digital point in the message must be programmed to carry the state of a specific FlexLogic™ operand. The above operand setting represents a specific DNA function (as shown in the following table) to be transmitted.

Table 5-9: IEC 61850 DNA2 ASSIGNMENTS

DNA	DEFINITION	INTENDED FUNCTION	LOGIC 0	LOGIC 1
1	OperDev		Trip	Close
2	Lock Out		LockoutOff	LockoutOn
3	Initiate Reclosing	Initiate remote reclose sequence	InitRecloseOff	InitRecloseOn
4	Block Reclosing	Prevent/cancel remote reclose sequence	BlockOff	BlockOn
5	Breaker Failure Initiate	Initiate remote breaker failure scheme	BFIOff	BFIOn
6	Send Transfer Trip	Initiate remote trip operation	TxXfrTripOff	TxXfrTripOn
7	Receive Transfer Trip	Report receipt of remote transfer trip command	RxXfrTripOff	RxXfrTripOn
8	Send Perm	Report permissive affirmative	TxPermOff	TxPermOn
9	Receive Perm	Report receipt of permissive affirmative	RxPermOff	RxPermOn
10	Stop Perm	Override permissive affirmative	StopPermOff	StopPermOn
11	Send Block	Report block affirmative	TxBlockOff	TxBlockOn
12	Receive Block	Report receipt of block affirmative	RxBlockOff	RxBlockOn
13	Stop Block	Override block affirmative	StopBlockOff	StopBlockOn
14	BkrDS	Report breaker disconnect 3-phase state	Open	Closed
15	BkrPhsADS	Report breaker disconnect phase A state	Open	Closed
16	BkrPhsBDS	Report breaker disconnect phase B state	Open	Closed
17	BkrPhsCDS	Report breaker disconnect phase C state	Open	Closed
18	DiscSwDS		Open	Closed
19	Interlock DS		DSLockOff	DSLockOn
20	LineEndOpen	Report line open at local end	Open	Closed
21	Status	Report operating status of local GSSE device	Offline	Available
22	Event		EventOff	EventOn
23	Fault Present		FaultOff	FaultOn
24	Sustained Arc	Report sustained arc	SustArcOff	SustArcOn
25	Downed Conductor	Report downed conductor	DownedOff	DownedOn
26	Sync Closing		SyncClsOff	SyncClsOn
27	Mode	Report mode status of local GSSE device	Normal	Test
28→32	Reserved			



For more information on GSSE specifications, see the *Remote Inputs/Outputs Overview* in the *Remote Devices* section.

5 SETTINGS 5.7 INPUTS/OUTPUTS

b) USERST BIT PAIRS

PATH: SETTINGS ⇒ \$\Partial\$ INPUTS/OUTPUTS \$\Rightarrow\$ REMOTE OUTPUTS UserSt BIT PAIRS \$\Rightarrow\$ REMOTE OUTPUTS UserSt-1(32) BIT PAIRS

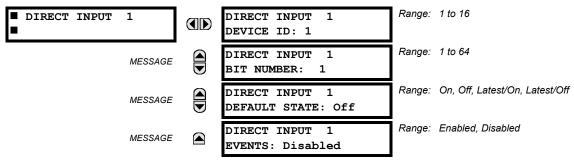
Remote Outputs 1 to 32 originate as GSSE messages to be transmitted to remote devices. Each digital point in the message must be programmed to carry the state of a specific FlexLogic™ operand. The setting above is used to select the operand which represents a specific UserSt function (as selected by the user) to be transmitted.

The following setting represents the time between sending GSSE messages when there has been no change of state of any selected digital point. This setting is located in the **PRODUCT SETUP** $\Rightarrow \emptyset$ **COMMUNICATIONS** $\Rightarrow \emptyset$ **IEC 61850 PROTOCOL** settings menu.

For more information on GSSE specifications, see the *Remote Inputs/Outputs Overview* in the *Remote Devices* section.

5.7.9 RESETTING

PATH: SETTINGS $\Rightarrow \mathbb{Q}$ INPUTS/OUTPUTS $\Rightarrow \mathbb{Q}$ RESETTING


Some events can be programmed to latch the faceplate LED event indicators and the target message on the display. Once set, the latching mechanism will hold all of the latched indicators or messages in the set state after the initiating condition has cleared until a RESET command is received to return these latches (not including FlexLogic™ latches) to the reset state. The RESET command can be sent from the faceplate Reset button, a remote device via a communications channel, or any programmed operand.

When the RESET command is received by the relay, two FlexLogic[™] operands are created. These operands, which are stored as events, reset the latches if the initiating condition has cleared. The three sources of RESET commands each create the RESET OP FlexLogic[™] operand. Each individual source of a RESET command also creates its individual operand RESET OP (PUSHBUTTON), RESET OP (COMMS) or RESET OP (OPERAND) to identify the source of the command. The setting shown above selects the operand that will create the RESET OP (OPERAND) operand.

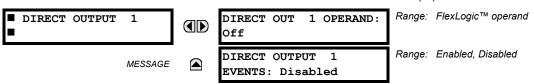
5.7.10 DIRECT INPUTS/OUTPUTS

a) DIRECT INPUTS

PATH: SETTINGS $\Rightarrow \emptyset$ INPUTS/OUTPUTS $\Rightarrow \emptyset$ DIRECT INPUTS \Rightarrow DIRECT INPUT 1(64)

These settings specify how the direct input information is processed. The **DIRECT INPUT DEVICE ID** represents the source of this direct input. The specified direct input is driven by the device identified here.

5.7 INPUTS/OUTPUTS 5 SETTINGS


The **DIRECT INPUT 1 BIT NUMBER** is the bit number to extract the state for this direct input. Direct Input *x* is driven by the bit identified here as **DIRECT INPUT 1 BIT NUMBER**. This corresponds to the direct output number of the sending device.

The **DIRECT INPUT 1 DEFAULT STATE** represents the state of the direct input when the associated direct device is offline. The following choices are available:

- Setting DIRECT INPUT 1 DEFAULT STATE to "On" value defaults the input to Logic 1.
- Setting DIRECT INPUT 1 DEFAULT STATE to "Off" value defaults the input to Logic 0.
- Setting **DIRECT INPUT 1 DEFAULT STATE** to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 1. When communication resumes, the input becomes fully operational.
- Setting **DIRECT INPUT 1 DEFAULT STATE** to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0. When communication resumes, the input becomes fully operational.

b) DIRECT OUTPUTS

PATH: SETTINGS ⇒ \$\Partial\$ INPUTS/OUTPUTS \$\Partial\$ DIRECT OUTPUTS \$\Partial\$ DIRECT OUTPUT 1(64)

The **DIR OUT 1 OPERAND** is the FlexLogic[™] operand that determines the state of this Direct Output.

c) APPLICATION EXAMPLES

The examples introduced in the earlier *Direct Inputs/Outputs* section (part of the *Product Setup* section) direct inputs/outputs are continued below to illustrate usage of the direct inputs and outputs.

EXAMPLE 1: EXTENDING INPUT/OUTPUT CAPABILITIES OF A N60 RELAY

Consider an application that requires additional quantities of digital inputs and/or output contacts and/or lines of programmable logic that exceed the capabilities of a single UR-series chassis. The problem is solved by adding an extra UR-series IED, such as the C30, to satisfy the additional inputs/outputs and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown below.

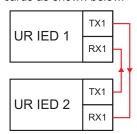


Figure 5-62: INPUT/OUTPUT EXTENSION VIA DIRECT INPUTS/OUTPUTS

Assume Contact Input 1 from UR IED 2 is to be used by UR IED 1. The following settings should be applied (Direct Input 5 and bit number 12 are used, as an example):

UR IED 1: DIRECT INPUT 5 DEVICE ID = "2"

UR IED 2: DIRECT OUT 12 OPERAND = "Cont Ip 1 On"

DIRECT INPUT 5 BIT NUMBER = "12"

The Cont Ip 1 On operand of UR IED 2 is now available in UR IED 1 as DIRECT INPUT 5 ON.

EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION

A simple interlocking busbar protection scheme can be accomplished by sending a blocking signal from downstream devices, say 2, 3 and 4, to the upstream device that monitors a single incomer of the busbar, as shown in the figure below.

5 SETTINGS 5.7 INPUTS/OUTPUTS

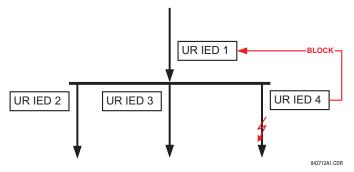


Figure 5-63: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME

Assume that Phase Instantaneous Overcurrent 1 is used by Devices 2, 3, and 4 to block Device 1. If not blocked, Device 1 would trip the bus upon detecting a fault and applying a short coordination time delay.

The following settings should be applied (assume Bit 3 is used by all 3 devices to sent the blocking signal and Direct Inputs 7, 8, and 9 are used by the receiving device to monitor the three blocking signals):

UR IED 2: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 3: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 4: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"

UR IED 1: DIRECT INPUT 7 DEVICE ID: "2"
DIRECT INPUT 7 BIT NUMBER: "3"

DIRECT INPUT 7 DEFAULT STATE: select "On" for security, select "Off" for dependability

DIRECT INPUT 8 DEVICE ID: "3"
DIRECT INPUT 8 BIT NUMBER: "3"

DIRECT INPUT 8 DEFAULT STATE: select "On" for security, select "Off" for dependability

DIRECT INPUT 9 DEVICE ID: "4"
DIRECT INPUT 9 BIT NUMBER: "3"

DIRECT INPUT 9 DEFAULT STATE: select "On" for security, select "Off" for dependability

Now the three blocking signals are available in UR IED 1 as DIRECT INPUT 7 ON, DIRECT INPUT 8 ON, and DIRECT INPUT 9 ON. Upon losing communications or a device, the scheme is inclined to block (if any default state is set to "On"), or to trip the bus on any overcurrent condition (all default states set to "Off").

EXAMPLE 2: PILOT-AIDED SCHEMES

Consider a three-terminal line protection application shown in the figure below.

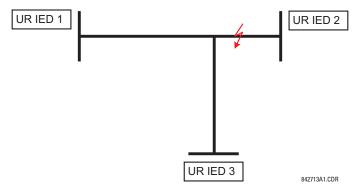


Figure 5-64: THREE-TERMINAL LINE APPLICATION

Assume the Hybrid Permissive Overreaching Transfer Trip (Hybrid POTT) scheme is applied using the architecture shown below. The scheme output operand HYB POTT TX1 is used to key the permission.

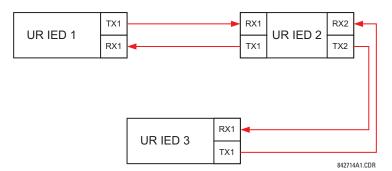


Figure 5-65: SINGLE-CHANNEL OPEN-LOOP CONFIGURATION

In the above architecture, Devices 1 and 3 do not communicate directly. Therefore, Device 2 must act as a 'bridge'. The following settings should be applied:

UR IED 1: DIRECT OUT 2 OPERAND: "HYB POTT TX1"

DIRECT INPUT 5 DEVICE ID: "2"

DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)

DIRECT INPUT 6 DEVICE ID: "2"

DIRECT INPUT 6 BIT NUMBER: "4" (effectively, this is a message from IED 3)

UR IED 3: DIRECT OUT 2 OPERAND: "HYB POTT TX1"

DIRECT INPUT 5 DEVICE ID: "2"

DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)

DIRECT INPUT 6 DEVICE ID: "2"

DIRECT INPUT 6 BIT NUMBER: "3" (effectively, this is a message from IED 1)

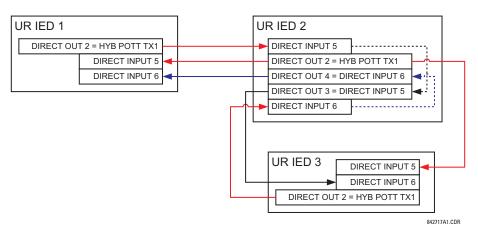
UR IED 2: DIRECT INPUT 5 DEVICE ID: "1"

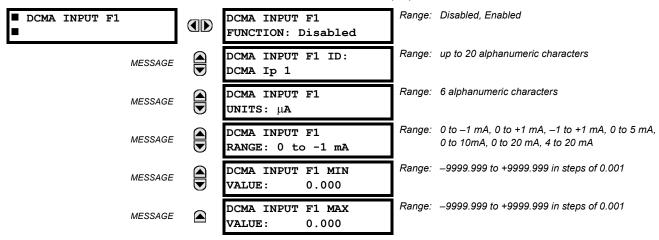
DIRECT INPUT 5 BIT NUMBER: "2" DIRECT INPUT 6 DEVICE ID: "3" DIRECT INPUT 6 BIT NUMBER: "2"

DIRECT OUT 2 OPERAND: "HYB POTT TX1"

DIRECT OUT 3 OPERAND: "DIRECT INPUT 5" (forward a message from 1 to 3) **DIRECT OUT 4 OPERAND:** "DIRECT INPUT 6" (forward a message from 3 to 1)

Signal flow between the three IEDs is shown in the figure below:




Figure 5-66: SIGNAL FLOW FOR DIRECT INPUT/OUTPUT EXAMPLE 3

In three-terminal applications, both the remote terminals must grant permission to trip. Therefore, at each terminal, Direct Inputs 5 and 6 should be ANDed in FlexLogic™ and the resulting operand configured as the permission to trip (HYB POTT RX1 setting).

5 SETTINGS

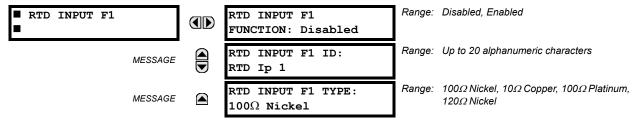
5.8.1 DCMA INPUTS

Hardware and software is provided to receive signals from external transducers and convert these signals into a digital format for use as required. The relay will accept inputs in the range of –1 to +20 mA DC, suitable for use with most common transducer output ranges; all inputs are assumed to be linear over the complete range. Specific hardware details are contained in Chapter 3.

Before the dcmA input signal can be used, the value of the signal measured by the relay must be converted to the range and quantity of the external transducer primary input parameter, such as DC voltage or temperature. The relay simplifies this process by internally scaling the output from the external transducer and displaying the actual primary parameter.

dcmA input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.


Settings are automatically generated for every channel available in the specific relay as shown above for the first channel of a type 5F transducer module installed in slot F.

The function of the channel may be either "Enabled" or "Disabled". If "Disabled", no actual values are created for the channel. An alphanumeric "ID" is assigned to each channel; this ID will be included in the channel actual value, along with the programmed units associated with the parameter measured by the transducer, such as volts, °C, megawatts, etc. This ID is also used to reference the channel as the input parameter to features designed to measure this type of parameter. The **DCMA INPUT F1 RANGE** setting specifies the mA DC range of the transducer connected to the input channel.

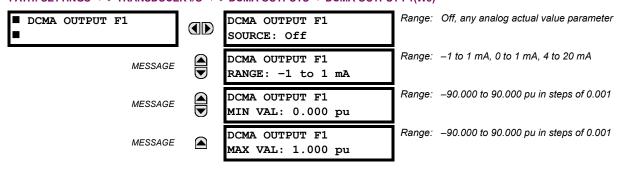
The DCMA INPUT F1 MIN VALUE and DCMA INPUT F1 MAX VALUE settings are used to program the span of the transducer in primary units. For example, a temperature transducer might have a span from 0 to 250°C; in this case the DCMA INPUT F1 MIN VALUE value is "0" and the DCMA INPUT F1 MAX VALUE value is "250". Another example would be a watts transducer with a span from -20 to +180 MW; in this case the DCMA INPUT F1 MIN VALUE value would be "-20" and the DCMA INPUT F1 MAX VALUE value "180". Intermediate values between the min and max values are scaled linearly.

5.8.2 RTD INPUTS

Hardware and software is provided to receive signals from external Resistance Temperature Detectors and convert these signals into a digital format for use as required. These channels are intended to be connected to any of the RTD types in common use. Specific hardware details are contained in Chapter 3.

RTD input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.


Settings are automatically generated for every channel available in the specific relay as shown above for the first channel of a type 5C transducer module installed in slot F.

The function of the channel may be either "Enabled" or "Disabled". If "Disabled", there will not be an actual value created for the channel. An alphanumeric ID is assigned to the channel; this ID will be included in the channel actual values. It is also used to reference the channel as the input parameter to features designed to measure this type of parameter. Selecting the type of RTD connected to the channel configures the channel.

Actions based on RTD overtemperature, such as trips or alarms, are done in conjunction with the FlexElements[™] feature. In FlexElements[™], the operate level is scaled to a base of 100°C. For example, a trip level of 150°C is achieved by setting the operate level at 1.5 pu. FlexElement[™] operands are available to FlexLogic[™] for further interlocking or to operate an output contact directly.

5.8.3 DCMA OUTPUTS

PATH: SETTINGS ⇒ ♥ TRANSDUCER I/O ⇒ ♥ DCMA OUTPUTS ⇒ DCMA OUTPUT F1(W8)

Hardware and software is provided to generate dcmA signals that allow interfacing with external equipment. Specific hardware details are contained in Chapter 3. The dcmA output channels are arranged in a manner similar to transducer input or CT and VT channels. The user configures individual channels with the settings shown below.

The channels are arranged in sub-modules of two channels, numbered 1 through 8 from top to bottom. On power-up, the relay automatically generates configuration settings for every channel, based on the order code, in the same manner used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number.

Both the output range and a signal driving a given output are user-programmable via the following settings menu (an example for channel M5 is shown).

5 SETTINGS 5.8 TRANSDUCER I/O

The relay checks the driving signal (*x* in equations below) for the minimum and maximum limits, and subsequently rescales so the limits defined as **MIN VAL** and **MAX VAL** match the output range of the hardware defined as **RANGE**. The following equation is applied:

$$I_{out} = \begin{cases} I_{min} & \text{if } x < \text{MIN VAL} \\ I_{max} & \text{if } x > \text{MAX VAL} \\ k(x - \text{MIN VAL}) + I_{min} & \text{otherwise} \end{cases}$$
 (EQ 5.16)

where: *x* is a driving signal specified by the **SOURCE** setting I_{min} and I_{max} are defined by the **RANGE** setting *k* is a scaling constant calculated as:

$$k = \frac{I_{max} - I_{min}}{MAX VAL - MIN VAL}$$
 (EQ 5.17)

The feature is intentionally inhibited if the MAX VAL and MIN VAL settings are entered incorrectly, e.g. when MAX VAL – MIN VAL < 0.1 pu. The resulting characteristic is illustrated in the following figure.

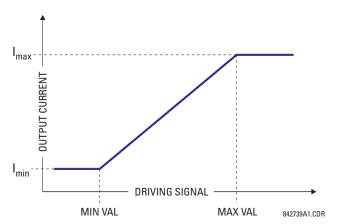


Figure 5-67: DCMA OUTPUT CHARACTERISTIC

The dcmA output settings are described below.

- **DCMA OUTPUT F1 SOURCE**: This setting specifies an internal analog value to drive the analog output. Actual values (FlexAnalog parameters) such as power, current amplitude, voltage amplitude, power factor, etc. can be configured as sources driving dcmA outputs. Refer to Appendix A for a complete list of FlexAnalog parameters.
- **DCMA OUTPUT F1 RANGE**: This setting allows selection of the output range. Each dcmA channel may be set independently to work with different ranges. The three most commonly used output ranges are available.
- DCMA OUTPUT F1 MIN VAL: This setting allows setting the minimum limit for the signal that drives the output. This setting is used to control the mapping between an internal analog value and the output current (see the following examples). The setting is entered in per-unit values. The base units are defined in the same manner as the FlexElement™ base units.
- DCMA OUTPUT F1 MAX VAL: This setting allows setting the maximum limit for the signal that drives the output. This setting is used to control the mapping between an internal analog value and the output current (see the following examples). The setting is entered in per-unit values. The base units are defined in the same manner as the FlexElement™ base units.

Three application examples are described below.

EXAMPLE 1:

A three phase active power on a 13.8 kV system measured via UR-series relay source 1 is to be monitored by the dcmA H1 output of the range of –1 to 1 mA. The following settings are applied on the relay: CT ratio = 1200:5, VT secondary 115, VT connection is delta, and VT ratio = 120. The nominal current is 800 A primary and the nominal power factor is 0.90. The power is to be monitored in both importing and exporting directions and allow for 20% overload compared to the nominal.

5.8 TRANSDUCER I/O 5 SETTINGS

The nominal three-phase power is:

$$P = \sqrt{3} \times 13.8 \text{ kV} \times 0.8 \text{ kA} \times 0.9 = 17.21 \text{ MW}$$
 (EQ 5.18)

The three-phase power with 20% overload margin is:

$$P_{max} = 1.2 \times 17.21 \text{ MW} = 20.65 \text{ MW}$$
 (EQ 5.19)

The base unit for power (refer to the FlexElements section in this chapter for additional details) is:

$$P_{BASE} = 115 \text{ V} \times 120 \times 1.2 \text{ kA} = 16.56 \text{ MW}$$
 (EQ 5.20)

The minimum and maximum power values to be monitored (in pu) are:

minimum power =
$$\frac{-20.65 \text{ MW}}{16.56 \text{ MW}}$$
 = -1.247 pu, maximum power = $\frac{20.65 \text{ MW}}{16.56 \text{ MW}}$ = 1.247 pu (EQ 5.21)

The following settings should be entered:

DCMA OUTPUT H1 SOURCE: "SRC 1 P"
DCMA OUTPUT H1 RANGE: "-1 to 1 mA"
DCMA OUTPUT H1 MIN VAL: "-1.247 pu"
DCMA OUTPUT H1 MIN VALL "1.247 pu"

With the above settings, the output will represent the power with the scale of 1 mA per 20.65 MW. The worst-case error for this application can be calculated by superimposing the following two sources of error:

- $\pm 0.5\%$ of the full scale for the analog output module, or $\pm 0.005 \times (1 (-1)) \times 20.65$ MW = ± 0.207 MW
- ±1% of reading error for the active power at power factor of 0.9

For example at the reading of 20 MW, the worst-case error is 0.01 × 20 MW + 0.207 MW = 0.407 MW.

EXAMPLE 2:

The phase A current (true RMS value) is to be monitored via the H2 current output working with the range from 4 to 20 mA. The CT ratio is 5000:5 and the maximum load current is 4200 A. The current should be monitored from 0 A upwards, allowing for 50% overload.

The phase current with the 50% overload margin is:

$$I_{max} = 1.5 \times 4.2 \text{ kA} = 6.3 \text{ kA}$$
 (EQ 5.22)

The base unit for current (refer to the FlexElements section in this chapter for additional details) is:

$$I_{BASE} = 5 \text{ kA}$$
 (EQ 5.23)

The minimum and maximum power values to be monitored (in pu) are:

minimum current =
$$\frac{0 \text{ kA}}{5 \text{ kA}} = 0 \text{ pu}$$
, maximum current = $\frac{6.3 \text{ kA}}{5 \text{ kA}} = 1.26 \text{ pu}$ (EQ 5.24)

The following settings should be entered:

DCMA OUTPUT H2 SOURCE: "SRC 1 la RMS"
DCMA OUTPUT H2 RANGE: "4 to 20 mA"
DCMA OUTPUT H2 MIN VAL: "0.000 pu"
DCMA OUTPUT H2 MIN VAL: "1.260 pu"

The worst-case error for this application could be calculated by superimposing the following two sources of error:

- $\pm 0.5\%$ of the full scale for the analog output module, or $\pm 0.005 \times (20-4) \times 6.3$ kA = ± 0.504 kA
- ±0.25% of reading or ±0.1% of rated (whichever is greater) for currents between 0.1 and 2.0 of nominal

For example, at the reading of 4.2 kA, the worst-case error is $max(0.0025 \times 4.2 \text{ kA}, 0.001 \times 5 \text{ kA}) + 0.504 \text{ kA} = 0.515 \text{ kA}$.

EXAMPLE 3:

A positive-sequence voltage on a 400 kV system measured via Source 2 is to be monitored by the dcmA H3 output with a range of 0 to 1 mA. The VT secondary setting is 66.4 V, the VT ratio setting is 6024, and the VT connection setting is "Delta". The voltage should be monitored in the range from 70% to 110% of nominal.

5 SETTINGS 5.8 TRANSDUCER I/O

The minimum and maximum positive-sequence voltages to be monitored are:

$$V_{min} = 0.7 \times \frac{400 \text{ kV}}{\sqrt{3}} = 161.66 \text{ kV}, \quad V_{max} = 1.1 \times \frac{400 \text{ kV}}{\sqrt{3}} = 254.03 \text{ kV}$$
 (EQ 5.25)

The base unit for voltage (refer to the FlexElements section in this chapter for additional details) is:

$$V_{BASE} = 0.0664 \text{ kV} \times 6024 = 400 \text{ kV}$$
 (EQ 5.26)

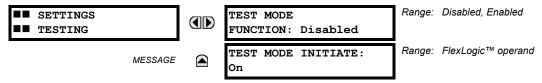
The minimum and maximum voltage values to be monitored (in pu) are:

minimum voltage =
$$\frac{161.66 \text{ kV}}{400 \text{ kV}} = 0.404 \text{ pu}$$
, maximum voltage = $\frac{254.03 \text{ kV}}{400 \text{ kV}} = 0.635 \text{ pu}$ (EQ 5.27)

The following settings should be entered:

DCMA OUTPUT H3 SOURCE: "SRC 2 V_1 mag"
DCMA OUTPUT H3 RANGE: "0 to 1 mA"
DCMA OUTPUT H3 MIN VAL: "0.404 pu"
DCMA OUTPUT H3 MIN VAL: "0.635 pu"

The limit settings differ from the expected 0.7 pu and 1.1 pu because the relay calculates the positive-sequence quantities scaled to the phase-to-ground voltages, even if the VTs are connected in "Delta" (refer to the *Metering Conventions* section in Chapter 6), while at the same time the VT nominal voltage is 1 pu for the settings. Consequently the settings required in this example differ from naturally expected by the factor of $\sqrt{3}$.


The worst-case error for this application could be calculated by superimposing the following two sources of error:

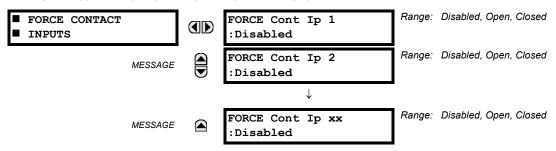
- $\pm 0.5\%$ of the full scale for the analog output module, or $\pm 0.005 \times (1-0) \times 254.03$ kV = ± 1.27 kV
- ±0.5% of reading

For example, under nominal conditions, the positive-sequence reads 230.94 kV and the worst-case error is $0.005 \times 230.94 \text{ kV} + 1.27 \text{ kV} = 2.42 \text{ kV}$.

5.9.1 TEST MODE

The relay provides test settings to verify that functionality using simulated conditions for contact inputs and outputs. The Test Mode is indicated on the relay faceplate by a flashing Test Mode LED indicator.

To initiate the Test mode, the **TEST MODE FUNCTION** setting must be "Enabled" and the **TEST MODE INITIATE** setting must be set to Logic 1. In particular:


- To initiate Test Mode through relay settings, set **TEST MODE INITIATE** to "On". The Test Mode starts when the **TEST MODE FUNCTION** setting is changed from "Disabled" to "Enabled".
- To initiate Test Mode through a user-programmable condition, such as FlexLogic™ operand (pushbutton, digital input, communication-based input, or a combination of these), set **TEST MODE FUNCTION** to "Enabled" and set **TEST MODE INITIATE** to the desired operand. The Test Mode starts when the selected operand assumes a Logic 1 state.

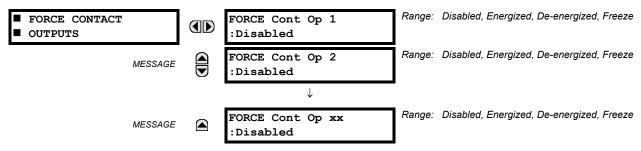
When in Test Mode, the N60 remains fully operational, allowing for various testing procedures. In particular, the protection and control elements, FlexLogic™, and communication-based inputs and outputs function normally.

The only difference between the normal operation and the Test Mode is the behavior of the input and output contacts. The former can be forced to report as open or closed or remain fully operational; the latter can be forced to open, close, freeze, or remain fully operational. The response of the digital input and output contacts to the Test Mode is programmed individually for each input and output using the Force Contact Inputs and Force Contact Outputs test functions described in the following sections.

5.9.2 FORCE CONTACT INPUTS

PATH: SETTINGS ⇒ ♣ TESTING ⇒ ♣ FORCE CONTACT INPUTS

The relay digital inputs (contact inputs) could be pre-programmed to respond to the Test Mode in the following ways:


- If set to "Disabled", the input remains fully operational. It is controlled by the voltage across its input terminals and can be turned on and off by external circuitry. This value should be selected if a given input must be operational during the test. This includes, for example, an input initiating the test, or being a part of a user pre-programmed test sequence.
- If set to "Open", the input is forced to report as opened (Logic 0) for the entire duration of the Test Mode regardless of the voltage across the input terminals.
- If set to "Closed", the input is forced to report as closed (Logic 1) for the entire duration of the Test Mode regardless of the voltage across the input terminals.

The Force Contact Inputs feature provides a method of performing checks on the function of all contact inputs. Once enabled, the relay is placed into Test Mode, allowing this feature to override the normal function of contact inputs. The Test Mode LED will be On, indicating that the relay is in Test Mode. The state of each contact input may be programmed as "Disabled", "Open", or "Closed". All contact input operations return to normal when all settings for this feature are disabled.

5 SETTINGS 5.9 TESTING

5.9.3 FORCE CONTACT OUTPUTS

The relay contact outputs can be pre-programmed to respond to the Test Mode.

If set to "Disabled", the contact output remains fully operational. If operates when its control operand is Logic 1 and will resets when its control operand is Logic 0. If set to "Energize", the output will close and remain closed for the entire duration of the Test Mode, regardless of the status of the operand configured to control the output contact. If set to "De-energize", the output will open and remain opened for the entire duration of the Test Mode regardless of the status of the operand configured to control the output contact. If set to "Freeze", the output retains its position from before entering the Test Mode, regardless of the status of the operand configured to control the output contact.

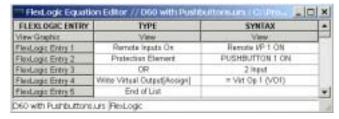
These settings are applied two ways. First, external circuits may be tested by energizing or de-energizing contacts. Second, by controlling the output contact state, relay logic may be tested and undesirable effects on external circuits avoided.

Example 1: Initiating a Test from User-Programmable Pushbutton 1

The Test Mode should be initiated from User-Programmable Pushbutton 1. The pushbutton will be programmed as "Latched" (pushbutton pressed to initiate the test, and pressed again to terminate the test). During the test, Digital Input 1 should remain operational, Digital Inputs 2 and 3 should open, and Digital Input 4 should close. Also, Contact Output 1 should freeze, Contact Output 2 should open, Contact Output 3 should close, and Contact Output 4 should remain fully operational. The required settings are shown below.

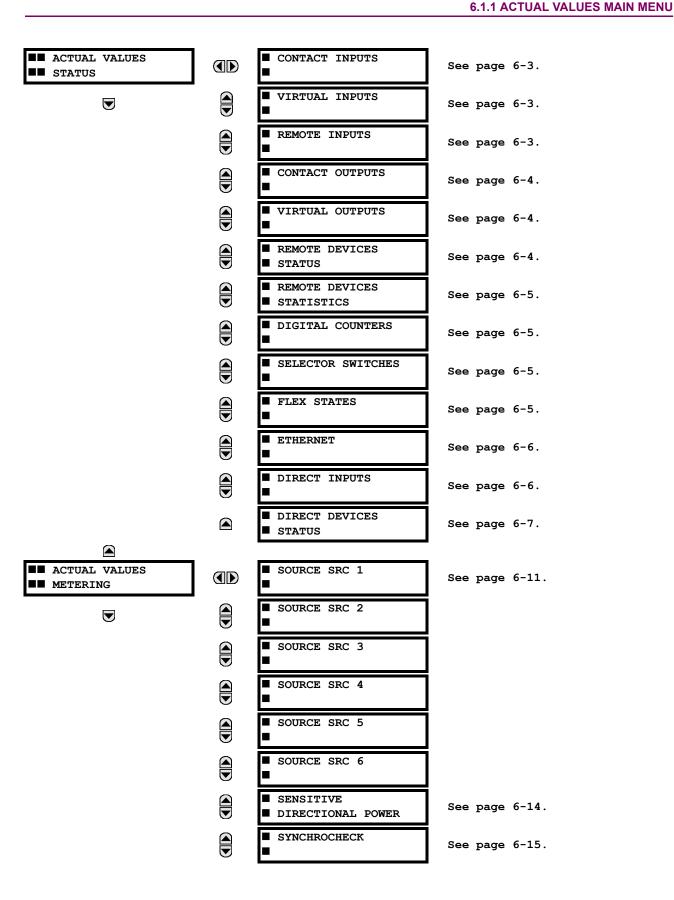
To enable User-Programmable Pushbutton 1 to initiate the Test mode, make the following changes in the **SETTINGS** $\Rightarrow \Downarrow$ **TESTING** \Rightarrow **TESTING** \Rightarrow **TESTING** \Rightarrow **TESTING**

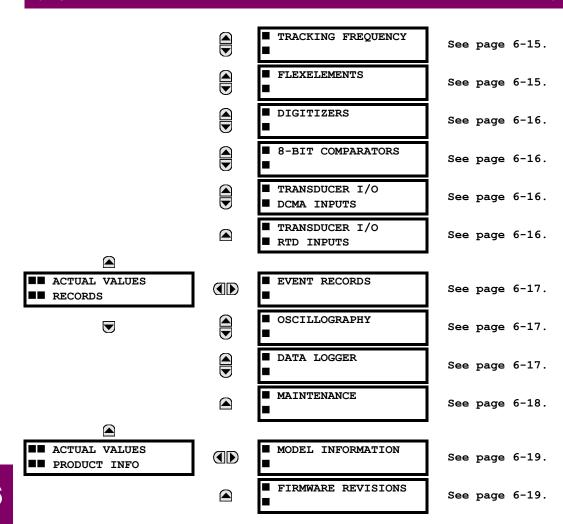
TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "PUSHBUTTON 1 ON"


Make the following changes to configure the Contact I/Os. In the SETTINGS $\Rightarrow \emptyset$ TESTING $\Rightarrow \emptyset$ FORCE CONTACT INPUTS and FORCE CONTACT INPUTS menus, set:

FORCE Cont Ip 1: "Disabled", FORCE Cont Ip 2: "Open", FORCE Cont Ip 3: "Open", and FORCE Cont Ip 4: "Closed"
FORCE Cont Op 1: "Freeze", FORCE Cont Op 2: "De-energized", FORCE Cont Op 3: "Open", and FORCE Cont Op 4: "Disabled"

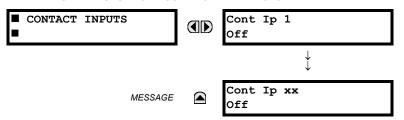
Example 2: Initiating a Test from User-Programmable Pushbutton 1 or through Remote Input 1


The Test should be initiated locally from User-Programmable Pushbutton 1 or remotely through Remote Input 1. Both the pushbutton and the remote input will be programmed as "Latched". The required settings are shown below.


Write the following FlexLogic™ equation (enerVista UR Setup example shown):

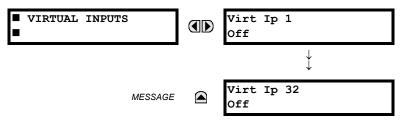
Set the User Programmable Pushbutton as latching by changing SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE PUSHBUTTONS ⇒ USER PUSHBUTTON 1 ⇒ PUSHBUTTON 1 FUNCTION to "Latched". To enable either Pushbutton 1 or Remote Input 1 to initiate the Test mode, make the following changes in the SETTINGS ⇒ USER PUSHBUTTON 1 FUNCTION to "Latched".

TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "VO1"



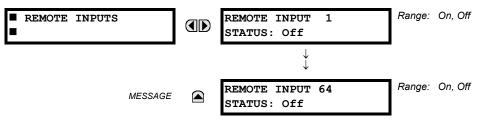
For status reporting, 'On' represents Logic 1 and 'Off' represents Logic 0.

6.2.1 CONTACT INPUTS



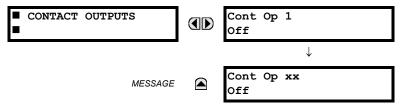
The present status of the contact inputs is shown here. The first line of a message display indicates the ID of the contact input. For example, 'Cont Ip 1' refers to the contact input in terms of the default name-array index. The second line of the display indicates the logic state of the contact input.

6.2.2 VIRTUAL INPUTS



The present status of the 32 virtual inputs is shown here. The first line of a message display indicates the ID of the virtual input. For example, 'Virt Ip 1' refers to the virtual input in terms of the default name. The second line of the display indicates the logic state of the virtual input.

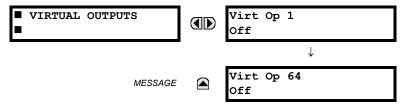
6.2.3 REMOTE INPUTS



The present state of the 64 remote inputs is shown here.

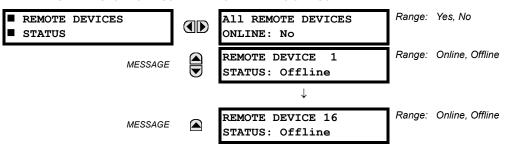
The state displayed will be that of the remote point unless the remote device has been established to be "Offline" in which case the value shown is the programmed default state for the remote input.

6.2.4 CONTACT OUTPUTS


The present state of the contact outputs is shown here. The first line of a message display indicates the ID of the contact output. For example, 'Cont Op 1' refers to the contact output in terms of the default name-array index. The second line of the display indicates the logic state of the contact output.

For Form-A outputs, the state of the voltage(V) and/or current(I) detectors will show as: Off, VOff, IOff, On, VOn, and/or IOn. For Form-C outputs, the state will show as Off or On.

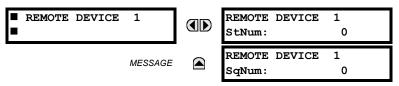
6.2.5 VIRTUAL OUTPUTS



The present state of up to 64 virtual outputs is shown here. The first line of a message display indicates the ID of the virtual output. For example, 'Virt Op 1' refers to the virtual output in terms of the default name-array index. The second line of the display indicates the logic state of the virtual output, as calculated by the FlexLogic™ equation for that output.

6.2.6 REMOTE DEVICES

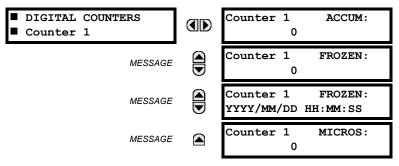
a) STATUS



The present state of up to 16 programmed Remote Devices is shown here. The **ALL REMOTE DEVICES ONLINE** message indicates whether or not all programmed Remote Devices are online. If the corresponding state is "No", then at least one required Remote Device is not online.

6.2 STATUS 6.2 STATUS

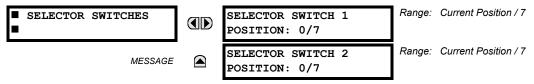
b) STATISTICS



Statistical data (2 types) for up to 16 programmed Remote Devices is shown here.

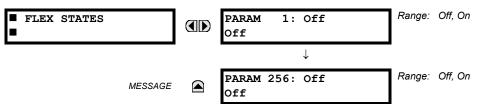
The **StNum** number is obtained from the indicated Remote Device and is incremented whenever a change of state of at least one DNA or UserSt bit occurs. The **SqNum** number is obtained from the indicated Remote Device and is incremented whenever a GSSE message is sent. This number will rollover to zero when a count of 4,294,967,295 is incremented.

6.2.7 DIGITAL COUNTERS


PATH: ACTUAL VALUES DIGITAL COUNTERS DIGITAL COUNTERS DIGITAL COUNTERS Counter 1(8)

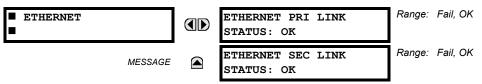
The present status of the 8 digital counters is shown here. The status of each counter, with the user-defined counter name, includes the accumulated and frozen counts (the count units label will also appear). Also included, is the date/time stamp for the frozen count. The **Counter n MICROS** value refers to the microsecond portion of the time stamp.

6.2.8 SELECTOR SWITCHES

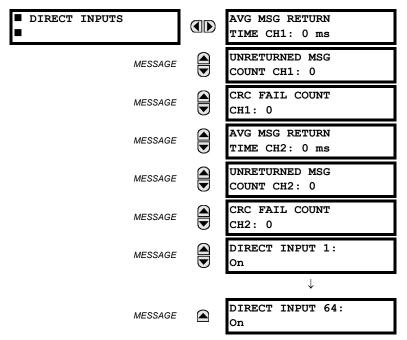


The display shows both the current position and the full range. The current position only (an integer from 0 through 7) is the actual value.

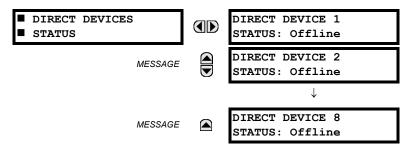
6.2.9 FLEX STATES



There are 256 FlexState bits available. The second line value indicates the state of the given FlexState bit.


6.2.10 ETHERNET

6.2.11 DIRECT INPUTS



The **AVERAGE MSG RETURN TIME** is the time taken for direct output messages to return to the sender in a direct input/output ring configuration (this value is not applicable for non-ring configurations). This is a rolling average calculated for the last 10 messages. There are two return times for dual-channel communications modules.

The **UNRETURNED MSG COUNT** values (one per communications channel) count the direct output messages that do not make the trip around the communications ring. The **CRC FAIL COUNT** values (one per communications channel) count the direct output messages that have been received but fail the CRC check. High values for either of these counts may indicate on a problem with wiring, the communication channel, or the relay(s). The **UNRETURNED MSG COUNT** and **CRC FAIL COUNT** values can be cleared using the **CLEAR DIRECT I/O COUNTERS** command.

The **DIRECT INPUT x** values represent the state of the *x*-th direct input.

These actual values represent the state of Direct Devices 1 through 8.

6.3.1 METERING CONVENTIONS

a) UR CONVENTION FOR MEASURING POWER AND ENERGY

The following figure illustrates the conventions established for use in UR-series relays.

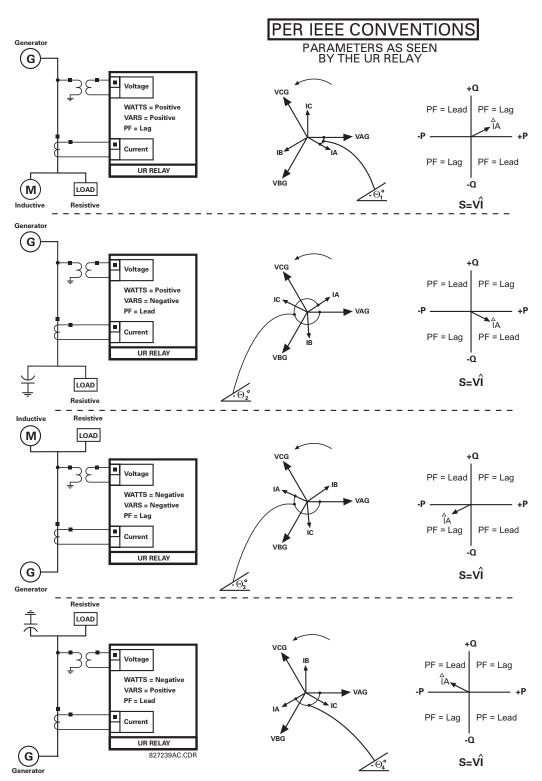


Figure 6-1: FLOW DIRECTION OF SIGNED VALUES FOR WATTS AND VARS

6.3 METERING

b) UR CONVENTION FOR MEASURING PHASE ANGLES

All phasors calculated by UR-series relays and used for protection, control and metering functions are rotating phasors that maintain the correct phase angle relationships with each other at all times.

For display and oscillography purposes, all phasor angles in a given relay are referred to an AC input channel pre-selected by the SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ POWER SYSTEM $\Rightarrow \emptyset$ FREQUENCY AND PHASE REFERENCE setting. This setting defines a particular to be used as the reference.

If the AC signal pre-selected by the relay upon configuration is not measurable, the phase angles are not referenced. The phase angles are assigned as positive in the leading direction, and are presented as negative in the lagging direction, to more closely align with power system metering conventions. This is illustrated below.

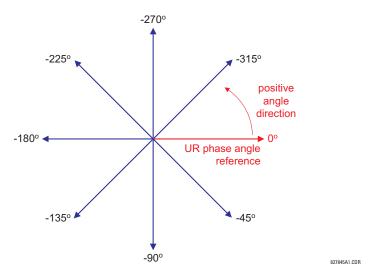


Figure 6-2: UR PHASE ANGLE MEASUREMENT CONVENTION

c) UR CONVENTION FOR MEASURING SYMMETRICAL COMPONENTS

The UR-series of relays calculate voltage symmetrical components for the power system phase A line-to-neutral voltage, and symmetrical components of the currents for the power system phase A current. Owing to the above definition, phase angle relations between the symmetrical currents and voltages stay the same irrespective of the connection of instrument transformers. This is important for setting directional protection elements that use symmetrical voltages.

For display and oscillography purposes the phase angles of symmetrical components are referenced to a common reference as described in the previous sub-section.

WYE-Connected Instrument Transformers:

· ABC phase rotation:

$$V_{-}0 = \frac{1}{3}(V_{AG} + V_{BG} + V_{CG})$$

$$V_{-}1 = \frac{1}{3}(V_{AG} + aV_{BG} + a^{2}V_{CG})$$

$$V_{-}2 = \frac{1}{3}(V_{AG} + a^{2}V_{BG} + aV_{CG})$$

The above equations apply to currents as well.

ACB phase rotation:

$$V_{-0} = \frac{1}{3}(V_{AG} + V_{BG} + V_{CG})$$

$$V_{-1} = \frac{1}{3}(V_{AG} + a^{2}V_{BG} + aV_{CG})$$

$$V_{-2} = \frac{1}{3}(V_{AG} + aV_{BG} + a^{2}V_{CG})$$

DELTA-Connected Instrument Transformers:

ABC phase rotation:

$$V_{0} = N/A$$

$$V_{1} = \frac{1 \angle -30^{\circ}}{3\sqrt{3}} (V_{AB} + aV_{BC} + a^{2}V_{CA})$$

$$V_{2} = \frac{1 \angle 30^{\circ}}{3\sqrt{3}} (V_{AB} + a^{2}V_{BC} + aV_{CA})$$

· ACB phase rotation:

$$V_{0} = N/A$$

$$V_{1} = \frac{1 \angle 30^{\circ}}{3\sqrt{3}} (V_{AB} + a^{2}V_{BC} + aV_{CA})$$

$$V_{2} = \frac{1 \angle -30^{\circ}}{3\sqrt{3}} (V_{AB} + aV_{BC} + a^{2}V_{CA})$$

The zero-sequence voltage is not measurable under the Delta connection of instrument transformers and is defaulted to zero. The table below shows an example of symmetrical components calculations for the ABC phase rotation.

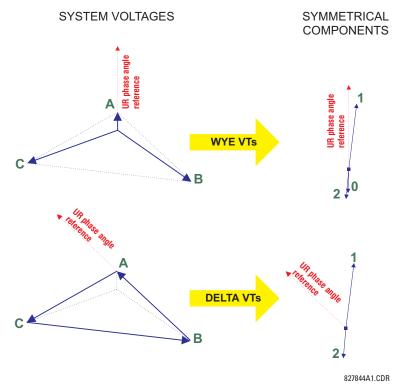
Table 6-1: SYMMETRICAL COMPONENTS CALCULATION EXAMPLE

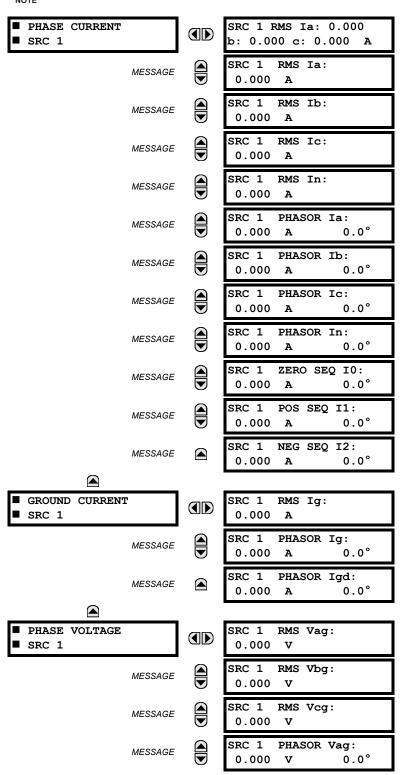
SYSTEM VOLTAGES, SEC. V *				VT	RELAY INPUTS, SEC. V		SYMM. COMP, SEC. V					
V_{AG}	V _{BG}	V _{CG}	V _{AB}	V _{BC}	V _{CA}	CONN.	F5AC	F6AC	F7AC	V ₀	V ₁	V ₂
13.9 ∠0°	76.2 ∠–125°	79.7 ∠–250°	84.9 ∠–313°	138.3 ∠–97°	85.4 ∠–241°	WYE	13.9 ∠0°	76.2 ∠–125°	79.7 ∠–250°	19.5 ∠–192°	56.5 ∠–7°	23.3 ∠–187°
UNKNOWN (only V_1 and V_2 can be determined)			84.9 ∠0°	138.3 ∠–144°	85.4 ∠–288°	DELTA	84.9 ∠0°	138.3 ∠–144°	85.4 ∠–288°	N/A	56.5 ∠–54°	23.3 ∠–234°

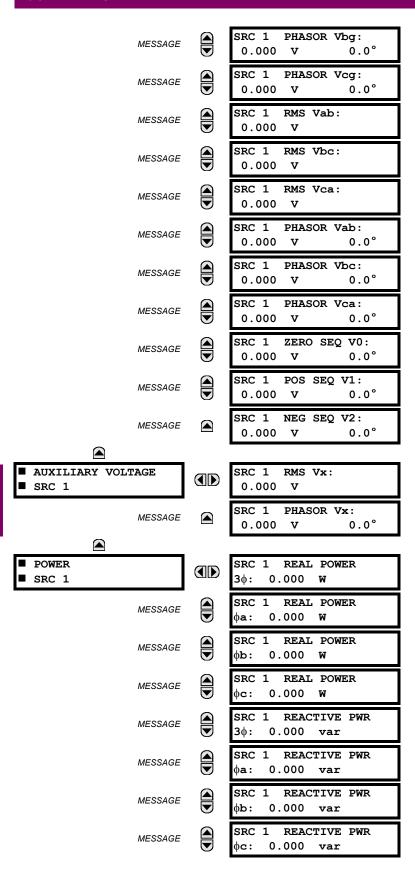
* The power system voltages are phase-referenced – for simplicity – to VAG and VAB, respectively. This, however, is a relative matter. It is important to remember that the UR displays are always referenced as specified under SETTINGS

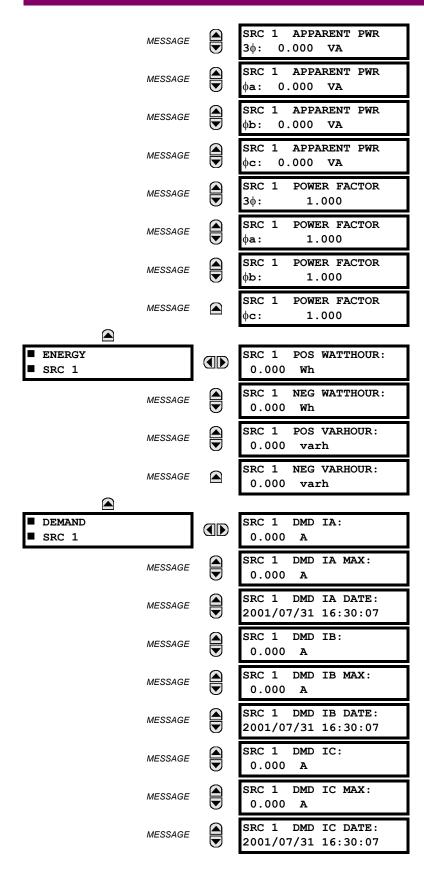
⇒ ♣ SYSTEM SETUP ⇒ ♣ POWER SYSTEM ⇒ ♣ FREQUENCY AND PHASE REFERENCE.

The example above is illustrated in the following figure.

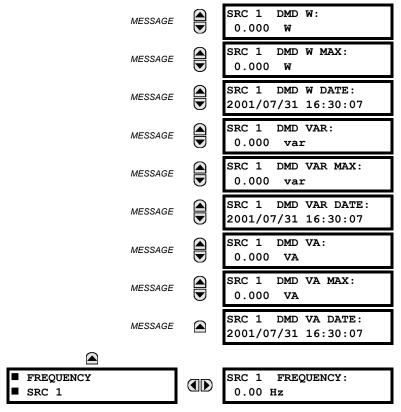



Figure 6-3: MEASUREMENT CONVENTION FOR SYMMETRICAL COMPONENTS


6.3.2 SOURCES

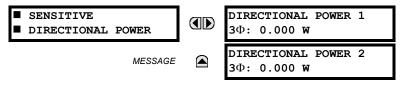


Because energy values are accumulated, these values should be recorded and then reset immediately prior to changing CT or VT characteristics.



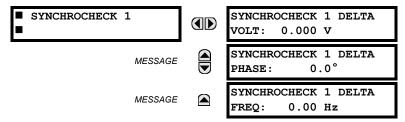
6 ACTUAL VALUES 6.3 METERING

6.3 METERING 6 ACTUAL VALUES


Six identical Source menus are available. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS ⇒ ♥ SYSTEM SETUP ⇒ ♥ SIGNAL SOURCES).

The relay measures (absolute values only) **SOURCE DEMAND** on each phase and average three phase demand for real, reactive, and apparent power. These parameters can be monitored to reduce supplier demand penalties or for statistical metering purposes. Demand calculations are based on the measurement type selected in the **SETTINGS** \Rightarrow **PRODUCT SETUP** $\Rightarrow \oplus$ **DEMAND** menu. For each quantity, the relay displays the demand over the most recent demand time interval, the maximum demand since the last maximum demand reset, and the time and date stamp of this maximum demand value. Maximum demand quantities can be reset to zero with the **CLEAR RECORDS** $\Rightarrow \oplus$ **CLEAR DEMAND RECORDS** command.

SOURCE FREQUENCY is measured via software-implemented zero-crossing detection of an AC signal. The signal is either a Clarke transformation of three-phase voltages or currents, auxiliary voltage, or ground current as per source configuration (see the **SYSTEM SETUP** $\Rightarrow \P$ **POWER SYSTEM** settings). The signal used for frequency estimation is low-pass filtered. The final frequency measurement is passed through a validation filter that eliminates false readings due to signal distortions and transients.


6.3.3 SENSITIVE DIRECTIONAL POWER

PATH: ACTUAL VALUES $\Rightarrow \mathbb{Q}$ METERING $\Rightarrow \mathbb{Q}$ SENSITIVE DIRECTIONAL POWER

The effective operating quantities of the sensitive directional power elements are displayed here. The display may be useful to calibrate the feature by compensating the angular errors of the CTs and VTs with the use of the RCA and CALIBRATION settings.

6 ACTUAL VALUES

The Actual Values menu for Synchrocheck 2 is identical to that of Synchrocheck 1. If a synchrocheck function setting is "Disabled", the corresponding actual values menu item will not be displayed.

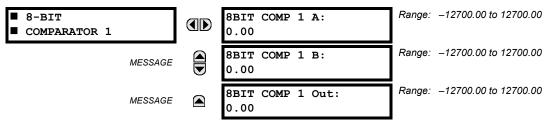
6.3.5 TRACKING FREQUENCY

The tracking frequency is displayed here. The frequency is tracked based on configuration of the reference source. The **TRACKING FREQUENCY** is based upon positive sequence current phasors from all line terminals and is synchronously adjusted at all terminals. If currents are below 0.125 pu, then the **NOMINAL FREQUENCY** is used.

6.3.6 FLEXELEMENTS™

The operating signals for the FlexElements™ are displayed in pu values using the following definitions of the base units.

Table 6-2: FLEXELEMENT™ BASE UNITS


dcmA	BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and -IN inputs.
FREQUENCY	f _{BASE} = 1 Hz
PHASE ANGLE	φ _{BASE} = 360 degrees (see the UR angle referencing convention)
POWER FACTOR	PF _{BASE} = 1.00
RTDs	BASE = 100°C
SENSITIVE DIR POWER (Sns Dir Power)	P_{BASE} = maximum value of 3 × V_{BASE} × I_{BASE} for the +IN and -IN inputs of the sources configured for the sensitive power directional element(s).
SOURCE CURRENT	I _{BASE} = maximum nominal primary RMS value of the +IN and -IN inputs
SOURCE ENERGY (SRC X Positive and Negative Watthours); (SRC X Positive and Negative Varhours)	E _{BASE} = 10000 MWh or MVAh, respectively
SOURCE POWER	P_{BASE} = maximum value of $V_{BASE} \times I_{BASE}$ for the +IN and -IN inputs
SOURCE VOLTAGE	V _{BASE} = maximum nominal primary RMS value of the +IN and –IN inputs
SYNCHROCHECK (Max Delta Volts)	V _{BASE} = maximum primary RMS value of all the sources related to the +IN and –IN inputs

6.3.7 DIGITIZERS

The digitized output signals are displayed as signed integer numbers.

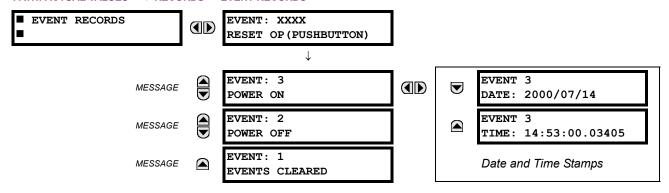
6.3.8 8-BIT COMPARATORS

The two (A and B) 8-bit digitized inputs as well as the resulting sum/difference are available for display. The values are rescaled from the original integer numbers using the **8BIT COMP 1 SCALE FACTOR** setting.

6.3.9 TRANSDUCER I/O

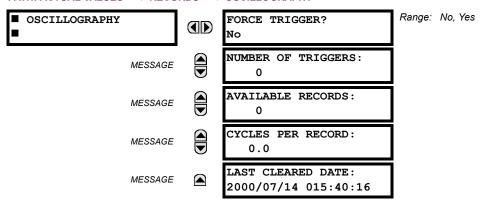
PATH: ACTUAL VALUES ⇔ ⇩ METERING ⇔ ⇩ TRANSDUCER I/O DCMA INPUTS ⇔ DCMA INPUT xx

Actual values for each dcmA input channel that is enabled are displayed with the top line as the programmed Channel ID and the bottom line as the value followed by the programmed units.


PATH: ACTUAL VALUES ⇒ \$\Partial\$ METERING \$\Rightarrow\$ TRANSDUCER I/O RTD INPUTS \$\Rightarrow\$ RTD INPUT xx

Actual values for each RTD input channel that is enabled are displayed with the top line as the programmed Channel ID and the bottom line as the value.

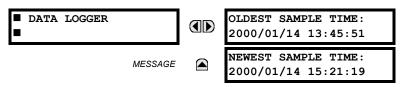
6.4.1 EVENT RECORDS



The Event Records menu shows the contextual data associated with up to the last 1024 events, listed in chronological order from most recent to oldest. If all 1024 event records have been filled, the oldest record will be removed as a new record is added. Each event record shows the event identifier/sequence number, cause, and date/time stamp associated with the event trigger. Refer to the COMMANDS \$\Pi\$ CLEAR RECORDS menu for clearing event records.

6.4.2 OSCILLOGRAPHY

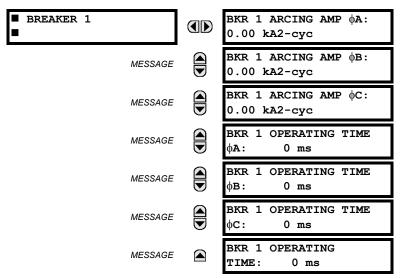
PATH: ACTUAL VALUES ⇔ \$\Pi\$ RECORDS \$\Rightarrow\$ OSCILLOGRAPHY



This menu allows the user to view the number of triggers involved and number of oscillography traces available. The 'cycles per record' value is calculated to account for the fixed amount of data storage for oscillography. See the Oscillography section of Chapter 5 for further details.

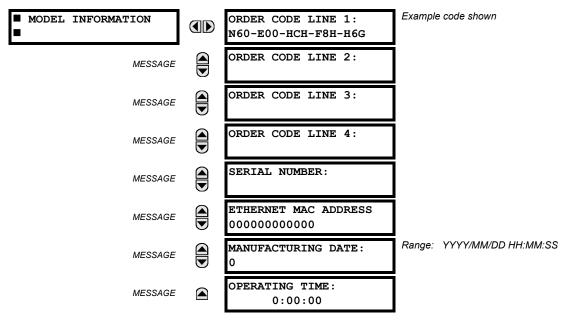
A trigger can be forced here at any time by setting "Yes" to the **FORCE TRIGGER?** command. Refer to the **COMMANDS** ⇒ UCLEAR RECORDS menu for clearing the oscillography records.

6.4.3 DATA LOGGER


PATH: ACTUAL VALUES ⇒ \$\Pi\$ RECORDS ⇒ \$\Pi\$ DATA LOGGER

The **OLDEST SAMPLE TIME** is the time at which the oldest available samples were taken. It will be static until the log gets full, at which time it will start counting at the defined sampling rate. The **NEWEST SAMPLE TIME** is the time the most recent samples were taken. It counts up at the defined sampling rate. If Data Logger channels are defined, then both values are static.

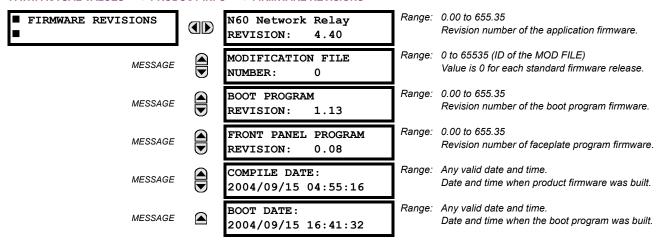
Refer to the **COMMANDS** ⇒ \$\Psi\$ **CLEAR RECORDS** menu for clearing data logger records.

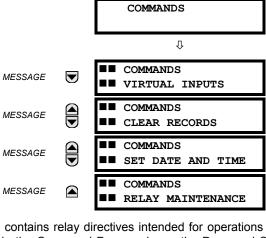


There is an identical menu for each of the breakers. The **BKR 1 ARCING AMP** values are in units of kA^2 -cycles. Refer to the **COMMANDS** $\Rightarrow \emptyset$ **CLEAR RECORDS** menu for clearing breaker arcing current records. The **BREAKER OPERATING TIME** is defined as the slowest operating time of breaker poles that were initiated to open.

6

6.5.1 MODEL INFORMATION

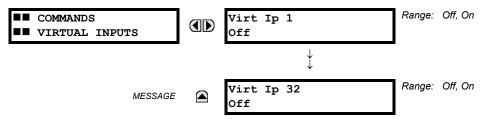



The product order code, serial number, Ethernet MAC address, date/time of manufacture, and operating time are shown here.

6.5.2 FIRMWARE REVISIONS

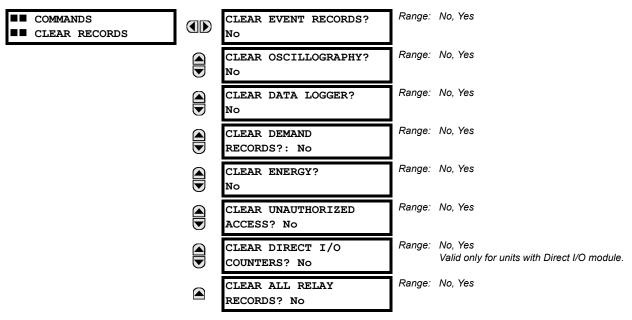
PATH: ACTUAL VALUES ⇒ \$\Product info ⇒ \$\frac{1}{2}\$ FIRMWARE REVISIONS

The shown data is illustrative only. A modification file number of 0 indicates that, currently, no modifications have been installed.


The Commands menu contains relay directives intended for operations personnel. All commands can be protected from unauthorized access via the Command Password; see the Password Security section of Chapter 5. The following flash message appears after successfully command entry:

MENU

7.1.2 VIRTUAL INPUTS


PATH: COMMANDS URTUAL INPUTS

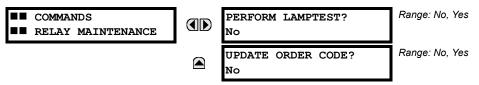
The states of up to 32 virtual inputs are changed here. The first line of the display indicates the ID of the virtual input. The second line indicates the current or selected status of the virtual input. This status will be a logical state 'Off' (0) or 'On' (1).

7

PATH: COMMANDS UCCOMMANDS CLEAR RECORDS

This menu contains commands for clearing historical data such as the Event Records. Data is cleared by changing a command setting to "Yes" and pressing the key. After clearing data, the command setting automatically reverts to "No".

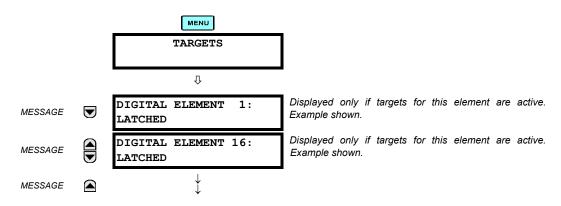
7.1.4 SET DATE AND TIME


PATH: COMMANDS [♣] SET DATE AND TIME

The date and time can be entered here via the faceplate keypad only if the IRIG-B signal is not in use. The time setting is based on the 24-hour clock. The complete date, as a minimum, must be entered to allow execution of this command. The new time will take effect at the moment the key is clicked.

7.1.5 RELAY MAINTENANCE

PATH: COMMANDS U RELAY MAINTENANCE


This menu contains commands for relay maintenance purposes. Commands are activated by changing a command setting to "Yes" and pressing the key. The command setting will then automatically revert to "No".

The **PERFORM LAMPTEST** command turns on all faceplate LEDs and display pixels for a short duration. The **UPDATE ORDER CODE** command causes the relay to scan the backplane for the hardware modules and update the order code to match. If an update occurs, the following message is shown.

UPDATING... PLEASE WAIT

There is no impact if there have been no changes to the hardware modules. When an update does not occur, the **ORDER CODE NOT UPDATED** message will be shown.

7

The status of any active targets will be displayed in the Targets menu. If no targets are active, the display will read **No Active Targets**:

7.2.2 TARGET MESSAGES

When there are no active targets, the first target to become active will cause the display to immediately default to that message. If there are active targets and the user is navigating through other messages, and when the default message timer times out (i.e. the keypad has not been used for a determined period of time), the display will again default back to the target message.

The range of variables for the target messages is described below. Phase information will be included if applicable. If a target message status changes, the status with the highest priority will be displayed.

Table 7-1: TARGET MESSAGE PRIORITY STATUS

PRIORITY	ACTIVE STATUS	DESCRIPTION
1	OP	element operated and still picked up
2	PKP	element picked up and timed out
3	LATCHED	element had operated but has dropped out

If a self test error is detected, a message appears indicating the cause of the error. For example **UNIT NOT PROGRAMMED** indicates that the minimal relay settings have not been programmed.

7.2.3 RELAY SELF-TESTS

The relay performs a number of self-test diagnostic checks to ensure device integrity. The two types of self-tests (major and minor) are listed in the tables below. When either type of self-test error occurs, the Trouble LED Indicator will turn on and a target message displayed. All errors record an event in the event recorder. Latched errors can be cleared by pressing the RESET key, providing the condition is no longer present.

Major self-test errors also result in the following:

- the critical fail relay on the power supply module is de-energized
- all other output relays are de-energized and are prevented from further operation
- the faceplate In Service LED indicator is turned off
- · a RELAY OUT OF SERVICE event is recorded

Most of the minor self-test errors can be disabled. Refer to the settings in the User-Programmable Self-Tests section in Chapter 5 for additional details.

Table 7-2: MAJOR SELF-TEST ERROR MESSAGES

SELF-TEST ERROR MESSAGE	LATCHED TARGET MESSAGE?	DESCRIPTION OF PROBLEM	HOW OFTEN THE TEST IS PERFORMED	WHAT TO DO
DSP ERRORS: A/D Calibration, A/D Interrupt, A/D Reset, Inter DSP Rx, Sample Int, Rx Interrupt, Tx Interrupt, Rx Sample Index, Invalid Settings, Rx Checksum	Yes	CT/VT module with digital signal processor may have a problem.	Every 1/8th of a cycle.	Cycle the control power (if the problem recurs, contact the factory).
DSP ERROR: INVALID REVISION	Yes	One or more DSP modules in a multiple DSP unit has Rev. C hardware	Rev. C DSP needs to be replaced with a Rev. D DSP.	Contact the factory
EQUIPMENT MISMATCH with 2nd-line detail	No	Configuration of modules does not match the order code stored in the CPU.		Check all modules against the order code, ensure they are inserted properly, and cycle control power (if problem persists, contact factory).
FLEXLOGIC ERR TOKEN with 2nd-line detail	No	FlexLogic™ equations do not compile properly.	Event driven; whenever Flex- Logic™ equations are modified.	Finish all equation editing and use self test to debug any errors.
LATCHING OUTPUT ERROR	No	Discrepancy in the position of a latching contact between firmware and hardware has been detected.	Every 1/8th of a cycle.	The latching output module failed. Replace the Module.
PROGRAM MEMORY Test Failed	Yes	Error was found while checking Flash memory.	Once flash is uploaded with new firmware.	Contact the factory.
UNIT NOT CALIBRATED	No	Settings indicate the unit is not calibrated.	On power up.	Contact the factory.
UNIT NOT PROGRAMMED	No	PRODUCT SETUP ⇒ ⊕ INSTALLATION setting indicates relay is not in a programmed state.	On power up and whenever the RELAY PROGRAMMED setting is altered.	Program all settings (especially those under PRODUCT SETUP ⇒ ↓ INSTALLATION).

Table 7–3: MINOR SELF-TEST ERROR MESSAGES

SELF-TEST ERROR MESSAGE	LATCHED TARGET MESSAGE	DESCRIPTION OF PROBLEM	HOW OFTEN THE TEST IS PERFORMED	WHAT TO DO
BATTERY FAIL	Yes	Battery is not functioning.	Monitored every 5 seconds. Reported after 1 minute if problem persists.	Replace the battery located in the power supply module (1H or 1L).
DIRECT RING BREAK	No	Direct input/output settings configured for a ring, but the connection is not in a ring.	Every second.	Check direct input/output configuration and/or wiring.
DIRECT DEVICE OFF	No	A direct device is configured but not connected.	Every second.	Check direct input/output configuration and/or wiring.
EEPROM DATA ERROR	Yes	The non-volatile memory has been corrupted.	On power up only.	If this message appears after an order code update is preformed, press the RESET key to clear target message. In other cases, contact the factory.
IRIG-B FAILURE	No	A bad IRIG-B input signal has been detected	Monitored whenever an IRIG-B signal is received.	Ensure the IRIG-B cable is connected, check cable functionality (i.e. look for physical damage or perform continuity test), ensure IRIG-B receiver is functioning, and check input signal level (it may be less than specification). If none of these apply, contact the factory.
LATCHING OUT ERROR	Yes	Latching output failure.	Event driven.	Contact the factory.
LOW ON MEMORY	Yes	Memory is close to 100% capacity.	Monitored every 5 seconds.	Contact the factory.
PRI ETHERNET FAIL	Yes	Primary Ethernet connection failed.	Monitored every 2 seconds	Check connections.
PROTOTYPE FIRMWARE	Yes	A prototype version of the firmware is loaded.	On power up only.	Contact the factory.
REMOTE DEVICE OFF	No	One or more GOOSE devices are not responding.	Event driven – occurs when a device programmed to receive GOOSE messages stops receiving. Every 1 to 60 s, depending on GOOSE packets.	Check GOOSE setup.
SEC ETHERNET FAIL	Yes	Sec. Ethernet connection failed.	Monitored every 2 seconds	Check connections.
SNTP FAILURE	No	SNTP server not responding.	10 to 60 seconds.	Check SNTP configuration and/or network connections.
SYSTEM EXCEPTION	Yes	Abnormal restart from modules being removed/inserted when powered-up, abnormal DC supply, or internal relay failure.	Event driven.	Contact the factory.
WATCHDOG ERROR	No	Some tasks are behind schedule.	Event driven.	Contact the factory.

APPENDIX A A.1 PARAMETER LIST

Table A-1: FLEXANALOG DATA ITEMS (Sheet 1 of 11)

ADDR	DATA ITEM	FLEXANALOG NAME
5760	Sens Dir Power 1 Actual	Sns Dir Power 1
5762	Sens Dir Power 2 Actual	Sns Dir Power 2
5856	Frequency Rate of Change 1 Actual	Freq Rate 1 Value
5860	Frequency Rate of Change 2 Actual	Freq Rate 2 Value
5864	Frequency Rate of Change 3 Actual	Freq Rate 3 Value
5868	Frequency Rate of Change 4 Actual	Freq Rate 4 Value
6144	SRC 1 Phase A Current RMS	SRC 1 la RMS
6146	SRC 1 Phase B Current RMS	SRC 1 lb RMS
6148	SRC 1 Phase C Current RMS	SRC 1 lc RMS
6150	SRC 1 Neutral Current RMS	SRC 1 In RMS
6152	SRC 1 Phase A Current Magnitude	SRC 1 la Mag
6154	SRC 1 Phase A Current Angle	SRC 1 la Angle
6155	SRC 1 Phase B Current Magnitude	SRC 1 lb Mag
6157	SRC 1 Phase B Current Angle	SRC 1 lb Angle
6158	SRC 1 Phase C Current Magnitude	SRC 1 lc Mag
6160	SRC 1 Phase C Current Angle	SRC 1 lc Angle
6161	SRC 1 Neutral Current Magnitude	SRC 1 In Mag
6163	SRC 1 Neutral Current Angle	SRC 1 In Angle
6164	SRC 1 Ground Current RMS	SRC 1 lg RMS
6166	SRC 1 Ground Current Magnitude	SRC 1 lg Mag
6168	SRC 1 Ground Current Angle	SRC 1 lg Angle
6169	SRC 1 Zero Seq. Current Magnitude	SRC 1 I_0 Mag
6171	SRC 1 Zero Seguence Current Angle	SRC 1 I 0 Angle
6172	SRC 1 Pos. Seg. Current Magnitude	SRC 1 I 1 Mag
6174	SRC 1 Pos. Seq. Current Angle	SRC 1 I 1 Angle
6175	SRC 1 Neg. Seq. Current Magnitude	SRC 1 I_2 Mag
6177	SRC 1 Neg. Seq. Current Angle	SRC 1 I_2 Angle
6178	SRC 1 Differential Gnd Current Mag.	SRC 1 lgd Mag
6180	SRC 1 Diff. Gnd. Current Angle	SRC 1 lgd Angle
6208	SRC 2 Phase A Current RMS	SRC 2 Ia RMS
6210	SRC 2 Phase B Current RMS	SRC 2 lb RMS
6212	SRC 2 Phase C Current RMS	SRC 2 lc RMS
6214	SRC 2 Neutral Current RMS	SRC 2 In RMS
6216	SRC 2 Phase A Current Magnitude	SRC 2 la Mag
6218	SRC 2 Phase A Current Angle	SRC 2 la Angle
6219	SRC 2 Phase B Current Magnitude	SRC 2 lb Mag
6221	SRC 2 Phase B Current Angle	SRC 2 lb Angle
6222	SRC 2 Phase C Current Magnitude	SRC 2 Ic Mag
6224	SRC 2 Phase C Current Angle	SRC 2 lc Angle
6225	SRC 2 Neutral Current Magnitude	SRC 2 In Mag
6227	SRC 2 Neutral Current Angle	SRC 2 In Angle
6228	SRC 2 Ground Current RMS	SRC 2 lg RMS
6230	SRC 2 Ground Current Magnitude	SRC 2 lg Mag
6232	SRC 2 Ground Current Angle	SRC 2 lg Angle
6233	SRC 2 Zero Seq. Current Magnitude	SRC 2 I 0 Mag
6235	SRC 2 Zero Sequence Current Angle	SRC 2 I_0 Angle
6236	SRC 2 Pos. Seq. Current Magnitude	SRC 2 I 1 Mag
6238	SRC 2 Positive Seq. Current Angle	SRC 2 I 1 Angle
6239	SRC 2 Neg. Seq. Current Magnitude	SRC 2 I 2 Mag
6241	SRC 2 Negative Seq. Current Angle	SRC 2 I_2 Angle
b241	SKC 2 Negative Seq. Current Angle	SKC 2 I_2 Angle

Table A-1: FLEXANALOG DATA ITEMS (Sheet 2 of 11)

ADDR	DATA ITEM	FLEXANALOG NAME
6242	SRC 2 Differential Gnd Current Mag.	SRC 2 Igd Mag
6244	SRC 2 Diff. Gnd Current Angle	SRC 2 Igd Angle
6272	SRC 3 Phase A Current RMS	SRC 3 Ia RMS
6274	SRC 3 Phase B Current RMS	SRC 3 lb RMS
6276	SRC 3 Phase C Current RMS	SRC 3 lc RMS
6278	SRC 3 Neutral Current RMS	SRC 3 In RMS
6280	SRC 3 Phase A Current Magnitude	SRC 3 la Mag
6282	SRC 3 Phase A Current Angle	SRC 3 la Angle
6283	SRC 3 Phase B Current Magnitude	SRC 3 lb Mag
6285	SRC 3 Phase B Current Angle	SRC 3 lb Angle
6286	SRC 3 Phase C Current Magnitude	SRC 3 Ic Mag
6288	SRC 3 Phase C Current Angle	SRC 3 Ic Angle
6289	SRC 3 Neutral Current Magnitude	SRC 3 In Mag
6291	SRC 3 Neutral Current Angle	SRC 3 In Angle
6292	SRC 3 Ground Current RMS	SRC 3 lg RMS
6294	SRC 3 Ground Current Magnitude	SRC 3 lg Mag
6296	SRC 3 Ground Current Angle	SRC 3 lg Angle
6297	SRC 3 Zero Seq. Current Magnitude	SRC 3 I_0 Mag
6299	SRC 3 Zero Sequence Current Angle	SRC 3 I_0 Angle
6300	SRC 3 Pos. Seg. Current Magnitude	SRC 3 I_1 Mag
6302	SRC 3 Positive Seq. Current Angle	SRC 3 I_1 Angle
6303	SRC 3 Neg. Seq. Current Magnitude	SRC 3 I_2 Mag
6305	SRC 3 Negative Seq. Current Angle	SRC 3 I_2 Angle
6306	SRC 3 Differential Gnd Current Mag.	SRC 3 Igd Mag
6308	SRC 3 Differential Gnd Current Angle	SRC 3 Igd Angle
6336	SRC 4 Phase A Current RMS	SRC 4 la RMS
6338	SRC 4 Phase B Current RMS	SRC 4 lb RMS
6340	SRC 4 Phase C Current RMS	SRC 4 lc RMS
6342	SRC 4 Neutral Current RMS	SRC 4 In RMS
6344	SRC 4 Phase A Current Magnitude	SRC 4 la Mag
6346	SRC 4 Phase A Current Angle	SRC 4 la Angle
6347	SRC 4 Phase B Current Magnitude	SRC 4 lb Mag
6349	SRC 4 Phase B Current Angle	SRC 4 lb Angle
6350	SRC 4 Phase C Current Magnitude	SRC 4 Ic Mag
6352	SRC 4 Phase C Current Angle	SRC 4 Ic Angle
6353	SRC 4 Neutral Current Magnitude	SRC 4 In Mag
6355	SRC 4 Neutral Current Angle	SRC 4 In Angle
6356	SRC 4 Ground Current RMS	SRC 4 lg RMS
6358	SRC 4 Ground Current Magnitude	SRC 4 lg Mag
6360	SRC 4 Ground Current Angle	SRC 4 lg Angle
6361	SRC 4 Zero Seq. Current Magnitude	SRC 4 I 0 Mag
6363	SRC 4 Zero Seq. Current Angle	SRC 4 I 0 Angle
6364	SRC 4 Positive Seq. Current Mag.	SRC 4 I 1 Mag
6366	SRC 4 Positive Seq. Current Angle	SRC 4 I 1 Angle
6367	SRC 4 Negative Seq. Current Mag.	SRC 4 I_2 Mag
6369	SRC 4 Negative Seq. Current Angle	SRC 4 I 2 Angle
6370	SRC 4 Differential Gnd Current Mag.	SRC 4 Igd Mag
6372	SRC 4 Differential Gnd Current Angle	SRC 4 Igd Angle
6400	SRC 5 Phase A Current RMS	SRC 5 la RMS
6402	SRC 5 Phase B Current RMS	SRC 5 lb RMS
0.102	S. CO OT HOOD & CONTONIC TOMO	5

Table A-1: FLEXANALOG DATA ITEMS (Sheet 3 of 11)

FLEXANALOG NAME ADDR **DATA ITEM** 6404 SRC 5 Phase C Current RMS SRC 5 lc RMS 6406 SRC 5 Neutral Current RMS SRC 5 In RMS 6408 SRC 5 Phase A Current Magnitude SRC 5 la Mag 6410 SRC 5 Phase A Current Angle SRC 5 la Angle SRC 5 Phase B Current Magnitude 6411 SRC 5 lb Mag SRC 5 Phase B Current Angle 6413 SRC 5 lb Angle 6414 SRC 5 Phase C Current Magnitude SRC 5 Ic Mag SRC 5 Phase C Current Angle 6416 SRC 5 Ic Angle 6417 SRC 5 Neutral Current Magnitude SRC 5 In Mag 6419 SRC 5 Neutral Current Angle SRC 5 In Angle SRC 5 Ground Current RMS SRC 5 lg RMS 6420 6422 SRC 5 Ground Current Magnitude SRC 5 lg Mag 6424 SRC 5 Ground Current Angle SRC 5 Ig Angle 6425 SRC 5 Zero Seq. Current Magnitude SRC 5 I_0 Mag 6427 SRC 5 Zero Sequence Current Angle SRC 5 I_0 Angle 6428 SRC 5 Positive Seq. Current Mag. SRC 5 I_1 Mag 6430 SRC 5 Positive Seq. Current Angle SRC 5 I_1 Angle SRC 5 Negative Seq. Current Mag. SRC 5 I_2 Mag 6431 SRC 5 Negative Seq. Current Angle 6433 SRC 5 I 2 Angle 6434 SRC 5 Differential Gnd Current Mag. SRC 5 Igd Mag 6436 SRC 5 Differential Gnd Current Angle SRC 5 Igd Angle SRC 6 Phase A Current RMS SRC 6 la RMS 6464 6466 SRC 6 Phase B Current RMS SRC 6 lb RMS 6468 SRC 6 Phase C Current RMS SRC 6 Ic RMS 6470 SRC 6 Neutral Current RMS SRC 6 In RMS 6472 SRC 6 Phase A Current Magnitude SRC 6 la Mag SRC 6 Phase A Current Angle 6474 SRC 6 la Angle 6475 SRC 6 Phase B Current Magnitude SRC 6 lb Mag 6477 SRC 6 Phase B Current Angle SRC 6 lb Angle 6478 SRC 6 Phase C Current Magnitude SRC 6 lc Mag 6480 SRC 6 Phase C Current Angle SRC 6 Ic Angle 6481 SRC 6 Neutral Current Magnitude SRC 6 In Mag SRC 6 Neutral Current Angle 6483 SRC 6 In Angle 6484 SRC 6 Ground Current RMS SRC 6 lg RMS 6486 SRC 6 Ground Current Magnitude SRC 6 lg Mag 6488 SRC 6 Ground Current Angle SRC 6 lg Angle 6489 SRC 6 Zero Seq. Current Magnitude SRC 6 I_0 Mag 6491 SRC 6 Zero Sequence Current Angle SRC 6 I_0 Angle 6492 SRC 6 Positive Seq. Current Mag. SRC 6 I_1 Mag 6494 SRC 6 Positive Seq. Current Angle SRC 6 I_1 Angle SRC 6 Negative Seq. Current Mag. 6495 SRC 6 I 2 Mag 6497 SRC 6 Negative Seq. Current Angle SRC 6 I_2 Angle 6498 SRC 6 Differential Gnd Current Mag. SRC 6 Igd Mag 6500 SRC 6 Differential Gnd Current Angle SRC 6 Igd Angle 6656 SRC 1 Phase AG Voltage RMS SRC 1 Vag RMS 6658 SRC 1 Phase BG Voltage RMS SRC 1 Vbg RMS 6660 SRC 1 Phase CG Voltage RMS SRC 1 Vcg RMS 6662 SRC 1 Phase AG Voltage Magnitude SRC 1 Vag Mag 6664 SRC 1 Phase AG Voltage Angle SRC 1 Vag Angle 6665 SRC 1 Phase BG Voltage Magnitude SRC 1 Vbg Mag SRC 1 Phase BG Voltage Angle SRC 1 Vbg Angle 6667 SRC 1 Phase CG Voltage Magnitude SRC 1 Vcg Mag

Table A-1: FLEXANALOG DATA ITEMS (Sheet 4 of 11)

ADDR	DATA ITEM	FLEXANALOG NAME
6670	SRC 1 Phase CG Voltage Angle	SRC 1 Vcg Angle
6671	SRC 1 Phase AB Voltage RMS	SRC 1 Vab RMS
6673	SRC 1 Phase BC Voltage RMS	SRC 1 Vbc RMS
6675	SRC 1 Phase CA Voltage RMS	SRC 1 Vca RMS
6677	SRC 1 Phase AB Voltage Magnitude	SRC 1 Vab Mag
6679	SRC 1 Phase AB Voltage Angle	SRC 1 Vab Angle
6680	SRC 1 Phase BC Voltage Magnitude	SRC 1 Vbc Mag
6682	SRC 1 Phase BC Voltage Angle	SRC 1 Vbc Angle
6683	SRC 1 Phase CA Voltage Magnitude	SRC 1 Vca Mag
6685	SRC 1 Phase CA Voltage Angle	SRC 1 Vca Angle
6686	SRC 1 Auxiliary Voltage RMS	SRC 1 Vx RMS
6688	SRC 1 Auxiliary Voltage Magnitude	SRC 1 Vx Mag
6690	SRC 1 Auxiliary Voltage Angle	SRC 1 Vx Angle
6691	SRC 1 Zero Sequence Voltage Mag.	SRC 1 V_0 Mag
6693	SRC 1 Zero Sequence Voltage Angle	SRC 1 V_0 Angle
6694	SRC 1 Positive Seq. Voltage Mag.	SRC 1 V_1 Mag
6696	SRC 1 Positive Seq. Voltage Angle	SRC 1 V_1 Angle
6697	SRC 1 Negative Seq. Voltage Mag.	SRC 1 V_2 Mag
6699	SRC 1 Negative Seq. Voltage Angle	SRC 1 V_2 Angle
6720	SRC 2 Phase AG Voltage RMS	SRC 2 Vag RMS
6722	SRC 2 Phase BG Voltage RMS	SRC 2 Vbg RMS
6724	SRC 2 Phase CG Voltage RMS	SRC 2 Vcg RMS
6726	SRC 2 Phase AG Voltage Magnitude	SRC 2 Vag Mag
6728		SRC 2 Vag Angle
6729	SRC 2 Phase AG Voltage Angle	
	SRC 2 Phase BG Voltage Magnitude	SRC 2 Vbg Mag
6731	SRC 2 Phase BG Voltage Angle	SRC 2 Vog Mog
6732	SRC 2 Phase CG Voltage Magnitude	SRC 2 Vcg Mag
6734	SRC 2 Phase CG Voltage Angle	SRC 2 Vcg Angle SRC 2 Vab RMS
6735	SRC 2 Phase AB Voltage RMS	
6737	SRC 2 Phase BC Voltage RMS	SRC 2 Vbc RMS
6739	SRC 2 Phase CA Voltage RMS	SRC 2 Vca RMS
6741	SRC 2 Phase AB Voltage Magnitude	SRC 2 Vab Mag
6743	SRC 2 Phase AB Voltage Angle	SRC 2 Vab Angle
6744	SRC 2 Phase BC Voltage Magnitude	SRC 2 Vbc Mag
6746	SRC 2 Phase BC Voltage Angle	SRC 2 Vbc Angle
6747	SRC 2 Phase CA Voltage Magnitude	SRC 2 Vca Mag
6749	SRC 2 Phase CA Voltage Angle	SRC 2 Vca Angle
6750	SRC 2 Auxiliary Voltage RMS	SRC 2 Vx RMS
6752	SRC 2 Auxiliary Voltage Magnitude	SRC 2 Vx Mag
6754	SRC 2 Auxiliary Voltage Angle	SRC 2 Vx Angle
6755	SRC 2 Zero Seq. Voltage Magnitude	SRC 2 V_0 Mag
6757	SRC 2 Zero Sequence Voltage Angle	SRC 2 V_0 Angle
6758	SRC 2 Positive Seq. Voltage Mag.	SRC 2 V_1 Mag
6760	SRC 2 Positive Seq. Voltage Angle	SRC 2 V_1 Angle
6761	SRC 2 Negative Seq. Voltage Mag.	SRC 2 V_2 Mag
6763	SRC 2 Negative Seq. Voltage Angle	SRC 2 V_2 Angle
6784	SRC 3 Phase AG Voltage RMS	SRC 3 Vag RMS
6786	SRC 3 Phase BG Voltage RMS	SRC 3 Vbg RMS
6788	SRC 3 Phase CG Voltage RMS	SRC 3 Vcg RMS
6790	SRC 3 Phase AG Voltage Magnitude	SRC 3 Vag Mag
6792	SRC 3 Phase AG Voltage Angle	SRC 3 Vag Angle
6793	SRC 3 Phase BG Voltage Magnitude	SRC 3 Vbg Mag

APPENDIX A A.1 PARAMETER LIST

Table A-1: FLEXANALOG DATA ITEMS (Sheet 5 of 11)

ADDR	DATA ITEM	FLEXANALOG NAME
6795	SRC 3 Phase BG Voltage Angle	SRC 3 Vbg Angle
6796	SRC 3 Phase CG Voltage Magnitude	SRC 3 Vcg Mag
6798	SRC 3 Phase CG Voltage Angle	SRC 3 Vcg Angle
6799	SRC 3 Phase AB Voltage RMS	SRC 3 Vab RMS
6801	SRC 3 Phase BC Voltage RMS	SRC 3 Vbc RMS
6803	SRC 3 Phase CA Voltage RMS	SRC 3 Vca RMS
6805	SRC 3 Phase AB Voltage Magnitude	SRC 3 Vab Mag
6807	SRC 3 Phase AB Voltage Angle	SRC 3 Vab Angle
6808	SRC 3 Phase BC Voltage Magnitude	SRC 3 Vbc Mag
6810	SRC 3 Phase BC Voltage Angle	SRC 3 Vbc Angle
6811	SRC 3 Phase CA Voltage Magnitude	SRC 3 Vca Mag
6813	SRC 3 Phase CA Voltage Angle	SRC 3 Vca Angle
6814	SRC 3 Auxiliary Voltage RMS	SRC 3 Vx RMS
6816	SRC 3 Auxiliary Voltage Magnitude	SRC 3 Vx Mag
6818	SRC 3 Auxiliary Voltage Magnitude	SRC 3 Vx Angle
6819		=
	SRC 3 Zero Seq. Voltage Magnitude	SRC 3 V_0 Mag
6821	SRC 3 Zero Sequence Voltage Angle	SRC 3 V_0 Angle
6822	SRC 3 Positive Seq. Voltage Mag.	SRC 3 V_1 Mag
6824	SRC 3 Positive Seq. Voltage Angle	SRC 3 V_1 Angle
6825	SRC 3 Negative Seq. Voltage Mag.	SRC 3 V_2 Mag
6827	SRC 3 Negative Seq. Voltage Angle	SRC 3 V_2 Angle
6848	SRC 4 Phase AG Voltage RMS	SRC 4 Vag RMS
6850	SRC 4 Phase BG Voltage RMS	SRC 4 Vbg RMS
6852	SRC 4 Phase CG Voltage RMS	SRC 4 Vcg RMS
6854	SRC 4 Phase AG Voltage Magnitude	SRC 4 Vag Mag
6856	SRC 4 Phase AG Voltage Angle	SRC 4 Vag Angle
6857	SRC 4 Phase BG Voltage Magnitude	SRC 4 Vbg Mag
6859	SRC 4 Phase BG Voltage Angle	SRC 4 Vbg Angle
6860	SRC 4 Phase CG Voltage Magnitude	SRC 4 Vcg Mag
6862	SRC 4 Phase CG Voltage Angle	SRC 4 Vcg Angle
6863	SRC 4 Phase AB Voltage RMS	SRC 4 Vab RMS
6865	SRC 4 Phase BC Voltage RMS	SRC 4 Vbc RMS
6867	SRC 4 Phase CA Voltage RMS	SRC 4 Vca RMS
6869	SRC 4 Phase AB Voltage Magnitude	SRC 4 Vab Mag
6871	SRC 4 Phase AB Voltage Angle	SRC 4 Vab Angle
6872	SRC 4 Phase BC Voltage Magnitude	SRC 4 Vbc Mag
6874	SRC 4 Phase BC Voltage Angle	SRC 4 Vbc Angle
6875	SRC 4 Phase CA Voltage Magnitude	SRC 4 Vca Mag
6877	SRC 4 Phase CA Voltage Angle	SRC 4 Vca Angle
6878	SRC 4 Auxiliary Voltage RMS	SRC 4 Vx RMS
6880	SRC 4 Auxiliary Voltage Magnitude	SRC 4 Vx Mag
6882	SRC 4 Auxiliary Voltage Angle	SRC 4 Vx Angle
6883	SRC 4 Zero Seq. Voltage Magnitude	SRC 4 V_0 Mag
6885	SRC 4 Zero Sequence Voltage Angle	SRC 4 V_0 Angle
6886	SRC 4 Positive Seq. Voltage Mag.	SRC 4 V_1 Mag
6888	SRC 4 Positive Seq. Voltage Angle	SRC 4 V_1 Angle
6889	SRC 4 Negative Seq. Voltage Mag.	SRC 4 V_2 Mag
6891	SRC 4 Negative Seq. Voltage Angle	SRC 4 V_2 Angle
6912	SRC 5 Phase AG Voltage RMS	SRC 5 Vag RMS
6914	SRC 5 Phase BG Voltage RMS	SRC 5 Vbg RMS
6916	SRC 5 Phase CG Voltage RMS	SRC 5 Vcg RMS
6918	SRC 5 Phase AG Voltage Magnitude	SRC 5 Vag Mag

Table A-1: FLEXANALOG DATA ITEMS (Sheet 6 of 11)

6920 SRC 5 Phase AG Voltage Angle SRC 5 Vag Angle 6921 SRC 5 Phase BG Voltage Magnitude SRC 5 Vbg Mag 6923 SRC 5 Phase BG Voltage Angle SRC 5 Vbg Angle 6926 SRC 5 Phase CG Voltage Angle SRC 5 Vcg Angle 6927 SRC 5 Phase AB Voltage RMS SRC 5 Vcg Angle 6928 SRC 5 Phase AB Voltage RMS SRC 5 Vbc RMS 6931 SRC 5 Phase BC Voltage RMS SRC 5 Vbc RMS 6931 SRC 5 Phase AB Voltage RMS SRC 5 Vbc AMS 6933 SRC 5 Phase AB Voltage Magnitude SRC 5 Vbc Mag 6936 SRC 5 Phase AB Voltage Angle SRC 5 Vbc Angle 6938 SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Angle 6939 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Angle 6941 SRC 5 Auxiliary Voltage RMS SRC 5 Vva RMS 6942 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vva Mag 6944 SRC 5 Zero Sequence Voltage Magnitude SRC 5 Vva Mag 6945 SRC 5 Positive Seq. Voltage Magnitude SRC 5 Vva Mag 6950 SRC 5 Positive Seq. Voltage Magnitude SRC 5 Vva Mag<	ADDR	DATA ITEM	FLEXANALOG NAME
SRC 5 Phase BG Voltage Angle SRC 5 Vog Angle 6924 SRC 5 Phase CG Voltage Magnitude 6926 SRC 5 Phase CG Voltage Angle 6927 SRC 5 Phase AB Voltage RMS SRC 5 Vog Angle 6927 SRC 5 Phase BC Voltage RMS SRC 5 Vob RMS 6929 SRC 5 Phase BC Voltage RMS SRC 5 Vob RMS 6931 SRC 5 Phase AB Voltage RMS SRC 5 Vob RMS 6933 SRC 5 Phase AB Voltage RMS SRC 5 Vob Angle 6935 SRC 5 Phase AB Voltage Angle 6936 SRC 5 Phase BC Voltage Angle 6937 SRC 5 Phase BC Voltage Angle 6938 SRC 5 Phase BC Voltage Magnitude 6939 SRC 5 Phase BC Voltage Magnitude 6930 SRC 5 Phase BC Voltage Magnitude 6931 SRC 5 Phase BC Voltage Magnitude 6932 SRC 5 Phase BC Voltage Magnitude 6933 SRC 5 Phase CA Voltage Magnitude 6934 SRC 5 Phase CA Voltage Angle 6939 SRC 5 Phase CA Voltage Angle 6940 SRC 5 Vob Angle 6941 SRC 5 Phase CA Voltage Angle 6942 SRC 5 Auxiliary Voltage RMS 6944 SRC 5 Auxiliary Voltage Magnitude 6945 SRC 5 Auxiliary Voltage Magnitude 6946 SRC 5 Auxiliary Voltage Magnitude 6947 SRC 5 Zero Seq. Voltage Magnitude 6948 SRC 5 Zero Seq. Voltage Mag. 6949 SRC 5 Zero Seq. Voltage Mag. 6950 SRC 5 Positive Seq. Voltage Angle 6950 SRC 5 Positive Seq. Voltage Angle 6951 SRC 5 Negative Seq. Voltage Angle 6952 SRC 5 Negative Seq. Voltage Angle 6953 SRC 5 Negative Seq. Voltage Angle 6954 SRC 6 Phase AG Voltage RMS 6965 SRC 6 Phase AG Voltage RMS 6976 SRC 6 Phase AG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6981 SRC 6 Phase AG Voltage RMS 6982 SRC 6 Phase AG Voltage RMS 6983 SRC 6 Phase AG Voltage RMS 6984 SRC 6 Phase AG Voltage RMS 6985 SRC 6 Phase AG Voltage Magnitude 6986 SRC 6 Phase AG Voltage Angle 6987 SRC 6 Phase AG Voltage Angle 6988 SRC 6 Phase AG Voltage Angle 6989 SRC 6 Phase AG Voltage Angle 6980 SRC 6 Phase AG Voltage Angle 6981 SRC 6 Vog Angle 6981 SRC 6 Phase AG Voltage Angle 6982 SRC 6 Phase AG Voltage Angle 6983 SRC 6 Phase AG Voltage Angle 6984 SRC 6 Phase AG Voltage Angle 6985 SRC 6 Phase AG Voltage Angle 6986 SRC 6 Phase AG Voltage Angle 6987 SRC 6 Phase AG Voltage Angle 6988 SRC 6 Phase AG Voltage Angle 6989 SRC 6 Phase AG Voltage Angle	6920	SRC 5 Phase AG Voltage Angle	SRC 5 Vag Angle
6924 SRC 5 Phase CG Voltage Magnitude SRC 5 Vcg Mag 6926 SRC 5 Phase CG Voltage Angle SRC 5 Vcg Angle 6927 SRC 5 Phase AB Voltage RMS SRC 5 Vcb RMS 6928 SRC 5 Phase AB Voltage RMS SRC 5 Vcb RMS 6931 SRC 5 Phase CA Voltage RMS SRC 5 Vcb RMS 6931 SRC 5 Phase AB Voltage RMS SRC 5 Vcb RMS 6933 SRC 5 Phase AB Voltage Magnitude SRC 5 Vab Mag 6936 SRC 5 Phase AB Voltage Magnitude SRC 5 Vab Angle 6937 SRC 5 Phase BC Voltage Angle SRC 5 Vcb RMG 6938 SRC 5 Phase BC Voltage Magnitude SRC 5 Vcb Mag 6939 SRC 5 Phase BC Voltage Magnitude SRC 5 Vcb Angle 6939 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Angle 6941 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Angle 6942 SRC 5 Auxiliary Voltage RMS SRC 5 Vca Angle 6943 SRC 5 Posse CA Voltage RMS SRC 5 Vca Angle 6944 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vca Mag 6946 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vca Mag 6947 SRC 5 Zero Seq. Voltage Magnitude SRC 5 Vc. Angle 6948 SRC 5 Sec Seq. Voltage Magnitude SRC 5 Vc. Mag 6949 SRC 5 Zero Sequence Voltage Angle SRC 5 Vc. Mag 6950 SRC 5 Positive Seq. Voltage Magn. SRC 5 Vc. Mag 6951 SRC 5 Positive Seq. Voltage Magn. SRC 5 Vc. Mag 6952 SRC 5 Positive Seq. Voltage Mag. SRC 5 Vc. Mag 6953 SRC 6 Phase AG Voltage RMS 6954 SRC 6 Phase AG Voltage RMS 6955 SRC 6 Phase AG Voltage RMS 6956 SRC 6 Phase AG Voltage RMS 6957 SRC 6 Phase AG Voltage RMS 6958 SRC 6 Phase AG Voltage RMS 6968 SRC 6 Phase AG Voltage RMS 6978 SRC 6 Phase AG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6981 SRC 6 Phase AG Voltage RMS 6982 SRC 6 Phase AG Voltage RMS 6983 SRC 6 Phase AG Voltage RMS 6984 SRC 6 Phase AG Voltage RMS 6985 SRC 6 Phase AG Voltage RMS 6986 SRC 6 Phase AG Voltage RMS 6987 SRC 6 Phase AG Voltage RMS 6988 SRC 6 Phase AG Voltage RMS 6989 SRC 6 Phase AG Voltage RMS 6990 SRC 6 Phase AG Voltage Angle 6991 SRC 6 Phase AG Voltage Angle 6990 SRC 6 Phase AG Voltage Angle 6990 SRC 6 Phase AG Voltage Angle 6990 SRC 6 Phase AG Voltage Angle 6991 SRC 6 Phase AG Voltage Angle 6990 SRC 6 Phase AG Voltage Angle 6990 SRC 6 Phase AG Volta	6921	SRC 5 Phase BG Voltage Magnitude	SRC 5 Vbg Mag
6926 SRC 5 Phase CG Voltage Angle SRC 5 Vog Angle 6927 SRC 5 Phase AB Voltage RMS SRC 5 Vab RMS 6928 SRC 5 Phase AB Voltage RMS SRC 5 Vbc RMS 6931 SRC 5 Phase AB Voltage RMS SRC 5 Vbc RMS 6931 SRC 5 Phase AB Voltage MMS SRC 5 Vbc RMS 6933 SRC 5 Phase AB Voltage Magnitude 6936 SRC 5 Phase AB Voltage Angle SRC 5 Vbc Angle 6936 SRC 5 Phase BC Voltage Angle SRC 5 Vbc Mag 6938 SRC 5 Phase BC Voltage Magnitude 6939 SRC 5 Phase BC Voltage Angle SRC 5 Vbc Angle 6939 SRC 5 Phase CA Voltage Angle SRC 5 Vbc Angle 6939 SRC 5 Phase CA Voltage Angle SRC 5 Vbc Angle 6941 SRC 5 Phase CA Voltage Angle SRC 5 Vbc Angle 6942 SRC 5 Auxiliary Voltage RMS SRC 5 Vx RMS 6943 SRC 5 Phase CA Voltage Angle SRC 5 Vx Angle 6944 SRC 5 Auxiliary Voltage Magnitude 6945 SRC 5 Auxiliary Voltage Magnitude 6946 SRC 5 Zero Seq. Voltage Magnitude 6947 SRC 5 Zero Seq. Voltage Angle 6948 SRC 5 Zero Seq. Voltage Magnitude 6950 SRC 5 Positive Seq. Voltage Angle 6950 SRC 5 Positive Seq. Voltage Angle 6951 SRC 5 Positive Seq. Voltage Angle 6952 SRC 5 Positive Seq. Voltage Angle 6953 SRC 5 Negative Seq. Voltage Angle 6954 SRC 6 Phase AG Voltage RMS 6955 SRC 6 Phase AG Voltage RMS 6965 SRC 6 Phase AG Voltage RMS 6976 SRC 6 Phase AG Voltage RMS 6976 SRC 6 Phase AG Voltage RMS 6978 SRC 6 Phase AG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6981 SRC 6 Phase AG Voltage Angle 6984 SRC 6 Phase AG Voltage Angle 6985 SRC 6 Phase AG Voltage Magnitude 6986 SRC 6 Phase AG Voltage Angle 6987 SRC 6 Phase AG Voltage Angle 6988 SRC 6 Phase AG Voltage Angle 6989 SRC 6 Phase AG Voltage Angle 6980 SRC 6 Phase AG Voltage Angle 6981 SRC 6 Phase AG Voltage Angle 6982 SRC 6 Phase AG Voltage Angle 6983 SRC 6 Phase AG Voltage Angle 6984 SRC 6 Phase AG Voltage Angle 6985 SRC 6 Phase AG Voltage Angle 6986 SRC 6 Phase AG Voltage Angle 6987 SRC 6 Phase AG Voltage Angle 6988 SRC 6 Phase AG Voltage Angle 6989 SRC 6 Phase AG Voltage Angle 6990 SRC 6 Phase AG Voltage Angle 6990 SRC 6 Phase AG Voltage Angle 6990 SRC 6 Phase AG	6923	SRC 5 Phase BG Voltage Angle	SRC 5 Vbg Angle
6927 SRC 5 Phase AB Voltage RMS SRC 5 Vbc RMS 6929 SRC 5 Phase BC Voltage RMS SRC 5 Vbc RMS 6931 SRC 5 Phase AB Voltage RMS SRC 5 Vab Mag 6933 SRC 5 Phase AB Voltage Magnitude SRC 5 Vab Mag 6936 SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Angle 6938 SRC 5 Phase BC Voltage Angle SRC 5 Vbc Angle 6939 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Angle 6941 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Angle 6942 SRC 5 Auxiliary Voltage RMS SRC 5 Vx Angle 6943 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Angle 6944 SRC 5 Auxiliary Voltage Angle SRC 5 Vx Angle 6947 SRC 5 Zero Seq. Voltage Magnitude SRC 5 Vx Angle 6948 SRC 5 Vaciliage Angle SRC 5 Vx Angle 6949 SRC 5 Zero Seq. Voltage Mag. SRC 5 Vx Angle 6950 SRC 5 Positive Seq. Voltage Mag. SRC 5 Vx Angle 6952 SRC 5 Negative Seq. Voltage Mag. SRC 5 Vx Angle 6953 SRC 6 Pase AG Voltage RMS SRC 6 Vag RMS	6924	SRC 5 Phase CG Voltage Magnitude	SRC 5 Vcg Mag
6927 SRC 5 Phase AB Voltage RMS SRC 5 Vbc RMS 6929 SRC 5 Phase BC Voltage RMS SRC 5 Vbc RMS 6931 SRC 5 Phase AB Voltage RMS SRC 5 Vaa RMS 6933 SRC 5 Phase AB Voltage Magnitude SRC 5 Vbc Mag 6936 SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Mag 6938 SRC 5 Phase BC Voltage Angle SRC 5 Vbc Angle 6939 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Angle 6941 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Angle 6942 SRC 5 Auxiliary Voltage RMS SRC 5 Vx Angle 6941 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Angle 6942 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Angle 6943 SRC 5 Auxiliary Voltage Angle SRC 5 Vx Angle 6944 SRC 5 Zero Seq. Voltage Magnitude SRC 5 Vx Angle 6947 SRC 5 Zero Seq. Voltage Magnitude SRC 5 Vx Angle 6949 SRC 5 Positive Seq. Voltage Mag. SRC 5 Vx Angle 6950 SRC 5 Positive Seq. Voltage Mag. SRC 5 Vx Angle 6952 SRC 5 Postive Seq. Voltage Angle SRC 5 Vx An	6926	SRC 5 Phase CG Voltage Angle	SRC 5 Vcg Angle
SRC 5 Phase CA Voltage RMS SRC 5 Vab Mag SRC 5 Phase AB Voltage Magnitude SRC 5 Vab Mag SRC 5 Phase AB Voltage Magnitude SRC 5 Vab Angle SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Mag SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Mag SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Angle SRC 5 Phase CA Voltage Magnitude SRC 5 Vbc Angle SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Mag SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Mag SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Mag SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Mag SRC 5 Auxiliary Voltage RMS SRC 5 Vca Mag SRC 5 C SC 5 Vca Mag SRC 5 C SC 5 Vca Mag SRC 5 C SC 5 Vca Mag SRC 5 C SC 5 Vca Mag SRC 5 SC 5 Vca Mag SRC 5 SC 5 Vca Mag SRC 5 SC 5 Vca Mag SRC 5 SC 5 Vca Mag SRC 6 Vca Mag SRC 6 Phase AG Voltage Mag. SRC 6 Vca Mag SRC 6 Phase AG Voltage RMS SRC 6 Vca RMS SRC 6 Phase AG Voltage RMS SRC 6 Vca RMS SRC 6 Phase AG Voltage Magnitude SRC 6 Vca Mag SRC 6 Phase AG Voltage Magnitude SRC 6 Vca Mag SRC 6 Phase AG Voltage Magnitude SRC 6 Vca Mag SRC 6 Phase AG Voltage RMS SRC 6 Vca Mag SRC 6 Phase AG Voltage RMS SRC 6 Vca RMS SRC 6 Phase AG Voltage RMS SRC 6 Vca RMS SRC 6 Phase AG Voltage RMS SRC 6 Vca RMS SRC 6 Phase AG Voltage RMS SRC 6 Vca RMS SRC 6 Phase AG Voltage RMS SRC 6 Vca RMS SRC 6 Phase AG Voltage Magnitude SRC 6 Vca Mag SRC 6 Phase A	6927	SRC 5 Phase AB Voltage RMS	SRC 5 Vab RMS
6931 SRC 5 Phase CA Voltage RMS SRC 5 Vab Mag 6933 SRC 5 Phase AB Voltage Magnitude SRC 5 Vab Mag 6936 SRC 5 Phase BC Voltage Angle SRC 5 Vbc Mag 6936 SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Mag 6938 SRC 5 Phase CA Voltage Magnitude SRC 5 Vbc Angle 6939 SRC 5 Phase CA Voltage Angle SRC 5 Vca Angle 6941 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx RMS 6942 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Mag 6944 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Mag 6945 SRC 5 Zero Sequence Voltage Angle SRC 5 Vx Angle 6947 SRC 5 Zero Sequence Voltage Angle SRC 5 V_0 Angle 6949 SRC 5 Positive Seq. Voltage Mag. SRC 5 V_1 Mag 6950 SRC 5 Positive Seq. Voltage Mag. SRC 5 V_2 Mag 6951 SRC 5 Positive Seq. Voltage Mag. SRC 5 V_2 Mag 6952 SRC 5 Postitive Seq. Voltage Mag. SRC 5 V_2 Mag 6953 SRC 6 Pose AG Voltage Mag. SRC 6 Vg RC 5 V_2 Angle 6954 SRC 6 Phase AG Voltage RMS SRC 6	6929	SRC 5 Phase BC Voltage RMS	SRC 5 Vbc RMS
6933 SRC 5 Phase AB Voltage Magnitude SRC 5 Vab Angle 6936 SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Mag 6938 SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Angle 6939 SRC 5 Phase CA Voltage Angle SRC 5 Vca Angle 6941 SRC 5 Phase CA Voltage Angle SRC 5 Vca Angle 6942 SRC 5 Auxiliary Voltage RMS SRC 5 Vx RMS 6944 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Angle 6945 SRC 5 Zero Seq. Voltage Magnitude SRC 5 V_O Mag 6946 SRC 5 Zero Seq. Voltage Magnitude SRC 5 V_O Mag 6947 SRC 5 Zero Seq. Voltage Magle SRC 5 V_O Angle 6948 SRC 5 Zero Sequence Voltage Angle SRC 5 V_O Angle 6950 SRC 5 Positive Seq. Voltage Mag. SRC 5 V_1 Mag 6951 SRC 5 Positive Seq. Voltage Angle SRC 5 V_2 Mag 6952 SRC 5 Negative Seq. Voltage Angle SRC 5 V_2 Mag 6953 SRC 6 Phase AG Voltage RMS SRC 6 Vag RMS 6976 SRC 6 Phase BG Voltage RMS SRC 6 Vag RMS 6976 SRC 6 Phase BG Voltage RMS SRC 6 Vag Mag </td <td>6931</td> <td>SRC 5 Phase CA Voltage RMS</td> <td>SRC 5 Vca RMS</td>	6931	SRC 5 Phase CA Voltage RMS	SRC 5 Vca RMS
6935 SRC 5 Phase AB Voltage Angle SRC 5 Vbc Mag 6936 SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Mag 6938 SRC 5 Phase BC Voltage Angle SRC 5 Vbc Angle 6939 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Angle 6941 SRC 5 Phase CA Voltage Angle SRC 5 Vca Angle 6942 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Mag 6944 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Mag 6944 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Mag 6947 SRC 5 Zero Seq. Voltage Magnitude SRC 5 Vv Mag 6948 SRC 5 Zero Sequence Voltage Magle SRC 5 Vv Mag 6949 SRC 5 Zero Sequence Voltage Magle SRC 5 Vv Mag 6949 SRC 5 Positive Seq. Voltage Magle SRC 5 Vv Mag 6950 SRC 5 Positive Seq. Voltage Magle SRC 5 Vv Angle 6951 SRC 5 Negative Seq. Voltage Magle SRC 5 Vv Angle 6952 SRC 6 Phase AG Voltage RMS SRC 6 Vag RMS 6976 SRC 6 Phase BG Voltage RMS SRC 6 Vag RMS 6978 SRC 6 Phase AG Voltage Magnitude SRC 6 Vag Ang	6933		SRC 5 Vab Mag
6936 SRC 5 Phase BC Voltage Magnitude SRC 5 Vbc Angle 6938 SRC 5 Phase BC Voltage Angle SRC 5 Vbc Angle 6939 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Angle 6941 SRC 5 Phase CA Voltage Angle SRC 5 Vx Angle 6942 SRC 5 Auxiliary Voltage RMS SRC 5 Vx Mag 6944 SRC 5 Auxiliary Voltage Angle SRC 5 Vx Angle 6947 SRC 5 Auxiliary Voltage Angle SRC 5 Vx Angle 6948 SRC 5 Caro Seq. Voltage Magnitude SRC 5 Vx Angle 6949 SRC 5 Zero Seq. Voltage Magnitude SRC 5 V_0 Mag 6949 SRC 5 Spositive Seq. Voltage Angle SRC 5 V_1 Mag 6950 SRC 5 Positive Seq. Voltage Mag. SRC 5 V_1 Mag 6951 SRC 5 Negative Seq. Voltage Mag. SRC 5 V_2 Mag 6952 SRC 5 Negative Seq. Voltage Angle SRC 6 Vy 2 Mag 6953 SRC 6 Phase AG Voltage RMS SRC 6 Vag RMS 6976 SRC 6 Phase BG Voltage RMS SRC 6 Vag RMS 6978 SRC 6 Phase BG Voltage Magnitude SRC 6 Vag Mag 6980 SRC 6 Phase AG Voltage Magnitude SRC 6 Vag Angle	6935		SRC 5 Vab Angle
6938 SRC 5 Phase BC Voltage Angle SRC 5 Vca Angle 6939 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Mag 6941 SRC 5 Phase CA Voltage Angle SRC 5 Vca Angle 6942 SRC 5 Auxiliary Voltage RMS SRC 5 Vx RMS 6944 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Angle 6946 SRC 5 Zero Seq. Voltage Magnitude SRC 5 Vx Angle 6947 SRC 5 Zero Sequence Voltage Angle SRC 5 V_0 Mag 6949 SRC 5 Zero Sequence Voltage Angle SRC 5 V_0 Angle 6950 SRC 5 Positive Seq. Voltage Mag. SRC 5 V_1 Mag 6951 SRC 5 Positive Seq. Voltage Angle SRC 5 V_1 Angle 6952 SRC 5 Negative Seq. Voltage Angle SRC 5 V_2 Mag 6953 SRC 5 Negative Seq. Voltage Angle SRC 6 Vag RMS 6976 SRC 6 Phase AG Voltage RMS SRC 6 Vag RMS 6978 SRC 6 Phase BG Voltage RMS SRC 6 Vag RMS 6978 SRC 6 Phase BG Voltage RMS SRC 6 Vag Mag 6980 SRC 6 Phase AG Voltage Magnitude SRC 6 Vag Mag 6981 SRC 6 Phase BG Voltage Angle SRC 6 Vbg Mag	6936		SRC 5 Vbc Mag
6939 SRC 5 Phase CA Voltage Magnitude SRC 5 Vca Angle 6941 SRC 5 Phase CA Voltage Angle SRC 5 Vca Angle 6942 SRC 5 Auxiliary Voltage RMS SRC 5 Vx RMS 6944 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Angle 6946 SRC 5 Auxiliary Voltage Angle SRC 5 Vx Angle 6947 SRC 5 Zero Seq. Voltage Magnitude SRC 5 V_0 Mag 6949 SRC 5 Zero Sequence Voltage Angle SRC 5 V_0 Angle 6950 SRC 5 Positive Seq. Voltage Angle SRC 5 V_1 Mag 6951 SRC 5 Negative Seq. Voltage Angle SRC 5 V_2 Mag 6952 SRC 5 Negative Seq. Voltage Angle SRC 5 V_2 Mag 6953 SRC 6 Negative Seq. Voltage Angle SRC 5 V_2 Mag 6954 SRC 6 Phase AG Voltage RMS SRC 6 Vag RMS 6976 SRC 6 Phase AG Voltage RMS SRC 6 Vag RMS 6977 SRC 6 Phase BG Voltage RMS SRC 6 Vag RMS 6980 SRC 6 Phase AG Voltage Magnitude SRC 6 Vag Angle 6981 SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Mag 6985 SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Mag			
6941 SRC 5 Phase CA Voltage Angle 6942 SRC 5 Auxiliary Voltage RMS 6944 SRC 5 Auxiliary Voltage RMS 6946 SRC 5 Auxiliary Voltage Magnitude 6947 SRC 5 Zero Seq. Voltage Magnitude 6948 SRC 5 Zero Seq. Voltage Magnitude 6949 SRC 5 Zero Sequence Voltage Angle 6950 SRC 5 Positive Seq. Voltage Mag. 6952 SRC 5 Positive Seq. Voltage Angle 6953 SRC 5 Negative Seq. Voltage Angle 6954 SRC 5 Negative Seq. Voltage Angle 6955 SRC 5 Negative Seq. Voltage Angle 6956 SRC 5 Negative Seq. Voltage Angle 6957 SRC 6 Phase AG Voltage RMS 6958 SRC 6 Phase BG Voltage RMS 6978 SRC 6 Phase BG Voltage RMS 6978 SRC 6 Phase AG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6981 SRC 6 Phase AG Voltage RMS 6982 SRC 6 Phase AG Voltage Angle 6983 SRC 6 Phase BG Voltage RMS 6984 SRC 6 Phase AG Voltage RMS 6985 SRC 6 Phase AG Voltage RMS 6986 SRC 6 Phase AG Voltage RMS 6987 SRC 6 Phase AG Voltage RMS 6988 SRC 6 Phase BG Voltage Angle 6985 SRC 6 Phase BG Voltage Angle 6986 SRC 6 Phase BG Voltage Angle 6987 SRC 6 Phase BG Voltage Angle 6988 SRC 6 Phase BG Voltage Angle 6989 SRC 6 Phase BG Voltage Angle 6990 SRC 6 Phase BG Voltage RMS 6991 SRC 6 Phase BG Voltage RMS 6993 SRC 6 Phase CG Voltage RMS 6993 SRC 6 Phase CG Voltage RMS 6994 SRC 6 Phase BG Voltage RMS 6995 SRC 6 Phase BG Voltage RMS 6996 SRC 6 Phase BG Voltage RMS 6997 SRC 6 Phase BG Voltage RMS 6998 SRC 6 Phase BG Voltage RMS 6999 SRC 6 Phase BG Voltage RMS 6990 SRC 6 Phase BG Voltage RMS 6990 SRC 6 Phase BG Voltage RMS 6991 SRC 6 Phase BG Voltage RMS 6993 SRC 6 Phase BG Voltage RMS 6994 SRC 6 Vbc RMS 6995 SRC 6 Phase BG Voltage RMS 6996 SRC 6 Vbc Angle 7000 SRC 6 Phase BG Voltage RMS 7001 SRC 6 Phase BG Voltage Angle 7002 SRC 6 Phase BG Voltage Angle 7003 SRC 6 Phase BG Voltage Angle 7004 SRC 6 Phase BG Voltage RMS 7005 SRC 6 Phase BG Voltage Angle 7006 SRC 6 Phase BG Voltage Angle 7007 SRC 6 Phase BG Voltage Angle 7008 SRC 6 Phase BG Voltage Angle 7009 SRC 6 Phase BG Voltage Angle 7000 SRC 6 Phase CA Voltage Angle 7001 SRC 6 Positive Seq. Voltage Angle 7002 SRC 6 Vc Angle 7003 SRC 6 Positiv			
6942 SRC 5 Auxiliary Voltage RMS SRC 5 Vx Mag 6944 SRC 5 Auxiliary Voltage Magnitude SRC 5 Vx Mag 6946 SRC 5 Auxiliary Voltage Angle SRC 5 Vx Angle 6947 SRC 5 Zero Seq. Voltage Magnitude SRC 5 V_0 Mag 6949 SRC 5 Zero Sequence Voltage Angle SRC 5 V_0 Angle 6950 SRC 5 Positive Seq. Voltage Mag. SRC 5 V_1 Mag 6952 SRC 5 Positive Seq. Voltage Angle SRC 5 V_1 Angle 6953 SRC 5 Negative Seq. Voltage Angle SRC 5 V_2 Mag 6955 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 6976 SRC 6 Phase AG Voltage RMS SRC 6 Vag RMS 6978 SRC 6 Phase BG Voltage RMS SRC 6 Vbg RMS 6980 SRC 6 Phase AG Voltage Angle SRC 6 Vcg RMS 6981 SRC 6 Phase AG Voltage Magnitude SRC 6 Vag Angle 6982 SRC 6 Phase BG Voltage Angle SRC 6 Vbg Mag 6984 SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle 6987 SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle 6988 SRC 6 Phase BG Voltage Angle SRC 6 Vcg Angle			=
6944 SRC 5 Auxiliary Voltage Magnitude 6946 SRC 5 Auxiliary Voltage Angle 6947 SRC 5 Zero Seq. Voltage Magnitude 6947 SRC 5 Zero Seq. Voltage Magnitude 6949 SRC 5 Zero Sequence Voltage Angle 6950 SRC 5 Positive Seq. Voltage Mag. 6952 SRC 5 Positive Seq. Voltage Angle 6953 SRC 5 Positive Seq. Voltage Angle 6953 SRC 5 Negative Seq. Voltage Angle 6955 SRC 5 Negative Seq. Voltage Angle 6965 SRC 5 Negative Seq. Voltage Angle 6976 SRC 6 Phase AG Voltage RMS 6978 SRC 6 Phase BG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6981 SRC 6 Phase AG Voltage RMS 6982 SRC 6 Phase AG Voltage Angle 6984 SRC 6 Phase AG Voltage Angle 6985 SRC 6 Phase AG Voltage Angle 6986 SRC 6 Phase AG Voltage Angle 6987 SRC 6 Phase BG Voltage Angle 6988 SRC 6 Phase BG Voltage Angle 6989 SRC 6 Phase BG Voltage Angle 6980 SRC 6 Phase BG Voltage Angle 6981 SRC 6 Phase BG Voltage Angle 6982 SRC 6 Phase BG Voltage Angle 6983 SRC 6 Phase BG Voltage Angle 6984 SRC 6 Phase BG Voltage Angle 6985 SRC 6 Phase BG Voltage Angle 6986 SRC 6 Phase BG Voltage Angle 6987 SRC 6 Phase BG Voltage Angle 6988 SRC 6 Phase BG Voltage Angle 6990 SRC 6 Phase CG Voltage Angle 6991 SRC 6 Phase AB Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6994 SRC 6 Phase BC Voltage RMS 6995 SRC 6 Phase BC Voltage RMS 6996 SRC 6 Phase BC Voltage RMS 6997 SRC 6 Phase BC Voltage RMS 6998 SRC 6 Voc Angle 6999 SRC 6 Phase BC Voltage Angle 6990 SRC 6 Phase CA Voltage Angle 6990 SRC 6 Phase BC Voltage Angle 6991 SRC 6 Voc Angle 6991 SRC 6 Phase BC Voltage Angle 6992 SRC 6 Phase BC Voltage Angle 6993 SRC 6 Phase BC Voltage Angle 6994 SRC 6 Voc Angle 6995 SRC 6 Phase BC Voltage Angle 6996 SRC 6 Phase BC Voltage Angle 6997 SRC 6 Phase BC Voltage Angle 6998 SRC 6 Phase BC Voltage Angle 6999 SRC 6 Phase BC Voltage Angle 6990 SRC 6 Phase BC Voltage Angle 6990 SRC 6 Phase BC Voltage Angle 6990 SRC 6 Phase BC Voltage Angle 6990 SRC 6 Phase BC Voltage Angle 6990 SRC 6 Positive Seq. Voltage Angle 6900 SRC 6 V_1 Angle 6900 SRC 6 Positive Seq. Vo			
6946 SRC 5 Auxiliary Voltage Angle SRC 5 Vx Angle 6947 SRC 5 Zero Seq. Voltage Magnitude 6949 SRC 5 Zero Sequence Voltage Angle 6950 SRC 5 Positive Seq. Voltage Mag. 6950 SRC 5 Positive Seq. Voltage Mag. 6952 SRC 5 Positive Seq. Voltage Mag. 6952 SRC 5 Positive Seq. Voltage Mag. 6953 SRC 5 Negative Seq. Voltage Angle 6953 SRC 5 Negative Seq. Voltage Angle 6954 SRC 5 Negative Seq. Voltage Angle 6955 SRC 5 Negative Seq. Voltage Angle 6956 SRC 6 Phase AG Voltage RMS 6977 SRC 6 Phase BG Voltage RMS 6978 SRC 6 Phase BG Voltage RMS 6978 SRC 6 Phase AG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6981 SRC 6 Phase AG Voltage RMS 6982 SRC 6 Phase AG Voltage Magnitude 6983 SRC 6 Phase AG Voltage Magnitude 6984 SRC 6 Phase AG Voltage Magnitude 6985 SRC 6 Phase BG Voltage Angle 6986 SRC 6 Phase BG Voltage Angle 6987 SRC 6 Phase BG Voltage Angle 6988 SRC 6 Phase BG Voltage Angle 6989 SRC 6 Phase BG Voltage Angle 6990 SRC 6 Phase AG Voltage Angle 6991 SRC 6 Phase AB Voltage RMS 6992 SRC 6 Phase AB Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6994 SRC 6 Phase BC Voltage RMS 6995 SRC 6 Phase BC Voltage RMS 6996 SRC 6 Phase BC Voltage RMS 6997 SRC 6 Phase BC Voltage RMS 6998 SRC 6 Phase BC Voltage RMS 6999 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6991 SRC 6 Phase BC Voltage RMS 6992 SRC 6 Phase BC Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6994 SRC 6 Voc Angle 6995 SRC 6 Phase BC Voltage Angle 6996 SRC 6 Voc Angle 6997 SRC 6 Phase BC Voltage Angle 6998 SRC 6 Voc Angle 6999 SRC 6 Phase BC Voltage Angle 6990 SRC 6 Phase BC Voltage Angle 6990 SRC 6 Phase BC Voltage Angle 6991 SRC 6 Phase BC Voltage Angle 6991 SRC 6 Phase BC Voltage Angle 6992 SRC 6 Phase BC Voltage Angle 6993 SRC 6 Phase BC Voltage Angle 6994 SRC 6 Phase BC Voltage Angle 6995 SRC 6 Phase BC Voltage Angle 6996 SRC 6 Voc Angle 6997 SRC 6 Phase BC Voltage Angle 6997 SRC 6 Positive Seq. Voltage Angle 6998 SRC 6 Voc Angle 6999 SRC 6 Positive Seq. Voltage Angle 6999 SRC 6 Voc Angle 6990 SRC 6 Positive Seq. Voltage Angle 6990 SRC 6 Voc Angle 6990 SRC 6 N			
6947 SRC 5 Zero Seq. Voltage Magnitude 6949 SRC 5 Zero Sequence Voltage Angle 6950 SRC 5 Positive Seq. Voltage Mag. 6952 SRC 5 Positive Seq. Voltage Mag. 6952 SRC 5 Positive Seq. Voltage Mag. 6953 SRC 5 Negative Seq. Voltage Mag. 6954 SRC 5 Negative Seq. Voltage Mag. 6955 SRC 5 Negative Seq. Voltage Angle 6956 SRC 6 Phase AG Voltage RMS 6976 SRC 6 Phase AG Voltage RMS 6978 SRC 6 Phase BG Voltage RMS 6978 SRC 6 Phase BG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6981 SRC 6 Phase AG Voltage RMS 6982 SRC 6 Phase AG Voltage Magnitude 6983 SRC 6 Phase AG Voltage Magnitude 6984 SRC 6 Phase AG Voltage Angle 6985 SRC 6 Phase BG Voltage Magnitude 6986 SRC 6 Phase BG Voltage Magnitude 6987 SRC 6 Phase BG Voltage Magnitude 6988 SRC 6 Phase BG Voltage Magnitude 6989 SRC 6 Phase BG Voltage Magnitude 6990 SRC 6 Phase BG Voltage RMS 6991 SRC 6 Phase BC Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6995 SRC 6 Phase BC Voltage RMS 6996 SRC 6 Phase BC Voltage RMS 6997 SRC 6 Phase BC Voltage RMS 6998 SRC 6 Phase BC Voltage RMS 6999 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6991 SRC 6 Phase BC Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6994 SRC 6 Phase BC Voltage RMS 6995 SRC 6 Phase BC Voltage RMS 6996 SRC 6 Phase BC Voltage RMS 6997 SRC 6 Phase BC Voltage RMS 6998 SRC 6 Phase BC Voltage RMS 6999 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Va RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Va RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Va RMS 6990 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Va RMS 6990 SRC 6 Phase BC Vol			
6949SRC 5 Zero Sequence Voltage AngleSRC 5 V_0 Angle6950SRC 5 Positive Seq. Voltage Mag.SRC 5 V_1 Mag6952SRC 5 Positive Seq. Voltage AngleSRC 5 V_1 Angle6953SRC 5 Negative Seq. Voltage Mag.SRC 5 V_2 Mag6955SRC 5 Negative Seq. Voltage AngleSRC 5 V_2 Angle6976SRC 6 Phase AG Voltage RMSSRC 6 Vag RMS6978SRC 6 Phase BG Voltage RMSSRC 6 Vbg RMS6980SRC 6 Phase AG Voltage RMSSRC 6 Vag Mag6982SRC 6 Phase AG Voltage MagnitudeSRC 6 Vag Angle6984SRC 6 Phase AG Voltage MagnitudeSRC 6 Vag Angle6985SRC 6 Phase BG Voltage MagnitudeSRC 6 Vbg Mag6987SRC 6 Phase BG Voltage AngleSRC 6 Vbg Angle6988SRC 6 Phase CG Voltage MagnitudeSRC 6 Vbg Angle6990SRC 6 Phase CG Voltage RMSSRC 6 Vcg Angle6991SRC 6 Phase AB Voltage RMSSRC 6 Vbc RMS6993SRC 6 Phase BC Voltage RMSSRC 6 Vbc RMS6995SRC 6 Phase AB Voltage MagnitudeSRC 6 Vbc RMS6997SRC 6 Phase AB Voltage MagnitudeSRC 6 Vbc Mag7000SRC 6 Phase BC Voltage MagnitudeSRC 6 Vbc Angle7001SRC 6 Phase BC Voltage MagnitudeSRC 6 Vbc Angle7003SRC 6 Phase CA Voltage MagnitudeSRC 6 Vbc Angle7004SRC 6 Phase CA Voltage MagnitudeSRC 6 Vc Angle7005SRC 6 Phase CA Voltage MagnitudeSRC 6 Vc Angle7006SRC 6 Phase CA Voltage MagnitudeSRC 6 Va Mag7011			_
6950 SRC 5 Positive Seq. Voltage Mag. 6952 SRC 5 Positive Seq. Voltage Angle 6953 SRC 5 Negative Seq. Voltage Angle 6953 SRC 5 Negative Seq. Voltage Mag. 6955 SRC 5 Negative Seq. Voltage Angle 6956 SRC 6 Phase AG Voltage RMS 6976 SRC 6 Phase AG Voltage RMS 6978 SRC 6 Phase BG Voltage RMS 6978 SRC 6 Phase BG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6981 SRC 6 Phase AG Voltage RMS 6982 SRC 6 Phase AG Voltage Magnitude 6983 SRC 6 Phase AG Voltage Magnitude 6984 SRC 6 Phase BG Voltage Angle 6985 SRC 6 Phase BG Voltage Magnitude 6986 SRC 6 Phase BG Voltage Magnitude 6987 SRC 6 Phase BG Voltage Magnitude 6988 SRC 6 Phase BG Voltage Magnitude 6989 SRC 6 Phase CG Voltage Magnitude 6990 SRC 6 Phase CG Voltage Magnitude 6991 SRC 6 Phase AG Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6994 SRC 6 Phase BC Voltage RMS 6995 SRC 6 Phase BC Voltage RMS 6996 SRC 6 Phase BC Voltage RMS 6997 SRC 6 Phase BC Voltage RMS 6999 SRC 6 Phase BC Voltage RMS 6990 SRC 6 Phase BC Voltage RMS 6991 SRC 6 Phase BC Voltage RMS 6992 SRC 6 Phase BC Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6994 SRC 6 Phase BC Voltage Magnitude 6995 SRC 6 Phase BC Voltage Magnitude 6996 SRC 6 Phase BC Voltage Magnitude 6997 SRC 6 Phase BC Voltage Magnitude 6998 SRC 6 Phase BC Voltage Magnitude 6999 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Va Angle 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Va Angle 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Va Angle 6990 SRC 6 Phase BC Voltage Magnitude 6990 SRC 6 Va Angle 6990 SRC 6 Phase BC Vol			
SRC 5 Positive Seq. Voltage Angle SRC 5 V_1 Angle SRC 5 Negative Seq. Voltage Mag. SRC 5 V_2 Mag SRC 5 Negative Seq. Voltage Angle SRC 5 V_2 Angle SRC 6 Phase AG Voltage RMS SRC 6 Vag RMS SRC 6 Phase BG Voltage RMS SRC 6 Vbg RMS SRC 6 Phase CG Voltage RMS SRC 6 Vag RMS SRC 6 Phase AG Voltage RMS SRC 6 Vag RMS SRC 6 Phase AG Voltage RMS SRC 6 Vbg RMS SRC 6 Phase AG Voltage Magnitude SRC 6 Vag Angle SRC 6 Phase AG Voltage Angle SRC 6 Vbg Angle SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle SRC 6 Phase CG Voltage Angle SRC 6 Vbg Angle SRC 6 Phase CG Voltage Angle SRC 6 Vbg Angle SRC 6 Phase AB Voltage RMS SRC 6 Vbg Angle SRC 6 Phase BC Voltage RMS SRC 6 Vbg Angle SRC 6 Phase BC Voltage RMS SRC 6 Vbg Angle SRC 6 Phase BC Voltage RMS SRC 6 Vbg Angle SRC 6 Phase BC Voltage RMS SRC 6 Vbg Angle SRC 6 Phase BC Voltage RMS SRC 6 Vbg Angle SRC 6 Phase BC Voltage RMS SRC 6 Vbg Angle SRC 6 Phase BC Voltage RMS SRC 6 Vbg Angle SRC 6 Phase AB Voltage RMS SRC 6 Vbg RMS SRC 6 Phase AB Voltage RMS SRC 6 Vbg RMS SRC 6 Phase AB Voltage RMS SRC 6 Vbg RMS SRC 6 Phase AB Voltage RMS SRC 6 Vbg RMS SRC 6 Phase AB Voltage Angle SRC 6 Vbg RMS SRC 6 Phase BC Voltage Angle SRC 6 Vbg RMS SRC 6 Phase BC Voltage Angle SRC 6 Vbg RMS SRC 6 Phase CA Voltage Angle SRC 6 Vbg RMS SRC 6 Vbg RMS SRC 6 Phase CA Voltage RMS SRC 6 Vbg RMS SRC 6 Vbg RMS SRC 6 Phase CA Voltage RMS SRC 6 Vbg RMS SRC 6 Vbg RMS SRC 6 Phase CA Voltage RMS SRC 6 Vbg RMS SRC 6 Vbg RMS SRC 6 Phase CA Voltage RMS SRC 6 Vbg RMS SRC 6 Vbg RMS SRC 6 Phase CA Voltage RMS SRC 6 Vbg RMS SRC 6 Vbg RMS SRC 6 Phase CA Voltage RMS SRC 6 Vbg RMS SRC 6 Vbg RMS SRC 6 Phase CA Voltage RMS SRC 6 Vbg RMS			
6953 SRC 5 Negative Seq. Voltage Mag. SRC 5 V_2 Mag 6955 SRC 5 Negative Seq. Voltage Angle 6976 SRC 6 Phase AG Voltage RMS 6978 SRC 6 Phase BG Voltage RMS 6978 SRC 6 Phase BG Voltage RMS 6980 SRC 6 Phase AG Voltage RMS 6982 SRC 6 Phase AG Voltage RMS 6984 SRC 6 Phase AG Voltage Magnitude 6985 SRC 6 Phase BG Voltage Angle 6985 SRC 6 Phase BG Voltage Angle 6986 SRC 6 Phase BG Voltage Angle 6987 SRC 6 Phase BG Voltage Angle 6988 SRC 6 Phase BG Voltage Angle 6990 SRC 6 Phase CG Voltage Angle 6991 SRC 6 Phase AG Voltage Angle 6991 SRC 6 Phase BG Voltage Angle 6993 SRC 6 Phase BG Voltage RMS 6993 SRC 6 Phase BG Voltage RMS 6994 SRC 6 Phase BG Voltage RMS 6995 SRC 6 Phase BG Voltage RMS 6996 SRC 6 Phase BG Voltage RMS 6997 SRC 6 Phase BG Voltage RMS 6998 SRC 6 Phase BG Voltage RMS 6999 SRC 6 Phase BG Voltage RMS 6990 SRC 6 Phase BG Voltage RMS 6990 SRC 6 Phase BG Voltage RMS 6991 SRC 6 Phase BG Voltage RMS 6992 SRC 6 Phase BG Voltage RMS 6993 SRC 6 Phase BG Voltage RMS 6994 SRC 6 Phase BG Voltage RMS 6995 SRC 6 Phase AB Voltage RMS 6996 SRC 6 Phase AB Voltage RMS 6997 SRC 6 Phase AB Voltage RMS 6998 SRC 6 Vac RMS 6999 SRC 6 Phase AB Voltage Angle 7000 SRC 6 Phase BC Voltage Magnitude 7001 SRC 6 Phase BC Voltage Magnitude 7002 SRC 6 Phase BC Voltage Angle 7003 SRC 6 Phase CA Voltage Angle 7004 SRC 6 Phase CA Voltage Angle 7005 SRC 6 Phase CA Voltage RMS 7006 SRC 6 Auxiliary Voltage RMS 7007 SRC 6 Auxiliary Voltage RMS 7008 SRC 6 Auxiliary Voltage Magnitude 7009 SRC 6 Auxiliary Voltage Angle 7010 SRC 6 Auxiliary Voltage Angle 7010 SRC 6 Auxiliary Voltage Angle 7011 SRC 6 Fositive Seq. Voltage Mag. 7012 SRC 6 V_1 Mag 7013 SRC 6 Positive Seq. Voltage Angle 7014 SRC 6 Positive Seq. Voltage Angle 7015 SRC 6 V_2 Angle 7016 SRC 6 Negative Seq. Voltage Angle 7017 SRC 6 Negative Seq. Voltage Angle 7018 SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7010 SRC 6 Negative Seq. Voltage Angle 7011 SRC 6 Negativ			
6955 SRC 5 Negative Seq. Voltage Angle 6976 SRC 6 Phase AG Voltage RMS 6978 SRC 6 Phase BG Voltage RMS 6980 SRC 6 Phase CG Voltage RMS 6982 SRC 6 Phase AG Voltage RMS 6984 SRC 6 Phase AG Voltage Magnitude 6985 SRC 6 Phase BG Voltage Angle 6985 SRC 6 Phase BG Voltage Angle 6986 SRC 6 Phase BG Voltage Angle 6987 SRC 6 Phase BG Voltage Magnitude 6988 SRC 6 Phase BG Voltage Magnitude 6988 SRC 6 Phase CG Voltage Magnitude 6990 SRC 6 Phase CG Voltage Magnitude 6990 SRC 6 Phase AB Voltage Angle 6991 SRC 6 Phase BC Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6995 SRC 6 Phase BC Voltage RMS 6996 SRC 6 Phase BC Voltage RMS 6997 SRC 6 Phase BC Voltage RMS 6997 SRC 6 Phase BC Voltage RMS 6999 SRC 6 Phase AB Voltage Angle 7000 SRC 6 Phase BC Voltage Angle 7000 SRC 6 Phase BC Voltage Angle 7000 SRC 6 Phase BC Voltage Angle 7000 SRC 6 Phase BC Voltage Magnitude 7000 SRC 6 Phase BC Voltage Magnitude 7001 SRC 6 Phase BC Voltage Angle 7002 SRC 6 Phase BC Voltage Magnitude 7003 SRC 6 Phase BC Voltage Angle 7004 SRC 6 Auxiliary Voltage Angle 7005 SRC 6 Auxiliary Voltage RMS 7006 SRC 6 Auxiliary Voltage RMS 7007 SRC 6 Auxiliary Voltage Angle 7008 SRC 6 Auxiliary Voltage Magnitude 7009 SRC 6 Auxiliary Voltage Angle 7000 SRC 6 Auxiliary Voltage Angle 7001 SRC 6 Fero Sequence Voltage Angle 7002 SRC 6 Positive Seq. Voltage Angle 7003 SRC 6 Positive Seq. Voltage Angle 7004 SRC 6 Positive Seq. Voltage Angle 7005 SRC 6 Positive Seq. Voltage Angle 7016 SRC 6 Positive Seq. Voltage Angle 7017 SRC 6 Negative Seq. Voltage Angle 7018 SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7016 SRC 6 Negative Seq. Voltage Angle 7017 SRC 6 Negative Seq. Voltage Angle 7018 SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7010 SRC 6 Negative Seq. Voltage Angle 7011 SRC 6 Negative Seq. Voltage Angle 7012 SRC 6 V_2 Angle			
6976 SRC 6 Phase AG Voltage RMS SRC 6 Vag RMS 6978 SRC 6 Phase BG Voltage RMS SRC 6 Vbg RMS 6980 SRC 6 Phase CG Voltage RMS SRC 6 Vcg RMS 6982 SRC 6 Phase AG Voltage Magnitude SRC 6 Vag Mag 6984 SRC 6 Phase BG Voltage Magnitude SRC 6 Vag Angle 6985 SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Mag 6987 SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Angle 6988 SRC 6 Phase CG Voltage Magnitude SRC 6 Vbg Angle 6990 SRC 6 Phase CG Voltage Magnitude SRC 6 Vcg Mag 6990 SRC 6 Phase BG Voltage RMS SRC 6 Vcg Angle 6991 SRC 6 Phase BC Voltage RMS SRC 6 Vbg Angle 6992 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6993 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6995 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6996 SRC 6 Phase AB Voltage RMS SRC 6 Vbc RMS 6997 SRC 6 Phase AB Voltage Magnitude SRC 6 Vbc Angle 7000 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7001 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7002 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vbc Angle 7004 SRC 6 Auxiliary Voltage RMS SRC 6 Vca Angle 7005 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx Angle 7010 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7012 SRC 6 Positive Seq. Voltage Mag. 7014 SRC 6 Positive Seq. Voltage Mag. 7015 SRC 6 Negative Seq. Voltage Mag. 7016 SRC 6 Negative Seq. Voltage Mag. 7017 SRC 6 Negative Seq. Voltage Angle 7018 SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7010 SRC 6 Negative Seq. Voltage Angle 7011 SRC 6 Negative Seq. Voltage Angle 7012 SRC 6 Negative Seq. Voltage Angle 7013 SRC 6 V_2 Angle 7014 SRC 6 Negative Seq. Voltage Angle 7015 SRC 6 Negative Seq. Voltage Angle 7016 SRC 6 Negative Seq. Voltage Angle 7017 SRC 6 Negative Seq. Voltage Angle 7018 SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7016 SRC 1 Three Phase Real Power 7017 SRC 6 Negative Seq. Voltage Angle			
6978 SRC 6 Phase BG Voltage RMS SRC 6 Vbg RMS 6980 SRC 6 Phase CG Voltage RMS SRC 6 Vcg RMS 6982 SRC 6 Phase AG Voltage Magnitude SRC 6 Vag Mag 6984 SRC 6 Phase AG Voltage Angle SRC 6 Vag Angle 6985 SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Mag 6987 SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Angle 6988 SRC 6 Phase CG Voltage Magnitude SRC 6 Vbg Angle 6990 SRC 6 Phase CG Voltage Magnitude SRC 6 Vcg Angle 6991 SRC 6 Phase AB Voltage RMS SRC 6 Vbg Angle 6991 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6993 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6995 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6996 SRC 6 Phase AB Voltage RMS SRC 6 Vbc RMS 6997 SRC 6 Phase AB Voltage Magnitude SRC 6 Vab Mag 6999 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7000 SRC 6 Phase BC Voltage Angle SRC 6 Vbc Angle 7001 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7002 SRC 6 Phase BC Voltage Magnitude SRC 6 Vca Angle 7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Angle 7005 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vca Angle 7006 SRC 6 Auxiliary Voltage RMS 7007 SRC 6 Auxiliary Voltage RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx RMS 7009 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Angle 7010 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7012 SRC 6 Positive Seq. Voltage Mag. 7014 SRC 6 Positive Seq. Voltage Angle 7015 SRC 6 V_1 Mag 7016 SRC 6 Negative Seq. Voltage Angle 7017 SRC 6 Negative Seq. Voltage Angle 7018 SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7010 SRC 6 Negative Seq. Voltage Angle 7011 SRC 6 Negative Seq. Voltage Angle 7012 SRC 6 Negative Seq. Voltage Angle 7013 SRC 6 V_2 Angle 7014 SRC 6 Negative Seq. Voltage Angle 7015 SRC 6 Negative Seq. Voltage Angle 7016 SRC 6 Negative Seq. Voltage Angle 7017 SRC 6 Negative Seq. Voltage Angle 7018 SRC 6 V_2 Angle			
SRC 6 Phase CG Voltage RMS SRC 6 Vog RMS SRC 6 Phase AG Voltage Magnitude SRC 6 Vag Mag SRC 6 Phase AG Voltage Angle SRC 6 Vag Angle SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Mag SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Mag SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Mag SRC 6 Phase CG Voltage Magnitude SRC 6 Vcg Mag SRC 6 Phase CG Voltage Magnitude SRC 6 Vcg Angle SRC 6 Phase AB Voltage RMS SRC 6 Vbg Angle SRC 6 Phase BC Voltage RMS SRC 6 Vbg Angle SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS SRC 6 Phase AB Voltage RMS SRC 6 Vbc RMS SRC 6 Phase AB Voltage Magnitude SRC 6 Vbc Mag SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag SRC 6 Phase BC Voltage Angle SRC 6 Vbc Angle SRC 6 Phase BC Voltage Angle SRC 6 Vbc Angle SRC 6 Phase CA Voltage Angle SRC 6 Vbc Angle SRC 6 Phase CA Voltage Angle SRC 6 Vbc Angle SRC 6 Phase CA Voltage Angle SRC 6 Vbc Angle SRC 6 Auxiliary Voltage Angle SRC 6 Vbc Angle SRC 6 Auxiliary Voltage Angle SRC 6 Vbc Angle SRC 6 Auxiliary Voltage Angle SRC 6 Vbc Angle SRC 6 SRC 6 Auxiliary Voltage Angle SRC 6 Vbc Angle SRC 6 SRC 6 Auxiliary Voltage Angle SRC 6 Vbc Angle SRC 6 SRC 6 Auxiliary Voltage Angle SRC 6 Vbc Angle SRC 6 SRC 6 Vbc Angle SRC 6 SRC 6 Vbc Angle SRC 6 SRC 6 Vbc Angle			
SRC 6 Phase AG Voltage Magnitude SRC 6 Vag Mag SRC 6 Phase AG Voltage Angle SRC 6 Vag Angle SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Mag SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Angle SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle SRC 6 Phase CG Voltage Magnitude SRC 6 Vcg Mag SRC 6 Phase CG Voltage Magnitude SRC 6 Vcg Angle SRC 6 Phase AB Voltage RMS SRC 6 Vbg Angle SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS SRC 6 Phase AB Voltage RMS SRC 6 Vbc RMS SRC 6 Phase AB Voltage RMS SRC 6 Vbc RMS SRC 6 Phase AB Voltage Magnitude SRC 6 Vbc Mag SRC 6 Phase BC Voltage Angle SRC 6 Vbc Angle SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle SRC 6 Phase CA Voltage Magnitude SRC 6 Vbc Angle SRC 6 Phase CA Voltage Magnitude SRC 6 Vbc Angle SRC 6 Phase CA Voltage Magnitude SRC 6 Vbc Angle SRC 6 Phase CA Voltage Angle SRC 6 Vbc Angle SRC 6 Auxiliary Voltage RMS SRC 6 Vbc Angle SRC 6 Auxiliary Voltage Magnitude SRC 6 Vbc Angle SRC 6 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vbc Angle SRC 6 SRC 6 Auxiliary Voltage Angle SRC 6 Vbc Angle SRC 6 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vbc Angle SRC 6 SRC 6 Auxiliary Voltage Angle SRC 6 Vbc Angle SRC 6 SRC 6 Vbc Angle			
SRC 6 Phase AG Voltage Angle SRC 6 Vbg Mag SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Mag SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle SRC 6 Phase CG Voltage Magnitude SRC 6 Vcg Mag SRC 6 Phase CG Voltage Angle SRC 6 Vcg Angle SRC 6 Phase AB Voltage RMS SRC 6 Vbg Angle SRC 6 Phase AB Voltage RMS SRC 6 Vbg RMS SRC 6 Vbg RMS SRC 6 Phase BC Voltage RMS SRC 6 Vbg R			
6985 SRC 6 Phase BG Voltage Magnitude SRC 6 Vbg Mag 6987 SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle 6988 SRC 6 Phase CG Voltage Magnitude SRC 6 Vcg Mag 6990 SRC 6 Phase CG Voltage Angle SRC 6 Vcg Angle 6991 SRC 6 Phase AB Voltage RMS SRC 6 Vbg RMS 6993 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6995 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6996 SRC 6 Phase AB Voltage RMS SRC 6 Vbc RMS 6997 SRC 6 Phase AB Voltage RMS SRC 6 Vbc RMS 6998 SRC 6 Phase AB Voltage Magnitude SRC 6 Vbc RMS 6999 SRC 6 Phase AB Voltage Magnitude SRC 6 Vbc Mag 7000 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7001 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7002 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vbc Angle 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vbc Angle 7007 SRC 6 Auxiliary Voltage RMS SRC 6 Vbc Angle 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vbc Angle 7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vbc Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 Vbc Angle 7012 SRC 6 Positive Seq. Voltage Angle SRC 6 Vbc Angle 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 Vbc Angle 7014 SRC 6 Positive Seq. Voltage Mag. 7015 SRC 6 Negative Seq. Voltage Mag. 7016 SRC 6 Negative Seq. Voltage Ragle SRC 6 Vbc Angle 7017 SRC 6 Negative Seq. Voltage Angle SRC 6 Vbc Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 Vbc Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 Vbc Angle 7016 SRC 1 Three Phase Real Power SRC 1 P			
6987 SRC 6 Phase BG Voltage Angle SRC 6 Vbg Angle 6988 SRC 6 Phase CG Voltage Magnitude SRC 6 Vcg Mag 6990 SRC 6 Phase CG Voltage Angle SRC 6 Vcg Angle 6991 SRC 6 Phase AB Voltage RMS SRC 6 Vbc RMS 6993 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6995 SRC 6 Phase CA Voltage RMS SRC 6 Vbc RMS 6997 SRC 6 Phase AB Voltage RMS SRC 6 Vbc RMS 6999 SRC 6 Phase AB Voltage Magnitude SRC 6 Vbc Mag 6999 SRC 6 Phase AB Voltage Magnitude SRC 6 Vbc Mag 7000 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7001 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7002 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vbc Angle 7005 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Angle 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Angle 7010 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. 7016 SRC 6 Positive Seq. Voltage Mag. 7017 SRC 6 Negative Seq. Voltage Mag. 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7018 SRC 1 Three Phase Real Power SRC 1 P			
6988 SRC 6 Phase CG Voltage Magnitude SRC 6 Vcg Mag 6990 SRC 6 Phase CG Voltage Angle SRC 6 Vcg Angle 6991 SRC 6 Phase AB Voltage RMS SRC 6 Vab RMS 6993 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6995 SRC 6 Phase CA Voltage RMS SRC 6 Vca RMS 6997 SRC 6 Phase AB Voltage Magnitude SRC 6 Vab Mag 6999 SRC 6 Phase AB Voltage Magnitude SRC 6 Vab Angle 7000 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7001 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7002 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Angle 7005 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Angle 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Angle 7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7010 SRC 6 Negative Seq. Voltage Angle 7011 SRC 6 SRC 6 Negative Seq. Voltage SRC 6 V_2 Angle 7012 SRC 6 Negative Seq. Voltage SRC 6 V_2 Angle 7013 SRC 6 Negative Seq. Voltage Angle 7014 SRC 6 Negative Seq. Voltage Angle 7015 SRC 6 Negative Seq. Voltage Angle 7016 SRC 6 Negative Seq. Voltage Angle 7017 SRC 6 Negative Seq. Voltage Angle 7018 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7010 SRC 1 P			
6990 SRC 6 Phase CG Voltage Angle 6991 SRC 6 Phase AB Voltage RMS 6993 SRC 6 Phase BC Voltage RMS 6995 SRC 6 Phase CA Voltage RMS 6997 SRC 6 Phase AB Voltage RMS 6997 SRC 6 Phase AB Voltage Magnitude 6999 SRC 6 Phase AB Voltage Magnitude 6999 SRC 6 Phase BC Voltage Magnitude 7000 SRC 6 Phase BC Voltage Magnitude 7000 SRC 6 Phase BC Voltage Magnitude 7001 SRC 6 Phase BC Voltage Magnitude 7002 SRC 6 Phase BC Voltage Magnitude 7003 SRC 6 Phase CA Voltage Magnitude 7004 SRC 6 Phase CA Voltage Magnitude 7005 SRC 6 Phase CA Voltage Magnitude 7006 SRC 6 Auxiliary Voltage RMS 7008 SRC 6 Auxiliary Voltage RMS 7008 SRC 6 Auxiliary Voltage Magnitude 7010 SRC 6 Auxiliary Voltage Magnitude 7011 SRC 6 Zero Seq. Voltage Magnitude 7012 SRC 6 Voltage Magnitude 7013 SRC 6 Zero Seq. Voltage Magnitude 7014 SRC 6 Positive Seq. Voltage Mag. 7015 SRC 6 Voltage Mag. 7016 SRC 6 Positive Seq. Voltage Mag. 7017 SRC 6 Negative Seq. Voltage Mag. 7019 SRC 6 Negative Seq. Voltage Angle 7019 SRC 6 Negative Seq. Voltage Angle 7010 SRC 6 Voltage SRC 6 Voltage SRC 6 Voltage Mag. 7011 SRC 6 Negative Seq. Voltage Mag. 7012 SRC 6 Negative Seq. Voltage SRC 6 Voltage SRC 6 Voltage Mag. 7013 SRC 6 Negative Seq. Voltage Mag. 7014 SRC 6 Negative Seq. Voltage SRC 6 Voltag			
6991 SRC 6 Phase AB Voltage RMS SRC 6 Vbc RMS 6993 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6995 SRC 6 Phase CA Voltage RMS SRC 6 Vbc RMS 6997 SRC 6 Phase AB Voltage Magnitude SRC 6 Vab Mag 6999 SRC 6 Phase AB Voltage Magnitude SRC 6 Vbc Mag 7000 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7002 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7003 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7005 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Mag 7006 SRC 6 Phase CA Voltage Angle SRC 6 Vca Angle 7007 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. SRC 6 V_1 Mag 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7018 SRC 1 Three Phase Real Power SRC 1 P			
6993 SRC 6 Phase BC Voltage RMS SRC 6 Vbc RMS 6995 SRC 6 Phase CA Voltage RMS SRC 6 Vca RMS 6997 SRC 6 Phase AB Voltage Magnitude SRC 6 Vab Mag 6999 SRC 6 Phase AB Voltage Magnitude SRC 6 Vab Angle 7000 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7002 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7003 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Angle 7005 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Mag 7006 SRC 6 Phase CA Voltage Angle SRC 6 Vca Angle 7007 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7018 SRC 1 Three Phase Real Power SRC 1 P			
6995 SRC 6 Phase CA Voltage RMS SRC 6 Vca RMS 6997 SRC 6 Phase AB Voltage Magnitude SRC 6 Vab Mag 6999 SRC 6 Phase AB Voltage Angle SRC 6 Vab Angle 7000 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7002 SRC 6 Phase BC Voltage Angle SRC 6 Vbc Angle 7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vbc Angle 7005 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Angle 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage RMS SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7011 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7012 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P			
6997 SRC 6 Phase AB Voltage Magnitude SRC 6 Vab Mag 6999 SRC 6 Phase AB Voltage Angle SRC 6 Vab Angle 7000 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7002 SRC 6 Phase BC Voltage Angle SRC 6 Vbc Angle 7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Mag 7005 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Angle 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 Vx Angle 7012 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	6993		
6999 SRC 6 Phase AB Voltage Angle SRC 6 Vab Angle 7000 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7002 SRC 6 Phase BC Voltage Angle SRC 6 Vbc Angle 7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Mag 7005 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Angle 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7018 SRC 1 Three Phase Real Power SRC 1 P	6995	SRC 6 Phase CA Voltage RMS	SRC 6 Vca RMS
7000 SRC 6 Phase BC Voltage Magnitude SRC 6 Vbc Mag 7002 SRC 6 Phase BC Voltage Angle SRC 6 Vbc Angle 7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Mag 7005 SRC 6 Phase CA Voltage Angle SRC 6 Vca Angle 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	6997	SRC 6 Phase AB Voltage Magnitude	SRC 6 Vab Mag
7002 SRC 6 Phase BC Voltage Angle SRC 6 Vbc Angle 7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Mag 7005 SRC 6 Phase CA Voltage Angle SRC 6 Vca Angle 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7019 SRC 1 Three Phase Real Power SRC 1 P	6999	SRC 6 Phase AB Voltage Angle	-
7003 SRC 6 Phase CA Voltage Magnitude SRC 6 Vca Mag 7005 SRC 6 Phase CA Voltage Angle SRC 6 Vca Angle 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. SRC 6 V_1 Mag 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7000	SRC 6 Phase BC Voltage Magnitude	
7005 SRC 6 Phase CA Voltage Angle SRC 6 Vca Angle 7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. SRC 6 V_1 Mag 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7002	SRC 6 Phase BC Voltage Angle	SRC 6 Vbc Angle
7006 SRC 6 Auxiliary Voltage RMS SRC 6 Vx RMS 7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. SRC 6 V_1 Mag 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7003	SRC 6 Phase CA Voltage Magnitude	SRC 6 Vca Mag
7008 SRC 6 Auxiliary Voltage Magnitude SRC 6 Vx Mag 7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. SRC 6 V_1 Mag 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7005	SRC 6 Phase CA Voltage Angle	SRC 6 Vca Angle
7010 SRC 6 Auxiliary Voltage Angle SRC 6 Vx Angle 7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. SRC 6 V_1 Mag 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7006	SRC 6 Auxiliary Voltage RMS	SRC 6 Vx RMS
7011 SRC 6 Zero Seq. Voltage Magnitude SRC 6 V_0 Mag 7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. SRC 6 V_1 Mag 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7008		SRC 6 Vx Mag
7013 SRC 6 Zero Sequence Voltage Angle SRC 6 V_0 Angle 7014 SRC 6 Positive Seq. Voltage Mag. SRC 6 V_1 Mag 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7010	SRC 6 Auxiliary Voltage Angle	SRC 6 Vx Angle
7014 SRC 6 Positive Seq. Voltage Mag. SRC 6 V_1 Mag 7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7011	SRC 6 Zero Seq. Voltage Magnitude	SRC 6 V_0 Mag
7016 SRC 6 Positive Seq. Voltage Angle SRC 6 V_1 Angle 7017 SRC 6 Negative Seq. Voltage Mag. SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7013	SRC 6 Zero Sequence Voltage Angle	SRC 6 V_0 Angle
7017 SRC 6 Negative Seq. Voltage Mag. SRC 6 V_2 Mag 7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7014	SRC 6 Positive Seq. Voltage Mag.	SRC 6 V_1 Mag
7019 SRC 6 Negative Seq. Voltage Angle SRC 6 V_2 Angle 7168 SRC 1 Three Phase Real Power SRC 1 P	7016	SRC 6 Positive Seq. Voltage Angle	SRC 6 V_1 Angle
7168 SRC 1 Three Phase Real Power SRC 1 P	7017	SRC 6 Negative Seq. Voltage Mag.	SRC 6 V_2 Mag
	7019	SRC 6 Negative Seq. Voltage Angle	SRC 6 V_2 Angle
7170 SRC 1 Phase A Real Power SRC 1 Pa	7168	SRC 1 Three Phase Real Power	SRC 1 P
	7170	SRC 1 Phase A Real Power	SRC 1 Pa

Table A-1: FLEXANALOG DATA ITEMS (Sheet 7 of 11)

ADDR	DATA ITEM	FLEXANALOG NAME
7172	SRC 1 Phase B Real Power	SRC 1 Pb
7174	SRC 1 Phase C Real Power	SRC 1 Pc
7176	SRC 1 Three Phase Reactive Power	SRC 1 Q
7178	SRC 1 Phase A Reactive Power	SRC 1 Qa
7180	SRC 1 Phase B Reactive Power	SRC 1 Qb
7182	SRC 1 Phase C Reactive Power	SRC 1 Qc
7184	SRC 1 Three Phase Apparent Power	SRC 1 S
7186	SRC 1 Phase A Apparent Power	SRC 1 Sa
7188	SRC 1 Phase B Apparent Power	SRC 1 Sb
7190	SRC 1 Phase C Apparent Power	SRC 1 Sc
7192	SRC 1 Three Phase Power Factor	SRC 1 PF
7193	SRC 1 Phase A Power Factor	SRC 1 Phase A PF
7194	SRC 1 Phase B Power Factor	SRC 1 Phase B PF
7195	SRC 1 Phase C Power Factor	SRC 1 Phase C PF
7200	SRC 2 Three Phase Real Power	SRC 2 P
7202	SRC 2 Phase A Real Power	SRC 2 Pa
7204	SRC 2 Phase B Real Power	SRC 2 Pb
7204	SRC 2 Phase C Real Power	SRC 2 Pc
7208	SRC 2 Three Phase Reactive Power	SRC 2 PC
7210	SRC 2 Phase A Reactive Power	SRC 2 Qa
7212	SRC 2 Phase B Reactive Power	SRC 2 Qb
7214	SRC 2 Phase C Reactive Power	SRC 2 Qc
7216	SRC 2 Three Phase Apparent Power	SRC 2 S
7218	SRC 2 Phase A Apparent Power	SRC 2 Sa
7220	SRC 2 Phase B Apparent Power	SRC 2 Sb
7222	SRC 2 Phase C Apparent Power	SRC 2 Sc
7224	SRC 2 Three Phase Power Factor	SRC 2 PF
7225	SRC 2 Phase A Power Factor	SRC 2 Phase A PF
7226	SRC 2 Phase B Power Factor	SRC 2 Phase B PF
7227	SRC 2 Phase C Power Factor	SRC 2 Phase C PF
7232	SRC 3 Three Phase Real Power	SRC 3 P
7234	SRC 3 Phase A Real Power	SRC 3 Pa
7236	SRC 3 Phase B Real Power	SRC 3 Pb
7238	SRC 3 Phase C Real Power	SRC 3 Pc
7240	SRC 3 Three Phase Reactive Power	SRC 3 Q
7242	SRC 3 Phase A Reactive Power	SRC 3 Qa
7244	SRC 3 Phase B Reactive Power	SRC 3 Qb
7246	SRC 3 Phase C Reactive Power	SRC 3 Qc
7248	SRC 3 Three Phase Apparent Power	SRC 3 S
7250	SRC 3 Phase A Apparent Power	SRC 3 Sa
7252	SRC 3 Phase B Apparent Power	SRC 3 Sb
7254	SRC 3 Phase C Apparent Power	SRC 3 Sc
7256	SRC 3 Three Phase Power Factor	SRC 3 PF
7257	SRC 3 Phase A Power Factor	SRC 3 Phase A PF
7258	SRC 3 Phase B Power Factor	SRC 3 Phase B PF
7259	SRC 3 Phase C Power Factor	SRC 3 Phase C PF
7264	SRC 4 Three Phase Real Power	SRC 4 P
7266	SRC 4 Phase A Real Power	SRC 4 Pa
7268	SRC 4 Phase B Real Power	SRC 4 Pb
7270	SRC 4 Phase C Real Power	SRC 4 Pc
7272	SRC 4 Three Phase Reactive Power	SRC 4 Q
7274	SRC 4 Phase A Reactive Power	SRC 4 Qa

Table A-1: FLEXANALOG DATA ITEMS (Sheet 8 of 11)

ADDR	DATA ITEM	FLEXANALOG NAME
7276	SRC 4 Phase B Reactive Power	SRC 4 Qb
7278	SRC 4 Phase C Reactive Power	SRC 4 Qc
7280	SRC 4 Three Phase Apparent Power	SRC 4 S
7282	SRC 4 Phase A Apparent Power	SRC 4 Sa
7284	SRC 4 Phase B Apparent Power	SRC 4 Sb
7286	SRC 4 Phase C Apparent Power	SRC 4 Sc
7288	SRC 4 Three Phase Power Factor	SRC 4 PF
7289	SRC 4 Phase A Power Factor	SRC 4 Phase A PF
7290	SRC 4 Phase B Power Factor	SRC 4 Phase B PF
7291	SRC 4 Phase C Power Factor	SRC 4 Phase C PF
7296	SRC 5 Three Phase Real Power	SRC 5 P
7298	SRC 5 Phase A Real Power	SRC 5 Pa
7300	SRC 5 Phase B Real Power	SRC 5 Pb
7302	SRC 5 Phase C Real Power	SRC 5 Pc
7304	SRC 5 Three Phase Reactive Power	SRC 5 Q
7306	SRC 5 Phase A Reactive Power	SRC 5 Qa
7308	SRC 5 Phase B Reactive Power	SRC 5 Qb
7310	SRC 5 Phase C Reactive Power	SRC 5 Qc
7312	SRC 5 Three Phase Apparent Power	SRC 5 S
7314	SRC 5 Phase A Apparent Power	SRC 5 Sa
7316	SRC 5 Phase B Apparent Power	SRC 5 Sb
7318	SRC 5 Phase C Apparent Power	SRC 5 Sc
7320	SRC 5 Three Phase Power Factor	SRC 5 PF
7321	SRC 5 Phase A Power Factor	SRC 5 Phase A PF
7322	SRC 5 Phase B Power Factor	SRC 5 Phase B PF
7323	SRC 5 Phase C Power Factor	SRC 5 Phase C PF
7328	SRC 6 Three Phase Real Power	SRC 6 P
7330	SRC 6 Phase A Real Power	SRC 6 Pa
7332	SRC 6 Phase B Real Power	SRC 6 Pb
7334	SRC 6 Phase C Real Power	SRC 6 Pc
7336	SRC 6 Three Phase Reactive Power	SRC 6 Q
7338	SRC 6 Phase A Reactive Power	SRC 6 Qa
7340	SRC 6 Phase B Reactive Power	SRC 6 Qb
7342	SRC 6 Phase C Reactive Power	SRC 6 Qc
7344	SRC 6 Three Phase Apparent Power	SRC 6 S
7346	SRC 6 Phase A Apparent Power	SRC 6 Sa
7348	SRC 6 Phase B Apparent Power	SRC 6 Sb
7350	SRC 6 Phase C Apparent Power	SRC 6 Sc
7352	SRC 6 Three Phase Power Factor	SRC 6 PF
7353	SRC 6 Phase A Power Factor	SRC 6 Phase A PF
7354	SRC 6 Phase B Power Factor	SRC 6 Phase B PF
7355	SRC 6 Phase C Power Factor	SRC 6 Phase C PF
7552	SRC 1 Frequency	SRC 1 Frequency
7553	SRC 2 Frequency	SRC 2 Frequency
7554	SRC 3 Frequency	SRC 3 Frequency
7555	SRC 4 Frequency	SRC 4 Frequency
7556	SRC 5 Frequency	SRC 5 Frequency
7557	SRC 6 Frequency	SRC 6 Frequency
7680	SRC 1 Demand Ia	SRC 1 Demand Ia
7682	SRC 1 Demand Ib	SRC 1 Demand Ib
7684	SRC 1 Demand Ic	SRC 1 Demand Ic
7686	SRC 1 Demand Watt	SRC 1 Demand Watt

APPENDIX A A.1 PARAMETER LIST

Table A-1: FLEXANALOG DATA ITEMS (Sheet 9 of 11)

ADDR	DATA ITEM	FLEXANALOG NAME
7688	SRC 1 Demand Var	SRC 1 Demand var
7690	SRC 1 Demand Va	SRC 1 Demand Va
7696	SRC 2 Demand Ia	SRC 2 Demand Ia
7698	SRC 2 Demand Ib	SRC 2 Demand Ib
7700	SRC 2 Demand Ic	SRC 2 Demand Ic
7702	SRC 2 Demand Watt	SRC 2 Demand Watt
7704	SRC 2 Demand Var	SRC 2 Demand var
7706	SRC 2 Demand Va	SRC 2 Demand Va
7712	SRC 3 Demand Ia	SRC 3 Demand Ia
7714	SRC 3 Demand Ib	SRC 3 Demand Ib
7716	SRC 3 Demand Ic	SRC 3 Demand Ic
7718	SRC 3 Demand Watt	SRC 3 Demand Watt
7720	SRC 3 Demand Var	SRC 3 Demand var
7722	SRC 3 Demand Va	SRC 3 Demand Va
7728	SRC 4 Demand Ia	SRC 4 Demand Ia
7730	SRC 4 Demand Ib	SRC 4 Demand Ib
7732	SRC 4 Demand Ic	SRC 4 Demand Ic
7734	SRC 4 Demand Watt	SRC 4 Demand Watt
7736	SRC 4 Demand Var	SRC 4 Demand var
7738	SRC 4 Demand Va	SRC 4 Demand Va
7744	SRC 5 Demand Ia	SRC 5 Demand Ia
7746	SRC 5 Demand Ib	SRC 5 Demand Ib
7748	SRC 5 Demand Ic	SRC 5 Demand Ic
7750	SRC 5 Demand Watt	SRC 5 Demand Watt
7752	SRC 5 Demand Var	SRC 5 Demand var
7754	SRC 5 Demand Va	SRC 5 Demand Va
7760	SRC 6 Demand Ia	SRC 6 Demand Ia
7762	SRC 6 Demand Ib	SRC 6 Demand Ib
7764	SRC 6 Demand Ic	SRC 6 Demand Ic
7766	SRC 6 Demand Watt	SRC 6 Demand Watt
7768	SRC 6 Demand Var	SRC 6 Demand var
7770	SRC 6 Demand Va	SRC 6 Demand Va
9216	Synchrocheck 1 Delta Voltage	Synchchk 1 Delta V
9218	Synchrocheck 1 Delta Frequency	Synchchk 1 Delta F
9219	Synchrocheck 1 Delta Phase	Synchchk 1 Delta Phs
9220	Synchrocheck 2 Delta Voltage	Synchchk 2 Delta V
9222	Synchrocheck 2 Delta Frequency	Synchchk 2 Delta F
9223	Synchrocheck 2 Delta Phase	Synchchk 2 Delta Phs
13504	DCMA Inputs 1 Value	DCMA Inputs 1 Value
13506	DCMA Inputs 2 Value	DCMA Inputs 2 Value
13508	DCMA Inputs 3 Value	DCMA Inputs 3 Value
13510	DCMA Inputs 4 Value	DCMA Inputs 4 Value
13512	DCMA Inputs 5 Value	DCMA Inputs 5 Value
13514	DCMA Inputs 6 Value	DCMA Inputs 6 Value
13516	DCMA Inputs 7 Value	DCMA Inputs 7 Value
13518	DCMA Inputs 8 Value	DCMA Inputs 8 Value
13520	DCMA Inputs 9 Value	DCMA Inputs 9 Value
13522	DCMA Inputs 10 Value	DCMA Inputs 10 Value
13524	DCMA Inputs 11 Value	DCMA Inputs 11 Value
13526	DCMA Inputs 12 Value	DCMA Inputs 12 Value
13528	DCMA Inputs 13 Value	DCMA Inputs 13 Value
13530	DCMA Inputs 14 Value	DCMA Inputs 14 Value
	·	· · · · · · · · · · · · · · · · · · ·

Table A-1: FLEXANALOG DATA ITEMS (Sheet 10 of 11)

ADDR	DATA ITEM	FLEXANALOG NAME
13532	DCMA Inputs 15 Value	DCMA Inputs 15 Value
13534	DCMA Inputs 16 Value	DCMA Inputs 16 Value
13536	DCMA Inputs 17 Value	DCMA Inputs 17 Value
13538	DCMA Inputs 18 Value	DCMA Inputs 18 Value
13540	DCMA Inputs 19 Value	DCMA Inputs 19 Value
13542	DCMA Inputs 20 Value	DCMA Inputs 20 Value
13544	DCMA Inputs 21 Value	DCMA Inputs 21 Value
13546	DCMA Inputs 22 Value	DCMA Inputs 22 Value
13548	DCMA Inputs 23 Value	DCMA Inputs 23 Value
13550	DCMA Inputs 24 Value	DCMA Inputs 24 Value
13552	RTD Inputs 1 Value	RTD Inputs 1 Value
13553	RTD Inputs 2 Value	RTD Inputs 2 Value
13554	RTD Inputs 3 Value	RTD Inputs 3 Value
13555	RTD Inputs 4 Value	RTD Inputs 4 Value
13556	RTD Inputs 5 Value	RTD Inputs 5 Value
13557	RTD Inputs 6 Value	RTD Inputs 6 Value
13558	RTD Inputs 7 Value	RTD Inputs 7 Value
13559	RTD Inputs 8 Value	RTD Inputs 8 Value
13560	RTD Inputs 9 Value	RTD Inputs 9 Value
13561	RTD Inputs 10 Value	RTD Inputs 10 Value
13562	RTD Inputs 11 Value	RTD Inputs 11 Value
13563	RTD Inputs 12 Value	RTD Inputs 12 Value
13564	RTD Inputs 13 Value	RTD Inputs 13 Value
13565	RTD Inputs 14 Value	RTD Inputs 14 Value
13566	RTD Inputs 15 Value	RTD Inputs 15 Value
13567	RTD Inputs 16 Value	RTD Inputs 16 Value
13568	RTD Inputs 17 Value	RTD Inputs 17 Value
13569	RTD Inputs 18 Value	RTD Inputs 18 Value
13570	RTD Inputs 19 Value	RTD Inputs 19 Value
13571	RTD Inputs 20 Value	RTD Inputs 20 Value
13572	RTD Inputs 21 Value	RTD Inputs 21 Value
13573	RTD Inputs 22 Value	RTD Inputs 22 Value
13574	RTD Inputs 23 Value	RTD Inputs 23 Value
13575	RTD Inputs 24 Value	RTD Inputs 24 Value
13576	RTD Inputs 25 Value	RTD Inputs 25 Value
13577	RTD Inputs 26 Value	RTD Inputs 26 Value
13578	RTD Inputs 27 Value	RTD Inputs 27 Value
13579	RTD Inputs 28 Value	RTD Inputs 28 Value
13580	RTD Inputs 29 Value	RTD Inputs 29 Value
13581	RTD Inputs 30 Value	RTD Inputs 30 Value
13582	RTD Inputs 31 Value	RTD Inputs 31 Value
13583	RTD Inputs 32 Value	RTD Inputs 32 Value
13584	RTD Inputs 33 Value	RTD Inputs 33 Value
13585	RTD Inputs 34 Value	RTD Inputs 34 Value
13586	RTD Inputs 35 Value	RTD Inputs 35 Value
13587	RTD Inputs 36 Value	RTD Inputs 36 Value
13588	RTD Inputs 37 Value	RTD Inputs 37 Value
13589	RTD Inputs 38 Value	RTD Inputs 38 Value
13590	RTD Inputs 39 Value	RTD Inputs 39 Value
13591	RTD Inputs 40 Value	RTD Inputs 40 Value
13592	RTD Inputs 41 Value	RTD Inputs 41 Value
13593	RTD Inputs 42 Value	RTD Inputs 42 Value

Table A-1: FLEXANALOG DATA ITEMS (Sheet 11 of 11)

ADDR	DATA ITEM	FLEXANALOG NAME
13594	RTD Inputs 43 Value	RTD Inputs 43 Value
13595	RTD Inputs 44 Value	RTD Inputs 44 Value
13596	RTD Inputs 45 Value	RTD Inputs 45 Value
13597	RTD Inputs 46 Value	RTD Inputs 46 Value
13598	RTD Inputs 47 Value	RTD Inputs 47 Value
13599	RTD Inputs 48 Value	RTD Inputs 48 Value
32768	Tracking Frequency	Tracking Frequency
33024	Comp 1 A	Comp Arg A 1
33026	Comp 1 B	Comp Arg B 1
33028	Comp 1 Out	Comp Out 1
33030	Comp 2 A	Comp Arg A 2
33032	Comp 2 B	Comp Arg B 2
33034	Comp 2 Out	Comp Out 2
33036	Comp 3 A	Comp Arg A 3
33038	Comp 3 B	Comp Arg B 3
33040	Comp 3 Out	Comp Out 3
33042	Comp 4 A	Comp Arg A 4
33044	Comp 4 B	Comp Arg B 4
33046	Comp 4 Out	Comp Out 4
33048	Comp 5 A	Comp Arg A 5
33050	Comp 5 B	Comp Arg B 5
33052	Comp 5 Out	Comp Out 5
33054	Comp 6 A	Comp Arg A 6
33056	Comp 6 B	Comp Arg B 6
33058	Comp 6 Out	Comp Out 6
33440	Digitizer 1 Output	Digitizer 1 Out
33442	Digitizer 2 Output	Digitizer 2 Out
33444	Digitizer 3 Output	Digitizer 3 Out
33446	Digitizer 4 Output	Digitizer 4 Out
33448	Digitizer 5 Output	Digitizer 5 Out
39425	FlexElement 1 Actual	FlexElement 1 Value
39427	FlexElement 2 Actual	FlexElement 2 Value
39429	FlexElement 3 Actual	FlexElement 3 Value
39431	FlexElement 4 Actual	FlexElement 4 Value
39433	FlexElement 5 Actual	FlexElement 5 Value
39435	FlexElement 6 Actual	FlexElement 6 Value
39437	FlexElement 7 Actual	FlexElement 7 Value
39439	FlexElement 8 Actual	FlexElement 8 Value
39441	FlexElement 9 Actual	FlexElement 9 Value
39443	FlexElement 10 Actual	FlexElement 10 Value
39445	FlexElement 11 Actual	FlexElement 11 Value
39447	FlexElement 12 Actual	FlexElement 12 Value
39449	FlexElement 13 Actual	FlexElement 13 Value
39451	FlexElement 14 Actual	FlexElement 14 Value
39453	FlexElement 15 Actual	FlexElement 15 Value
39455	FlexElement 16 Actual	FlexElement 16 Value

B.1.1 INTRODUCTION

The UR-series relays support a number of communications protocols to allow connection to equipment such as personal computers, RTUs, SCADA masters, and programmable logic controllers. The Modicon Modbus RTU protocol is the most basic protocol supported by the UR. Modbus is available via RS232 or RS485 serial links or via ethernet (using the Modbus/TCP specification). The following description is intended primarily for users who wish to develop their own master communication drivers and applies to the serial Modbus RTU protocol. Note that:

- The UR always acts as a slave device, meaning that it never initiates communications; it only listens and responds to requests issued by a master computer.
- For Modbus[®], a subset of the Remote Terminal Unit (RTU) protocol format is supported that allows extensive monitoring, programming, and control functions using read and write register commands.

B.1.2 PHYSICAL LAYER

The Modbus[®] RTU protocol is hardware-independent so that the physical layer can be any of a variety of standard hardware configurations including RS232 and RS485. The relay includes a faceplate (front panel) RS232 port and two rear terminal communications ports that may be configured as RS485, fiber optic, 10BaseT, or 10BaseF. Data flow is half-duplex in all configurations. See Chapter 3 for details on wiring.

Each data byte is transmitted in an asynchronous format consisting of 1 start bit, 8 data bits, 1 stop bit, and possibly 1 parity bit. This produces a 10 or 11 bit data frame. This can be important for transmission through modems at high bit rates (11 bit data frames are not supported by many modems at baud rates greater than 300).

The baud rate and parity are independently programmable for each communications port. Baud rates of 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, or 115200 bps are available. Even, odd, and no parity are available. Refer to the *Communications* section of Chapter 5 for further details.

The master device in any system must know the address of the slave device with which it is to communicate. The relay will not act on a request from a master if the address in the request does not match the relay's slave address (unless the address is the broadcast address – see below).

A single setting selects the slave address used for all ports, with the exception that for the faceplate port, the relay will accept any address when the Modbus[®] RTU protocol is used.

B.1.3 DATA LINK LAYER

Communications takes place in packets which are groups of asynchronously framed byte data. The master transmits a packet to the slave and the slave responds with a packet. The end of a packet is marked by 'dead-time' on the communications line. The following describes general format for both transmit and receive packets. For exact details on packet formatting, refer to subsequent sections describing each function code.

Table B-1: MODBUS PACKET FORMAT

DESCRIPTION	SIZE
SLAVE ADDRESS	1 byte
FUNCTION CODE	1 byte
DATA	N bytes
CRC	2 bytes
DEAD TIME	3.5 bytes transmission time

• SLAVE ADDRESS: This is the address of the slave device that is intended to receive the packet sent by the master and to perform the desired action. Each slave device on a communications bus must have a unique address to prevent bus contention. All of the relay's ports have the same address which is programmable from 1 to 254; see Chapter 5 for details. Only the addressed slave will respond to a packet that starts with its address. Note that the faceplate port is an exception to this rule; it will act on a message containing any slave address.

A master transmit packet with slave address 0 indicates a broadcast command. All slaves on the communication link take action based on the packet, but none respond to the master. Broadcast mode is only recognized when associated with Function Code 05h. For any other function code, a packet with broadcast mode slave address 0 will be ignored.

- FUNCTION CODE: This is one of the supported functions codes of the unit which tells the slave what action to perform. See the Supported Function Codes section for complete details. An exception response from the slave is indicated by setting the high order bit of the function code in the response packet. See the Exception Responses section for further details.
- **DATA:** This will be a variable number of bytes depending on the function code. This may include actual values, settings, or addresses sent by the master to the slave or by the slave to the master.
- **CRC:** This is a two byte error checking code. The RTU version of Modbus[®] includes a 16-bit cyclic redundancy check (CRC-16) with every packet which is an industry standard method used for error detection. If a Modbus slave device receives a packet in which an error is indicated by the CRC, the slave device will not act upon or respond to the packet thus preventing any erroneous operations. See the CRC-16 Algorithm section for details on calculating the CRC.
- **DEAD TIME:** A packet is terminated when no data is received for a period of 3.5 byte transmission times (about 15 ms at 2400 bps, 2 ms at 19200 bps, and 300 µs at 115200 bps). Consequently, the transmitting device must not allow gaps between bytes longer than this interval. Once the dead time has expired without a new byte transmission, all slaves start listening for a new packet from the master except for the addressed slave.

B.1.4 CRC-16 ALGORITHM

The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (1100000000000101B). The 16 bit remainder of the division is appended to the end of the packet, MSByte first. The resulting packet including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred. This algorithm requires the characteristic polynomial to be reverse bit ordered. The most significant bit of the characteristic polynomial is dropped, since it does not affect the value of the remainder.

A C programming language implementation of the CRC algorithm will be provided upon request.

Table B-2: CRC-16 ALGORITHM

SYMBOLS:	>	data transfer		
	Α	16 bit working register		
	Alow	low order byte of A		
	Ahigh	high order byte of A		
	CRC	16 bit CRC-16 result		
	i,j	loop counters		
	(+)	logical EXCLUSIVE-OR op	perator	
N total number of data bytes				
	Di	i-th data byte (i = 0 to N-1)		
	G	16 bit characteristic polyno	omial = 10100000000000001 (binary) with MSbit dropped and bit order reversed	
	shr (x)	right shift operator (th LSbit of x is shifted into a carry flag, a '0' is shifted into the MSbit of x, all other bits are shifted right one location)		
ALGORITHM: 1. FFFF (hex)> A 2. 0> i		FFFF (hex)> A		
	3. 0> j			
	4.	Di (+) Alow> Alow		
	5.	j + 1> j		
	6. shr (A)			
	7.	Is there a carry?	No: go to 8; Yes: G (+) A> A and continue.	
	8.	Is j = 8?	No: go to 5; Yes: continue	
	9.	i + 1> i		
	10.	Is i = N?	No: go to 3; Yes: continue	
	11.	A> CRC		

B.2.1 SUPPORTED FUNCTION CODES

Modbus[®] officially defines function codes from 1 to 127 though only a small subset is generally needed. The relay supports some of these functions, as summarized in the following table. Subsequent sections describe each function code in detail.

FUNCTION CODE		MODBUS DEFINITION	GE MULTILIN DEFINITION
HEX	DEC		
03	3	Read Holding Registers	Read Actual Values or Settings
04	4	Read Holding Registers	Read Actual Values or Settings
05	5	Force Single Coil	Execute Operation
06	6	Preset Single Register	Store Single Setting
10	16	Preset Multiple Registers	Store Multiple Settings

B.2.2 READ ACTUAL VALUES OR SETTINGS (FUNCTION CODE 03/04H)

This function code allows the master to read one or more consecutive data registers (actual values or settings) from a relay. Data registers are always 16 bit (two byte) values transmitted with high order byte first. The maximum number of registers that can be read in a single packet is 125. See the Modbus Memory Map table for exact details on the data registers.

Since some PLC implementations of Modbus[®] only support one of function codes 03h and 04h, the relay interpretation allows either function code to be used for reading one or more consecutive data registers. The data starting address will determine the type of data being read. Function codes 03h and 04h are therefore identical.

The following table shows the format of the master and slave packets. The example shows a master device requesting 3 register values starting at address 4050h from slave device 11h (17 decimal); the slave device responds with the values 40, 300, and 0 from registers 4050h, 4051h, and 4052h, respectively.

Table B-3: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	04
DATA STARTING ADDRESS - high	40
DATA STARTING ADDRESS - low	50
NUMBER OF REGISTERS - high	00
NUMBER OF REGISTERS - low	03
CRC - low	A7
CRC - high	4A

SLAVE RESPONSE		
PACKET FORMAT	EXAMPLE (HEX)	
SLAVE ADDRESS	11	
FUNCTION CODE	04	
BYTE COUNT	06	
DATA #1 - high	00	
DATA #1 - low	28	
DATA #2 - high	01	
DATA #2 - low	2C	
DATA #3 - high	00	
DATA #3 - low	00	
CRC - low	0D	
CRC - high	60	

B.2.3 EXECUTE OPERATION (FUNCTION CODE 05H)

This function code allows the master to perform various operations in the relay. Available operations are shown in the Summary of Operation Codes table below.

The following table shows the format of the master and slave packets. The example shows a master device requesting the slave device 11H (17 dec) to perform a reset. The high and low Code Value bytes always have the values "FF" and "00" respectively and are a remnant of the original Modbus[®] definition of this function code.

Table B-4: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION		
PACKET FORMAT	EXAMPLE (HEX)	
SLAVE ADDRESS	11	
FUNCTION CODE	05	
OPERATION CODE - high	00	
OPERATION CODE - low	01	
CODE VALUE - high	FF	
CODE VALUE - low	00	
CRC - low	DF	
CRC - high	6A	

SLAVE RESPONSE		
PACKET FORMAT	EXAMPLE (HEX)	
SLAVE ADDRESS	11	
FUNCTION CODE	05	
OPERATION CODE - high	00	
OPERATION CODE - low	01	
CODE VALUE - high	FF	
CODE VALUE - low	00	
CRC - low	DF	
CRC - high	6A	

Table B-5: SUMMARY OF OPERATION CODES FOR FUNCTION 05H

OPERATION CODE (HEX)	DEFINITION	DESCRIPTION
0000	NO OPERATION	Does not do anything.
0001	RESET	Performs the same function as the faceplate RESET key.
0005	CLEAR EVENT RECORDS	Performs the same function as the faceplate CLEAR EVENT RECORDS menu command.
0006	CLEAR OSCILLOGRAPHY	Clears all oscillography records.
1000 to 101F	VIRTUAL IN 1-32 ON/OFF	Sets the states of Virtual Inputs 1 to 32 either "ON" or "OFF".

B.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H)

This function code allows the master to modify the contents of a single setting register in an relay. Setting registers are always 16 bit (two byte) values transmitted high order byte first. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051h to slave device 11h (17 dec).

Table B-6: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION		
PACKET FORMAT	EXAMPLE (HEX)	
SLAVE ADDRESS	11	
FUNCTION CODE	06	
DATA STARTING ADDRESS - high	40	
DATA STARTING ADDRESS - low	51	
DATA - high	00	
DATA - low	C8	
CRC - low	CE	
CRC - high	DD	

SLAVE RESPONSE				
PACKET FORMAT	EXAMPLE (HEX)			
SLAVE ADDRESS	11			
FUNCTION CODE	06			
DATA STARTING ADDRESS - high	40			
DATA STARTING ADDRESS - low	51			
DATA - high	00			
DATA - low	C8			
CRC - low	CE			
CRC - high	DD			

B.2.5 STORE MULTIPLE SETTINGS (FUNCTION CODE 10H)

This function code allows the master to modify the contents of a one or more consecutive setting registers in a relay. Setting registers are 16-bit (two byte) values transmitted high order byte first. The maximum number of setting registers that can be stored in a single packet is 60. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051h, and the value 1 at memory map address 4052h to slave device 11h (17 decimal).

Table B-7: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	10
DATA STARTING ADDRESS - hi	40
DATA STARTING ADDRESS - Io	51
NUMBER OF SETTINGS - hi	00
NUMBER OF SETTINGS - Io	02
BYTE COUNT	04
DATA #1 - high order byte	00
DATA #1 - low order byte	C8
DATA #2 - high order byte	00
DATA #2 - low order byte	01
CRC - low order byte	12
CRC - high order byte	62

SLAVE RESPONSE					
PACKET FORMAT	EXMAPLE (HEX)				
SLAVE ADDRESS	11				
FUNCTION CODE	10				
DATA STARTING ADDRESS - hi	40				
DATA STARTING ADDRESS - Io	51				
NUMBER OF SETTINGS - hi	00				
NUMBER OF SETTINGS - Io	02				
CRC - lo	07				
CRC - hi	64				

B.2.6 EXCEPTION RESPONSES

Programming or operation errors usually happen because of illegal data in a packet. These errors result in an exception response from the slave. The slave detecting one of these errors sends a response packet to the master with the high order bit of the function code set to 1.

The following table shows the format of the master and slave packets. The example shows a master device sending the unsupported function code 39h to slave device 11.

Table B-8: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	39
CRC - low order byte	CD
CRC - high order byte	F2

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	B9
ERROR CODE	01
CRC - low order byte	93
CRC - high order byte	95

a) INTRODUCTION

The UR relay has a generic file transfer facility, meaning that you use the same method to obtain all of the different types of files from the unit. The Modbus registers that implement file transfer are found in the "Modbus File Transfer (Read/Write)" and "Modbus File Transfer (Read Only)" modules, starting at address 3100 in the Modbus Memory Map. To read a file from the UR relay, use the following steps:

- Write the filename to the "Name of file to read" register using a write multiple registers command. If the name is shorter than 80 characters, you may write only enough registers to include all the text of the filename. Filenames are not case sensitive.
- 2. Repeatedly read all the registers in "Modbus File Transfer (Read Only)" using a read multiple registers command. It is not necessary to read the entire data block, since the UR relay will remember which was the last register you read. The "position" register is initially zero and thereafter indicates how many bytes (2 times the number of registers) you have read so far. The "size of..." register indicates the number of bytes of data remaining to read, to a maximum of 244.
- 3. Keep reading until the "size of..." register is smaller than the number of bytes you are transferring. This condition indicates end of file. Discard any bytes you have read beyond the indicated block size.
- 4. If you need to re-try a block, read only the "size of.." and "block of data", without reading the position. The file pointer is only incremented when you read the position register, so the same data block will be returned as was read in the previous operation. On the next read, check to see if the position is where you expect it to be, and discard the previous block if it is not (this condition would indicate that the UR relay did not process your original read request).

The UR relay retains connection-specific file transfer information, so files may be read simultaneously on multiple Modbus connections.

b) OTHER PROTOCOLS

All the files available via Modbus may also be retrieved using the standard file transfer mechanisms in other protocols (for example, TFTP or MMS).

c) COMTRADE, OSCILLOGRAPHY, AND DATA LOGGER FILES

Oscillography and data logger files are formatted using the COMTRADE file format per IEEE PC37.111 Draft 7c (02 September 1997). The files may be obtained in either text or binary COMTRADE format.

d) READING OSCILLOGRAPHY FILES

Familiarity with the oscillography feature is required to understand the following description. Refer to the Oscillography section in Chapter 5 for additional details.

The Oscillography Number of Triggers register is incremented by one every time a new oscillography file is triggered (captured) and cleared to zero when oscillography data is cleared. When a new trigger occurs, the associated oscillography file is assigned a file identifier number equal to the incremented value of this register; the newest file number is equal to the Oscillography_Number_of_Triggers register. This register can be used to determine if any new data has been captured by periodically reading it to see if the value has changed; if the number has increased then new data is available.

The Oscillography Number of Records register specifies the maximum number of files (and the number of cycles of data per file) that can be stored in memory of the relay. The Oscillography Available Records register specifies the actual number of files that are stored and still available to be read out of the relay.

Writing "Yes" (i.e. the value 1) to the Oscillography Clear Data register clears oscillography data files, clears both the Oscillography Number of Triggers and Oscillography Available Records registers to zero, and sets the Oscillography Last Cleared Date to the present date and time.

To read binary COMTRADE oscillography files, read the following filenames:

OSCnnnn.CFG and OSCnnn.DAT

Replace "nnn" with the desired oscillography trigger number. For ASCII format, use the following file names

OSCAnnnn.CFG and OSCAnnn.DAT

e) READING DATA LOGGER FILES

Familiarity with the data logger feature is required to understand this description. Refer to the Data Logger section of Chapter 5 for details. To read the entire data logger in binary COMTRADE format, read the following files.

datalog.cfg and datalog.dat

To read the entire data logger in ASCII COMTRADE format, read the following files.

dataloga.cfg and dataloga.dat

To limit the range of records to be returned in the COMTRADE files, append the following to the filename before writing it:

- To read from a specific time to the end of the log: <space> startTime
- To read a specific range of records: <space> startTime <space> endTime
- Replace <startTime> and <endTime> with Julian dates (seconds since Jan. 1 1970) as numeric text.

f) READING EVENT RECORDER FILES

To read the entire event recorder contents in ASCII format (the only available format), use the following filename:

EVT.TXT

To read from a specific record to the end of the log, use the following filename:

EVTnnn.TXT (replace nnn with the desired starting record number)

To read from a specific record to another specific record, use the following filename:

EVT.TXT xxxxx yyyyy (replace xxxxx with the starting record number and yyyyy with the ending record number)

B.3.2 MODBUS PASSWORD OPERATION

The COMMAND password is set up at memory location 4000. Storing a value of "0" removes COMMAND password protection. When reading the password setting, the encrypted value (zero if no password is set) is returned. COMMAND security is required to change the COMMAND password. Similarly, the SETTING password is set up at memory location 4002. These are the same settings and encrypted values found in the **SETTINGS** \Rightarrow **PRODUCT SETUP** $\Rightarrow \oplus$ **PASSWORD SECURITY** menu via the keypad. Enabling password security for the faceplate display will also enable it for Modbus, and vice-versa.

To gain COMMAND level security access, the COMMAND password must be entered at memory location 4008. To gain SETTING level security access, the SETTING password must be entered at memory location 400A. The entered SETTING password must match the current SETTING password setting, or must be zero, to change settings or download firmware.

COMMAND and SETTING passwords each have a 30-minute timer. Each timer starts when you enter the particular password, and is re-started whenever you "use" it. For example, writing a setting re-starts the SETTING password timer and writing a command register or forcing a coil re-starts the COMMAND password timer. The value read at memory location 4010 can be used to confirm whether a COMMAND password is enabled or disabled (0 for Disabled). The value read at memory location 4011 can be used to confirm whether a SETTING password is enabled or disabled.

COMMAND or SETTING password security access is restricted to the particular port or particular TCP/IP connection on which the entry was made. Passwords must be entered when accessing the relay through other ports or connections, and the passwords must be re-entered after disconnecting and re-connecting on TCP/IP.

Table B-9: MODBUS MEMORY MAP (Sheet 1 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Product I	Information (Read Only)					
0000	UR Product Type	0 to 65535		1	F001	0
0002	Product Version	0 to 655.35		0.01	F001	1
Product I	Information (Read Only Written by Factory)				l.	
0010	Serial Number				F203	"0"
0020	Manufacturing Date	0 to 4294967295		1	F050	0
0022	Modification Number	0 to 65535		1	F001	0
0040	Order Code				F204	"Order Code x"
0090	Ethernet MAC Address				F072	0
0093	Reserved (13 items)				F001	0
00A0	CPU Module Serial Number				F203	(none)
00B0	CPU Supplier Serial Number				F203	(none)
00C0	Ethernet Sub Module Serial Number (8 items)				F203	(none)
Self Test	Targets (Read Only)					
0200	Self Test States (2 items)	0 to 4294967295	0	1	F143	0
Front Par	nel (Read Only)					
0204	LED Column x State (10 items)	0 to 65535		1	F501	0
0220	Display Message				F204	(none)
0248	Last Key Pressed	0 to 47		1	F530	0 (None)
Keypress	Emulation (Read/Write)		•	•		
0280	Simulated keypress write zero before each keystroke	0 to 42		1	F190	0 (No key use
						between réal keys)
	put Commands (Read/Write Command) (32 modules)					
0400	Virtual Input 1 State	0 to 1		1	F108	0 (Off)
0401	Repeated for module number 2					
0402	Repeated for module number 3					
0403	Repeated for module number 4					
0404	Repeated for module number 5					
0405	Repeated for module number 6					
0406	Repeated for module number 7					
0407	Repeated for module number 8					
0408	Repeated for module number 9					
0409	Repeated for module number 10					
040A	Repeated for module number 11					
040B	Repeated for module number 12					
040C	Repeated for module number 13					
040D	Repeated for module number 14					
040E	Repeated for module number 15					
040F	Repeated for module number 16					
0410	Repeated for module number 17					
0411	Repeated for module number 18					
0412	Repeated for module number 19					
0413	Repeated for module number 20					
0414	Repeated for module number 21					
0415	Repeated for module number 22					
0416	Repeated for module number 23					
0417	Repeated for module number 24					
0418	Repeated for module number 25					
0419	Repeated for module number 26					
041A	Repeated for module number 27					
041B	Repeated for module number 28					

Table B-9: MODBUS MEMORY MAP (Sheet 2 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
041C	Repeated for module number 29					
041D	Repeated for module number 30					
041E	Repeated for module number 31					
041F	Repeated for module number 32					
Digital Co	ounter States (Read Only Non-Volatile) (8 modules)		•	•	<u> </u>	
0800	Digital Counter 1 Value	-2147483647 to 2147483647		1	F004	0
0802	Digital Counter 1 Frozen	-2147483647 to 2147483647		1	F004	0
0804	Digital Counter 1 Frozen Time Stamp	0 to 4294967295		1	F050	0
0806	Digital Counter 1 Frozen Time Stamp us	0 to 4294967295		1	F003	0
0808	Repeated for module number 2					
0810	Repeated for module number 3					
0818	Repeated for module number 4					
0820	Repeated for module number 5					
0828	Repeated for module number 6					
0830	Repeated for module number 7					
0838	Repeated for module number 8					
FlexState	s (Read Only)					
0900	FlexState Bits (16 items)	0 to 65535		1	F001	0
Element	States (Read Only)		L			
1000	Element Operate States (64 items)	0 to 65535		1	F502	0
User Dis	plays Actuals (Read Only)					
1080	Formatted user-definable displays (16 items)				F200	(none)
Modbus	User Map Actuals (Read Only)		L			,
1200	User Map Values (256 items)	0 to 65535	T	1 1	F001	0
Element	Targets (Read Only)		<u> </u>			-
14C0	Target Sequence	0 to 65535		1	F001	0
14C1	Number of Targets	0 to 65535		1	F001	0
Element 1	Targets (Read/Write)		L			
14C2	Target to Read	0 to 65535		1	F001	0
Element 1	Targets (Read Only)		L			
14C3	Target Message				F200	<i>""</i>
Digital I/C	O States (Read Only)					
1500	Contact Input States (6 items)	0 to 65535		1	F500	0
1508	Virtual Input States (2 items)	0 to 65535		1	F500	0
1510	Contact Output States (4 items)	0 to 65535		1	F500	0
1518	Contact Output Current States (4 items)	0 to 65535		1	F500	0
1520	Contact Output Voltage States (4 items)	0 to 65535		1	F500	0
1528	Virtual Output States (4 items)	0 to 65535		1	F500	0
1530	Contact Output Detectors (4 items)	0 to 65535		1	F500	0
Remote I	nput/Output States (Read Only)		•			
1540	Remote Device 1 States	0 to 65535		1	F500	0
1542	Remote Input States (4 items)	0 to 65535		1	F500	0
1550	Remote Devices Online	0 to 1		1	F126	0 (No)
Remote I	Device Status (Read Only) (16 modules)					
1551	Remote Device 1 StNum	0 to 4294967295		1	F003	0
1553	Remote Device 1 SqNum	0 to 4294967295		1	F003	0
1555	Repeated for module number 2		1		-	
1559	Repeated for module number 3					
155D	Repeated for module number 4		1			
1561	Repeated for module number 5					
1565	Repeated for module number 6					
1569	Repeated for module number 7		1			
156D	Repeated for module number 8		1			
1000	topoutou for module number o					

Table B-9: MODBUS MEMORY MAP (Sheet 3 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT					
1571	Repeated for module number 9										
1575	Repeated for module number 10										
1579	Repeated for module number 11										
157D	Repeated for module number 12										
1581	Repeated for module number 13										
1585	Repeated for module number 14										
1589	Repeated for module number 15										
158D	Repeated for module number 16										
Platform	Platform Direct Input/Output States (Read Only)										
15C0	Direct Input States (6 items)	0 to 65535		1	F500	0					
15C8	Direct Outputs Average Message Return Time 1	0 to 65535	ms	1	F001	0					
15C9	Direct Outputs Average Message Return Time 2	0 to 65535	ms	1	F001	0					
15CA	Direct Inputs/Outputs Unreturned Message Count - Ch. 1	0 to 65535		1	F001	0					
15CB	Direct Inputs/Outputs Unreturned Message Count - Ch. 2	0 to 65535		1	F001	0					
15D0	Direct Device States	0 to 65535		1	F500	0					
15D1	Reserved	0 to 65535		1	F001	0					
15D2	Direct Inputs/Outputs CRC Fail Count 1	0 to 65535		1	F001	0					
15D3	Direct Inputs/Outputs CRC Fail Count 2	0 to 65535		1	F001	0					
	Fibre Channel Status (Read/Write)			•		-					
1610	Ethernet Primary Fibre Channel Status	0 to 2		1	F134	0 (Fail)					
1611	Ethernet Secondary Fibre Channel Status	0 to 2		1	F134	0 (Fail)					
	ger Actuals (Read Only)			•		5 (* 5)					
1618	Data Logger Channel Count	0 to 16	CHNL	1	F001	0					
1619	Time of oldest available samples	0 to 4294967295	seconds	1	F050	0					
161B	Time of newest available samples	0 to 4294967295	seconds	1	F050	0					
161D	Data Logger Duration	0 to 999.9	DAYS	0.1	F001	0					
	Directional Power Actuals (Read Only) (2 modules)	0 10 000.0	27.1.0	.		Ţ.					
1680	Sensitive Directional Power 1 Power	-2147483647 to 2147483647	W	1	F060	0					
1682	Repeated for module number 2										
Frequenc	cy Rate of Change Actuals (Read Only) (4 modules)										
16E0	Frequency Rate of Change	-327.67 to 327.67	Hz/s	0.01	F002	0					
16E1	Rate of Change 1 reserved (3 items)	0 to 65535		1	F001	0					
16E4	Repeated for module number 2										
16E8	Repeated for module number 3										
16EC	Repeated for module number 4										
Source C	current (Read Only) (6 modules)										
1800	Phase A Current RMS	0 to 999999.999	Α	0.001	F060	0					
1802	Phase B Current RMS	0 to 999999.999	Α	0.001	F060	0					
1804	Phase C Current RMS	0 to 999999.999	Α	0.001	F060	0					
1806	Neutral Current RMS	0 to 999999.999	Α	0.001	F060	0					
1808	Phase A Current Magnitude	0 to 999999.999	Α	0.001	F060	0					
180A	Phase A Current Angle	-359.9 to 0	degrees	0.1	F002	0					
180B	Phase B Current Magnitude	0 to 999999.999	Α	0.001	F060	0					
180D	Phase B Current Angle	-359.9 to 0	degrees	0.1	F002	0					
180E	Phase C Current Magnitude	0 to 999999.999	Α	0.001	F060	0					
1810	Phase C Current Angle	-359.9 to 0	degrees	0.1	F002	0					
1811	Neutral Current Magnitude	0 to 999999.999	Α	0.001	F060	0					
1813	Neutral Current Angle	-359.9 to 0	degrees	0.1	F002	0					
1814	Ground Current RMS	0 to 999999.999	Α	0.001	F060	0					
1816	Ground Current Magnitude	0 to 999999.999	Α	0.001	F060	0					
1818	Ground Current Angle	-359.9 to 0	degrees	0.1	F002	0					
1819	Zero Sequence Current Magnitude	0 to 999999.999	A	0.001	F060	0					
181B	Zero Sequence Current Angle	-359.9 to 0	degrees	0.1	F002	0					
		555.5 to 5	209,000	.	. 502	ı					

Table B-9: MODBUS MEMORY MAP (Sheet 4 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
181C	Positive Sequence Current Magnitude	0 to 999999.999	Α	0.001	F060	0
181E	Positive Sequence Current Angle	-359.9 to 0	degrees	0.1	F002	0
181F	Negative Sequence Current Magnitude	0 to 999999.999	Α	0.001	F060	0
1821	Negative Sequence Current Angle	-359.9 to 0	degrees	0.1	F002	0
1822	Differential Ground Current Magnitude	0 to 999999.999	Α	0.001	F060	0
1824	Differential Ground Current Angle	-359.9 to 0	degrees	0.1	F002	0
1825	Reserved (27 items)				F001	0
1840	Repeated for module number 2					
1880	Repeated for module number 3					
18C0	Repeated for module number 4					
1900	Repeated for module number 5					
1940	Repeated for module number 6					
Source V	oltage (Read Only) (6 modules)		•			
1A00	Phase AG Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A02	Phase BG Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A04	Phase CG Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A06	Phase AG Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A08	Phase AG Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A09	Phase BG Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A0B	Phase BG Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A0C	Phase CG Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A0E	Phase CG Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A0F	Phase AB or AC Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A11	Phase BC or BA Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A13	Phase CA or CB Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A15	Phase AB or AC Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A17	Phase AB or AC Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A18	Phase BC or BA Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A1A	Phase BC or BA Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A1B	Phase CA or CB Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A1D	Phase CA or CB Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A1E	Auxiliary Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A20	Auxiliary Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A22	Auxiliary Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A23	Zero Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A25	Zero Sequence Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A26	Positive Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A28	Positive Sequence Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A29	Negative Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A2B	Negative Sequence Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A2C	Reserved (20 items)				F001	0
1A40	Repeated for module number 2					
1A80	Repeated for module number 3					
1AC0	Repeated for module number 4					
1B00	Repeated for module number 5					
1B40	Repeated for module number 6					
	ower (Read Only) (6 modules)			l		
1C00	Three Phase Real Power	-1000000000000 to 1000000000000	W	0.001	F060	0
1C02	Phase A Real Power	-1000000000000 to	W	0.001	F060	0
1C04	Phase B Real Power	1000000000000 -10000000000000000000	W	0.001	F060	0
1C06	Phase C Real Power	100000000000 -10000000000000 to	W	0.001	F060	0
		100000000000				

Table B-9: MODBUS MEMORY MAP (Sheet 5 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
1C08	Three Phase Reactive Power	-1000000000000 to 1000000000000	var	0.001	F060	0
1C0A	Phase A Reactive Power	-1000000000000 to 1000000000000	var	0.001	F060	0
1C0C	Phase B Reactive Power	-1000000000000 to 1000000000000	var	0.001	F060	0
1C0E	Phase C Reactive Power	-1000000000000 to 1000000000000	var	0.001	F060	0
1C10	Three Phase Apparent Power	-1000000000000 to 1000000000000	VA	0.001	F060	0
1C12	Phase A Apparent Power	-1000000000000 to 1000000000000	VA	0.001	F060	0
1C14	Phase B Apparent Power	-100000000000 to 1000000000000	VA	0.001	F060	0
1C16	Phase C Apparent Power	-1000000000000 to 1000000000000	VA	0.001	F060	0
1C18	Three Phase Power Factor	-0.999 to 1		0.001	F013	0
1C19	Phase A Power Factor	-0.999 to 1		0.001	F013	0
1C1A	Phase B Power Factor	-0.999 to 1		0.001	F013	0
1C1B	Phase C Power Factor	-0.999 to 1		0.001	F013	0
1C1C	Reserved (4 items)				F001	0
1C20	Repeated for module number 2					
1C40	Repeated for module number 3					
1C60	Repeated for module number 4					
1C80	Repeated for module number 5					
1CA0	Repeated for module number 6					
	nergy (Read Only Non-Volatile) (6 modules)		I	1		
1D00	Positive Watthour	0 to 1000000000000	Wh	0.001	F060	0
1D02	Negative Watthour	0 to 100000000000	Wh	0.001	F060	0
1D04	Positive Varhour	0 to 100000000000	varh	0.001	F060	0
1D06	Negative Varhour	0 to 100000000000	varh	0.001	F060	0
1D08	Reserved (8 items)			0.001	F001	0
1D10	Repeated for module number 2				1001	•
1D20	Repeated for module number 3					
1D30	Repeated for module number 3					
1D30	Repeated for module number 5					
1D40	Repeated for module number 6					
	commands (Read/Write Command)			<u> </u>		
1D60	Energy Clear Command	0 to 1		1	F126	0 (No)
	requency (Read Only) (6 modules)	0 t0 1		_ '	F120	0 (110)
		0.400	11-	0.04	F004	0
1D80	Frequency	2 to 90	Hz	0.01	F001	0
1D81	Repeated for module number 2					
1D82	Repeated for module number 3					
1D83	Repeated for module number 4					
1D84	Repeated for module number 5					
1D85	Repeated for module number 6					
	emand (Read Only) (6 modules)					
1E00	Demand la	0 to 999999.999	A	0.001	F060	0
1E02	Demand Ib	0 to 999999.999	Α	0.001	F060	0
1E04	Demand Ic	0 to 999999.999	Α	0.001	F060	0
1E06	Demand Watt	0 to 999999.999	W	0.001	F060	0
1E08	Demand Var	0 to 999999.999	var	0.001	F060	0
1E0A	Demand Va	0 to 999999.999	VA	0.001	F060	0
1E0C	Reserved (4 items)				F001	0
1E10	Repeated for module number 2					
1E20	Repeated for module number 3					
1E30	Repeated for module number 4					
	•	•	•	•	•	

Table B-9: MODBUS MEMORY MAP (Sheet 6 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
1E40	Repeated for module number 5					
1E50	Repeated for module number 6					
Source D	emand Peaks (Read Only Non-Volatile) (6 modules)					
1E80	SRC 1 Demand Ia Max	0 to 999999.999	Α	0.001	F060	0
1E82	SRC 1 Demand Ia Max Date	0 to 4294967295		1	F050	0
1E84	SRC 1 Demand Ib Max	0 to 999999.999	Α	0.001	F060	0
1E86	SRC 1 Demand Ib Max Date	0 to 4294967295		1	F050	0
1E88	SRC 1 Demand Ic Max	0 to 999999.999	Α	0.001	F060	0
1E8A	SRC 1 Demand Ic Max Date	0 to 4294967295		1	F050	0
1E8C	SRC 1 Demand Watt Max	0 to 999999.999	W	0.001	F060	0
1E8E	SRC 1 Demand Watt Max Date	0 to 4294967295		1	F050	0
1E90	SRC 1 Demand Var	0 to 999999.999	var	0.001	F060	0
1E92	SRC 1 Demand Var Max Date	0 to 4294967295		1	F050	0
1E94	SRC 1 Demand Va Max	0 to 999999.999	VA	0.001	F060	0
1E96	SRC 1 Demand Va Max Date	0 to 4294967295		1	F050	0
1E98	Reserved (8 items)				F001	0
1EA0	Repeated for module number 2					
1EC0	Repeated for module number 3					
1EE0	Repeated for module number 4					
1F00	Repeated for module number 5					
1F20	Repeated for module number 6					
Password	ds Unauthorized Access (Read/Write Command)		·	I.		
2230	Reset Unauthorized Access	0 to 1		1	F126	0 (No)
Synchroc	check Actuals (Read Only) (2 modules)			L		
2400	Synchrocheck 1 Delta Voltage	-1000000000000 to 1000000000000	V	1	F060	0
2402	Synchrocheck 1 Delta Frequency	0 to 655.35	Hz	0.01	F001	0
2403	Synchrocheck 1 Delta Phase	0 to 359.9	degrees	0.1	F001	0
2404	Repeated for module number 2					
Expanded	d FlexStates (Read Only)					
2B00	FlexStates, one per register (256 items)	0 to 1		1	F108	0 (Off)
Expanded	d Digital Input/Output states (Read Only)					
2D00	Contact Input States, one per register (96 items)	0 to 1		1	F108	0 (Off)
2D80	Contact Output States, one per register (64 items)	0 to 1		1	F108	0 (Off)
2E00	Virtual Output States, one per register (64 items)	0 to 1		1	F108	0 (Off)
Expanded	Remote Input/Output Status (Read Only)			•	•	
2F00	Remote Device States, one per register (16 items)	0 to 1		1	F155	0 (Offline)
2F80	Remote Input States, one per register (64 items)	0 to 1		1	F108	0 (Off)
Oscillogr	aphy Values (Read Only)			•	•	
3000	Oscillography Number of Triggers	0 to 65535		1	F001	0
3001	Oscillography Available Records	0 to 65535		1	F001	0
3002	Oscillography Last Cleared Date	0 to 400000000		1	F050	0
3004	Oscillography Number Of Cycles Per Record	0 to 65535		1	F001	0
Oscillogr	aphy Commands (Read/Write Command)		•			
3005	Oscillography Force Trigger	0 to 1		1	F126	0 (No)
3011	Oscillography Clear Data	0 to 1		1	F126	0 (No)
Modbus F	File Transfer (Read/Write)					
3100	Name of file to read				F204	(none)
Modbus F	File Transfer (Read Only)					
3200	Character position of current block within file	0 to 4294967295		1	F003	0
3202	Size of currently-available data block	0 to 65535		1	F001	0
3203	Block of data from requested file (122 items)	0 to 65535		1	F001	0
Event Re	corder (Read Only)					
3400	Events Since Last Clear	0 to 4294967295		1	F003	0
			I			-

Table B-9: MODBUS MEMORY MAP (Sheet 7 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
3402	Number of Available Events	0 to 4294967295		1	F003	0
3404	Event Recorder Last Cleared Date	0 to 4294967295		1	F050	0
Event Re	corder (Read/Write Command)					
3406	Event Recorder Clear Command	0 to 1		1	F126	0 (No)
DCMA In	put Values (Read Only) (24 modules)					
34C0	DCMA Inputs 1 Value	-9999.999 to 9999.999		0.001	F004	0
34C2	Repeated for module number 2					
34C4	Repeated for module number 3					
34C6	Repeated for module number 4					
34C8	Repeated for module number 5					
34CA	Repeated for module number 6					
34CC	Repeated for module number 7					
34CE	Repeated for module number 8					
34D0	Repeated for module number 9					
34D2	Repeated for module number 10					
34D4	Repeated for module number 11					
34D6	Repeated for module number 12					
34D8	Repeated for module number 13					
34DA	Repeated for module number 14					
34DC	Repeated for module number 15					
34DE	Repeated for module number 16					
34E0	Repeated for module number 17					
34E2	Repeated for module number 18					
34E4	Repeated for module number 19					
34E6	Repeated for module number 20					
34E8	Repeated for module number 21					
34EA	Repeated for module number 22					
34EC	Repeated for module number 23					
34EE	Repeated for module number 24					
	t Values (Read Only) (48 modules)		1 00	1 .	F222	
34F0	RTD Inputs 1 Value	-32768 to 32767	°C	1	F002	0
34F1	Repeated for module number 2					
34F2	Repeated for module number 3					
34F3 34F4	Repeated for module number 4					
34F4 34F5	Repeated for module number 5					
34F5 34F6	Repeated for module number 6					
	Repeated for module number 7					
34F7 34F8	Repeated for module number 8Repeated for module number 9					
34F8 34F9	Repeated for module number 10			-		
34F9 34FA	Repeated for module number 10			-		
34FB	Repeated for module number 12					
34FC	Repeated for module number 12					
34FD	Repeated for module number 14					
34FE	Repeated for module number 15					
34FF	Repeated for module number 16					
3500	Repeated for module number 17					
3501	Repeated for module number 18					
3502	Repeated for module number 19					
3503	Repeated for module number 20				1	
3504	Repeated for module number 21					
3505	Repeated for module number 22				1	
3506	Repeated for module number 23				1	
3507	Repeated for module number 24					
					L	

Table B-9: MODBUS MEMORY MAP (Sheet 8 of 35)

ADDR I	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
3508 .	Repeated for module number 25					
	Repeated for module number 26					
350A .	Repeated for module number 27					
350B .	Repeated for module number 28					
350C .	Repeated for module number 29					
350D .	Repeated for module number 30					
350E .	Repeated for module number 31					
350F .	Repeated for module number 32					
3510 .	Repeated for module number 33					
3511 .	Repeated for module number 34					
3512 .	Repeated for module number 35					
3513 .	Repeated for module number 36					
3514 .	Repeated for module number 37					
3515 .	Repeated for module number 38					
3516 .	Repeated for module number 39					
3517 .	Repeated for module number 40					
3518 .	Repeated for module number 41					
3519 .	Repeated for module number 42					
351A .	Repeated for module number 43					
351B .	Repeated for module number 44					
351C .	Repeated for module number 45					
351D .	Repeated for module number 46					
351E .	Repeated for module number 47					
351F .	Repeated for module number 48					
Expanded	Direct Input/Output Status (Read Only)		•			
3560 I	Direct Device States, one per register (8 items)	0 to 1		1	F155	0 (Offline)
3570	Direct Input States, one per register (96 items)	0 to 1		1	F108	0 (Off)
Passwords	s (Read/Write Command)					
4000	Command Password Setting	0 to 4294967295		1	F003	0
Passwords	s (Read/Write Setting)					
4002	Setting Password Setting	0 to 4294967295		1	F003	0
Passwords	s (Read/Write)					
4008	Command Password Entry	0 to 4294967295		1	F003	0
400A S	Setting Password Entry	0 to 4294967295		1	F003	0
Passwords	s (Read Only)					
4010	Command Password Status	0 to 1		1	F102	0 (Disabled)
	Setting Password Status	0 to 1		1	F102	0 (Disabled)
User Displa	ay Invoke (Read/Write Setting)					
4040 I	Invoke and Scroll Through User Display Menu Operand	0 to 65535		1	F300	0
LED Test (F	Read/Write Setting)					
4048 l	LED Test Function	0 to 1		1	F102	0 (Disabled)
4049 l						
	LED Test Control	0 to 65535		1	F300	0
	LED Test Control es (Read/Write Setting)	0 to 65535		1		•
4050 F	LED Test Control es (Read/Write Setting) Flash Message Time	0 to 65535 0.5 to 10			F001	10
4050 F	LED Test Control es (Read/Write Setting)	0 to 65535		1		
4050 F 4051 E 4052 F	LED Test Control S (Read/Write Setting) Flash Message Time Default Message Timeout Default Message Intensity	0 to 65535 0.5 to 10 10 to 900 0 to 3	 s	0.1	F001 F001 F101	10 300 0 (25%)
4050 F 4051 F 4052 F 4053 S	LED Test Control es (Read/Write Setting) Flash Message Time Default Message Timeout Default Message Intensity Screen Saver Feature	0 to 65535 0.5 to 10 10 to 900 0 to 3 0 to 1	 S S	1 0.1 1 1	F001 F001 F101 F102	10 300 0 (25%) 0 (Disabled)
4050 F 4051 F 4052 F 4053 S 4054 S	LED Test Control es (Read/Write Setting) Flash Message Time Default Message Timeout Default Message Intensity Screen Saver Feature Screen Saver Wait Time	0 to 65535 0.5 to 10 10 to 900 0 to 3	S S	0.1	F001 F001 F101	10 300 0 (25%) 0 (Disabled) 30
4050 F 4051 I 4052 I 4053 S 4054 S 4055 (LED Test Control es (Read/Write Setting) Flash Message Time Default Message Timeout Default Message Intensity Screen Saver Feature Screen Saver Wait Time Current Cutoff Level	0 to 65535 0.5 to 10 10 to 900 0 to 3 0 to 1 1 to 65535 0.002 to 0.02	s s s min pu	1 0.1 1 1	F001 F001 F101 F102 F001	10 300 0 (25%) 0 (Disabled) 30 20
4050 F 4051 F 4052 F 4053 S 4054 S 4055 G 4056 N	LED Test Control ses (Read/Write Setting) Flash Message Time Default Message Intensity Default Message Intensity Screen Saver Feature Screen Saver Wait Time Current Cutoff Level Voltage Cutoff Level	0 to 65535 0.5 to 10 10 to 900 0 to 3 0 to 1 1 to 65535	s s s min	1 0.1 1 1 1	F001 F001 F101 F102 F001	10 300 0 (25%) 0 (Disabled) 30
4050 F 4051 I 4052 I 4053 \$ 4054 \$ 4055 (4056)	LED Test Control es (Read/Write Setting) Flash Message Time Default Message Timeout Default Message Intensity Screen Saver Feature Screen Saver Wait Time Current Cutoff Level	0 to 65535 0.5 to 10 10 to 900 0 to 3 0 to 1 1 to 65535 0.002 to 0.02	s s s min pu	1 0.1 1 1 1 1 0.001	F001 F001 F101 F102 F001	10 300 0 (25%) 0 (Disabled) 30 20
4050 1 4051 1 4052 1 4053 3 4054 3 4055 0 4056 N	LED Test Control ses (Read/Write Setting) Flash Message Time Default Message Intensity Default Message Intensity Screen Saver Feature Screen Saver Wait Time Current Cutoff Level Voltage Cutoff Level	0 to 65535 0.5 to 10 10 to 900 0 to 3 0 to 1 1 to 65535 0.002 to 0.02	s s s min pu	1 0.1 1 1 1 1 0.001	F001 F001 F101 F102 F001	10 300 0 (25%) 0 (Disabled) 30 20
4050 1 4051 1 4052 1 4053 3 4054 3 4055 (4056) Communic	LED Test Control ss (Read/Write Setting) Flash Message Time Default Message Intensity Default Message Intensity Screen Saver Feature Screen Saver Wait Time Current Cutoff Level Voltage Cutoff Level sations (Read/Write Setting)	0 to 65535 0.5 to 10 10 to 900 0 to 3 0 to 1 1 to 65535 0.002 to 0.02 0.1 to 1	s s s min pu V	1 0.1 1 1 1 1 0.001 0.1	F001 F001 F101 F102 F001 F001	10 300 0 (25%) 0 (Disabled) 30 20 10

Table B-9: MODBUS MEMORY MAP (Sheet 9 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4083	RS485 Com1 Baud Rate	0 to 11		1	F112	8 (115200)
4084	RS485 Com1 Parity	0 to 2		1	F113	0 (None)
4085	RS485 Com2 Baud Rate	0 to 11		1	F112	8 (115200)
4086	RS485 Com2 Parity	0 to 2		1	F113	0 (None)
4087	IP Address	0 to 4294967295		1	F003	56554706
4089	IP Subnet Mask	0 to 4294967295		1	F003	4294966272
408B	Gateway IP Address	0 to 4294967295		1	F003	56554497
408D	Network Address NSAP				F074	0
4097	Default GSSE Update Time	1 to 60	s	1	F001	60
409A	DNP Port	0 to 4		1	F177	0 (NONE)
409B	DNP Address	0 to 65519		1	F001	1
409C	DNP Client Addresses (2 items)	0 to 4294967295		1	F003	0
40A0	TCP Port Number for the Modbus protocol	1 to 65535		1	F001	502
40A1	TCP/UDP Port Number for the DNP Protocol	1 to 65535		1	F001	20000
40A2	TCP Port Number for the IEC 61850 Protocol	1 to 65535		1	F001	102
40A3	TCP Port Number for the HTTP (Web Server) Protocol	1 to 65535		1	F001	80
40A4	Main UDP Port Number for the TFTP Protocol	1 to 65535		1	F001	69
40A5	Data Transfer UDP Port Numbers for the TFTP Protocol (zero means "automatic") (2 items)	0 to 65535		1	F001	0
40A7	DNP Unsolicited Responses Function	0 to 1		1	F102	0 (Disabled)
40A8	DNP Unsolicited Responses Timeout	0 to 60	S	1	F001	5
40A9	DNP Unsolicited Responses Max Retries	1 to 255		1	F001	10
40AA	DNP Unsolicited Responses Destination Address	0 to 65519		1	F001	1
40AB	Ethernet Operation Mode	0 to 1		1	F192	0 (Half-Duplex)
40AC	DNP User Map Function	0 to 1		1	F102	0 (Disabled)
40AD	DNP Number of Sources used in Analog points list	1 to 6		1	F001	1
40AE	DNP Current Scale Factor	0 to 8		1	F194	2 (1)
40AF	DNP Voltage Scale Factor	0 to 8		1	F194	2 (1)
40B0	DNP Power Scale Factor	0 to 8		1	F194	2 (1)
40B1	DNP Energy Scale Factor	0 to 8		1	F194	2 (1)
40B2	DNP Other Scale Factor	0 to 8		1	F194	2 (1)
40B3	DNP Current Default Deadband	0 to 65535		1	F001	30000
40B4	DNP Voltage Default Deadband	0 to 65535		1	F001	30000
40B5	DNP Power Default Deadband	0 to 65535		1	F001	30000
40B6	DNP Energy Default Deadband	0 to 65535		1	F001	30000
40B7	DNP Other Default Deadband	0 to 65535		1	F001	30000
40B8	DNP IIN Time Sync Bit Period	1 to 10080	min	1	F001	1440
40B9	DNP Message Fragment Size	30 to 2048		1	F001	240
40BA	DNP Client Address 3	0 to 4294967295		1	F003	0
40BC	DNP Client Address 4	0 to 4294967295		1	F003	0
40BE	DNP Client Address 5	0 to 4294967295		1	F003	0
40C0	DNP Communications Reserved (8 items)	0 to 1		1	F001	0
40C8	IEC 61850 Logical Device Name				F203	"IECDevice"
40D0	GSSE Function	0 to 1		1	F102	1 (Enabled)
40D1	Reserved (15 items)	0 to 1		1	F001	0
40E0	TCP Port Number for the IEC 60870-5-104 Protocol	1 to 65535		1	F001	2404
40E1	IEC 60870-5-104 Protocol Function	0 to 1		1	F102	0 (Disabled)
40E2	IEC 60870-5-104 Protocol Common Address of ASDU	0 to 65535		1	F001	0
40E3	IEC 60870-5-104 Protocol Cyclic Data Trans. Period	1 to 65535	S	1	F001	60
40E4	IEC 60870-5-104 Sources used in M_ME_NC_1 point list	1 to 6		1	F001	1
40E5	IEC 60870-5-104 Current Default Threshold	0 to 65535		1	F001	30000
40E6	IEC 60870-5-104 Voltage Default Threshold	0 to 65535		1	F001	30000
40E7	IEC 60870-5-104 Power Default Threshold	0 to 65535		1	F001	30000
40E8	IEC 60870-5-104 Energy Default Threshold	0 to 65535		1	F001	30000

Table B-9: MODBUS MEMORY MAP (Sheet 10 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
40E9	IEC 60870-5-104 Other Default Threshold	0 to 65535		1	F001	30000
40EA	IEC 60870-5-104 Client Address (5 items)	0 to 4294967295		1	F003	0
40FE	IEC 60870-5-104 Communications Reserved (2 items)	0 to 1		1	F001	0
4100	DNP Binary Input Block of 16 Points (58 items)	0 to 58		1	F197	0 (Not Used)
4140	DNP Object 1 Default Variation	1 to 2		1	F001	2
4141	DNP Object 2 Default Variation	1 to 2		1	F001	2
4142	DNP Object 20 Default Variation	0 to 3		1	F523	0 (1)
4143	DNP Object 21 Default Variation	0 to 3		1	F524	0 (1)
4144	DNP Object 22 Default Variation	0 to 3		1	F523	0 (1)
4145	DNP Object 23 Default Variation	0 to 3		1	F523	0 (1)
4146	DNP Object 30 Default Variation	1 to 5		1	F001	1
4147	DNP Object 32 Default Variation	0 to 5		1	F525	0 (1)
Simple No	etwork Time Protocol (Read/Write Setting)		•			
4168	Simple Network Time Protocol (SNTP) Function	0 to 1		1	F102	0 (Disabled)
4169	Simple Network Time Protocol (SNTP) Server IP Address	0 to 4294967295		1	F003	0
416B	Simple Network Time Protocol (SNTP) UDP Port Number	1 to 65535		1	F001	123
Data Log	ger Commands (Read/Write Command)			•		
4170	Data Logger Clear	0 to 1		1	F126	0 (No)
Data Log	ger (Read/Write Setting)					
4180	Data Logger Rate	0 to 7		1	F178	1 (1 min)
4181	Data Logger Channel Settings (16 items)				F600	0
Clock (Re	ead/Write Command)		L	ı		
41A0	Real Time Clock Set Time	0 to 235959		1	F050	0
Clock (Re	ead/Write Setting)		l			
41A2	SR Date Format	0 to 4294967295		1	F051	0
41A4	SR Time Format	0 to 4294967295		1	F052	0
41A6	IRIG-B Signal Type	0 to 2		1	F114	0 (None)
41A7	Clock Events Enable / Disable	0 to 1		1	F102	0 (Disabled)
	aphy (Read/Write Setting)		<u> </u>			
41C0	Oscillography Number of Records	1 to 64		1	F001	15
41C1	Oscillography Trigger Mode	0 to 1		1	F118	0 (Auto. Overwrite)
41C2	Oscillography Trigger Position	0 to 100	%	1	F001	50
41C3	Oscillography Trigger Source	0 to 65535		1	F300	0
41C4	Oscillography AC Input Waveforms	0 to 4		1	F183	2 (16 samples/cycle)
41D0	Oscillography Analog Channel n (16 items)	0 to 65535		1	F600	0
4200	Oscillography Digital Channel <i>n</i> (63 items)	0 to 65535		1	F300	0
Trip and	Alarm LEDs (Read/Write Setting)		L	ı		
4260	Trip LED Input FlexLogic Operand	0 to 65535		1	F300	0
4261	Alarm LED Input FlexLogic Operand	0 to 65535		1	F300	0
User Prog	grammable LEDs (Read/Write Setting) (48 modules)					
4280	FlexLogic Operand to Activate LED	0 to 65535		1	F300	0
4281	User LED type (latched or self-resetting)	0 to 1		1	F127	1 (Self-Reset)
4282	Repeated for module number 2					,
4284	Repeated for module number 3					
4286	Repeated for module number 4					
4288	Repeated for module number 5					
428A	Repeated for module number 6					
428C	Repeated for module number 7		1			
428E	Repeated for module number 8					
4290	Repeated for module number 9					
4292	Repeated for module number 10					
4294	Repeated for module number 11					
4294	Repeated for module number 11					
	repeated for module number 12		ļ			
4298	Repeated for module number 13					

Table B-9: MODBUS MEMORY MAP (Sheet 11 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
429A	Repeated for module number 14					
429C	Repeated for module number 15					
429E	Repeated for module number 16					
42A0	Repeated for module number 17					
42A2	Repeated for module number 18					
42A4	Repeated for module number 19					
42A6	Repeated for module number 20					
42A8	Repeated for module number 21					
42AA	Repeated for module number 22					
42AC	Repeated for module number 23					
42AE	Repeated for module number 24					
42B0	Repeated for module number 25					
42B2	Repeated for module number 26					
42B4	Repeated for module number 27					
42B6	Repeated for module number 28					
42B8	Repeated for module number 29					
42BA	Repeated for module number 30					
42BC	Repeated for module number 31					
42BE	Repeated for module number 32					
42C0	Repeated for module number 33					
42C2	Repeated for module number 34					
42C4	Repeated for module number 35					
42C6	Repeated for module number 36					
42C8	Repeated for module number 37					
42CA	Repeated for module number 38					
42CC	Repeated for module number 39					
42CE	Repeated for module number 40					
42D0	Repeated for module number 41					
42D2	Repeated for module number 42					
42D4	Repeated for module number 43					
42D6	Repeated for module number 44					
42D8	Repeated for module number 45					
42DA	Repeated for module number 46					
42DC	Repeated for module number 47					
42DE	Repeated for module number 48					
Installatio	on (Read/Write Setting)					
43E0	Relay Programmed State	0 to 1		1	F133	0 (Not Programmed)
43E1	Relay Name				F202	"Relay-1"
User Prog	grammable Self Tests (Read/Write Setting)					
4441	User Programmable Detect Ring Break Function	0 to 1		1	F102	1 (Enabled)
4442	User Programmable Direct Device Off Function	0 to 1		1	F102	1 (Enabled)
4443	User Programmable Remote Device Off Function	0 to 1		1	F102	1 (Enabled)
4444	User Programmable Primary Ethernet Fail Function	0 to 1		1	F102	0 (Disabled)
4445	User Programmable Secondary Ethernet Fail Function	0 to 1		1	F102	0 (Disabled)
4446	User Programmable Battery Fail Function	0 to 1		1	F102	1 (Enabled)
4447	User Programmable SNTP Fail Function	0 to 1		1	F102	1 (Enabled)
4448	User Programmable IRIG-B Fail Function	0 to 1		1	F102	1 (Enabled)
CT Settin	gs (Read/Write Setting) (6 modules)					
4480	Phase CT Primary	1 to 65000	Α	1	F001	1
4481	Phase CT Secondary	0 to 1		1	F123	0 (1 A)
4482	Ground CT Primary	1 to 65000	А	1	F001	1
4483	Ground CT Secondary	0 to 1		1	F123	0 (1 A)
4484	Repeated for module number 2					
4488	Repeated for module number 3					

Table B-9: MODBUS MEMORY MAP (Sheet 12 of 35)

A460	ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
	448C	Repeated for module number 4					
### Settings (Read/Write Setting) (3 modules) ### Fase VT Connection	4490	Repeated for module number 5					
	4494	Repeated for module number 6					
	VT Settin	gs (Read/Write Setting) (3 modules)		ll.			
	4500	Phase VT Connection	0 to 1		1	F100	0 (Wye)
Applied Auxiliary VT Connection	4501	Phase VT Secondary	50 to 240	V	0.1	F001	664
	4502	Phase VT Ratio	1 to 24000	:1	1	F060	1
Applied Auxiliary VT Ratio	4504	Auxiliary VT Connection	0 to 6		1	F166	1 (Vag)
4508 Repeated for module number 2	4505	Auxiliary VT Secondary	50 to 240	V	0.1	F001	664
Source Stutings (Read/Write Setting) (6 modules) Source Stutings (Read/Write Setting) (6 modules) Source Phase CT	4506	Auxiliary VT Ratio	1 to 24000	:1	1	F060	1
Source Name	4508	Repeated for module number 2					
Source Name	4510	Repeated for module number 3					
4584 Source Phase CT	Source S	ettings (Read/Write Setting) (6 modules)				<u> </u>	
4584 Source Ground CT	4580	Source Name				F206	"SRC 1"
4586 Source Phase VT	4583	Source Phase CT	0 to 63		1	F400	0
4586 Source Auxiliary VT	4584	Source Ground CT	0 to 63		1	F400	0
4587	4585	Source Phase VT	0 to 63		1	F400	0
458E Repeated for module number 3	4586	Source Auxiliary VT	0 to 63		1	F400	0
4595 Repeated for module number 4	4587	Repeated for module number 2					
ASSOC Repeated for module number 5	458E	Repeated for module number 3					
A	4595	Repeated for module number 4					
Power System Read/Write Setting	459C	Repeated for module number 5					
A600 Nominal Frequency	45A3	Repeated for module number 6					
Hase Rotation	Power Sy	vstem (Read/Write Setting)			·		
Frequency And Phase Reference	4600	Nominal Frequency	25 to 60	Hz	1	F001	60
Frequency Tracking Function O to 1	4601	Phase Rotation	0 to 1		1	F106	0 (ABC)
Streaker Control Global Settings (Read/Write Setting)	4602	Frequency And Phase Reference	0 to 5		1	F167	0 (SRC 1)
46F0 IEC 61850 XCBR 1 SelTimOut	4603	Frequency Tracking Function	0 to 1		1	F102	1 (Enabled)
Arrowspan="2" Arrowspan="2	Breaker C	Control Global Settings (Read/Write Setting)		*			
4700 Breaker 1 Function 0 to 1 1 F102 0 (Disabled) 4701 Breaker 1 Name F206 "Bkr 1" 4704 Breaker 1 Mode 0 to 1 1 F157 0 (3-Pole) 4704 Breaker 1 Open 0 to 65535 1 F300 0 4706 Breaker 1 Close 0 to 65535 1 F300 0 4707 Breaker 1 Phase A 3 Pole 0 to 65535 1 F300 0 4708 Breaker 1 Phase A 3 Pole 0 to 65535 1 F300 0 4708 Breaker 1 Phase C 0 to 65535 1 F300 0 4708 Breaker 1 Phase C 0 to 65535 1 F300 0 4708 Breaker 1 Alarm 0 to 65535 1 F300 0 4708 Breaker 1 Push Button Control 0 to 1 1 F102 0 (46F0	IEC 61850 XCBR 1 SelTimOut	1 to 60	S	1	F001	30
4701 Breaker 1 Name F206 "Bkr 1" 4704 Breaker 1 Mode 0 to 1 1 F157 0 (3-Pole) 4705 Breaker 1 Open 0 to 65535 1 F300 0 4706 Breaker 1 Close 0 to 65535 1 F300 0 4707 Breaker 1 Phase A 3 Pole 0 to 65535 1 F300 0 4708 Breaker 1 Phase B 0 to 65535 1 F300 0 4709 Breaker 1 Phase C 0 to 65535 1 F300 0 4709 Breaker 1 Phase C 0 to 65535 1 F300 0 4704 Breaker 1 Phase C 0 to 65535 1 F300 0 4704 Breaker 1 Phase C 0 to 65535 1 F300 0 4704 Breaker 1 Detail	Breaker C	Control (Read/Write Setting) (2 modules)					
4704 Breaker 1 Mode 0 to 1 1 F157 0 (3-Pole) 4705 Breaker 1 Open 0 to 65535 1 F300 0 4706 Breaker 1 Close 0 to 65535 1 F300 0 4707 Breaker 1 Phase A 3 Pole 0 to 65535 1 F300 0 4708 Breaker 1 Phase B 0 to 65535 1 F300 0 4709 Breaker 1 Phase C 0 to 65535 1 F300 0 4704 Breaker 1 External Alarm 0 to 65535 1 F300 0 470A Breaker 1 External Alarm 0 to 65535 1 F300 0 470B Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470E Breaker 1 Manual Close Recall Time 0 to 1000000 s 0.001 F003 0 471B Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2	4700	Breaker 1 Function	0 to 1		1	F102	0 (Disabled)
4705 Breaker 1 Open 0 to 65535 1 F300 0 4706 Breaker 1 Close 0 to 65535 1 F300 0 4707 Breaker 1 Phase A 3 Pole 0 to 65535 1 F300 0 4708 Breaker 1 Phase B 0 to 65535 1 F300 0 4709 Breaker 1 External Alarm 0 to 65535 1 F300 0 470A Breaker 1 External Alarm 0 to 65535 1 F300 0 470B Breaker 1 External Alarm 0 to 65535 1 F300 0 470B Breaker 1 Hard Delay 0 to 1000000 s 0.001 F003 0 470B Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470B Breaker 1 Manual Close Recall Time 0 to 1000000 s 0.001 F003 0 4710 Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2 <	4701	Breaker 1 Name				F206	"Bkr 1"
4706 Breaker 1 Close 0 to 65535 1 F300 0 4707 Breaker 1 Phase A 3 Pole 0 to 65535 1 F300 0 4708 Breaker 1 Phase B 0 to 65535 1 F300 0 4709 Breaker 1 Phase C 0 to 65535 1 F300 0 470A Breaker 1 External Alarm 0 to 65535 1 F300 0 470B Breaker 1 Alarm Delay 0 to 1000000 s 0.001 F003 0 470D Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470E Breaker 1 Manual Close Recall Time 0 to 1000000 s 0.001 F003 0 4710 Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2 1 F102 0 (Disabled) 4711 Breaker 1 IEC 61850 XCBR 1 SBOEna 0 to 1 1 F102 0 (Disabled) 4712 Breaker 1 Out Of Service 0 to 65535 1 F300 0 4713 <td< td=""><td>4704</td><td>Breaker 1 Mode</td><td>0 to 1</td><td></td><td>1</td><td>F157</td><td>0 (3-Pole)</td></td<>	4704	Breaker 1 Mode	0 to 1		1	F157	0 (3-Pole)
4707 Breaker 1 Phase A 3 Pole 0 to 65535 1 F300 0 4708 Breaker 1 Phase B 0 to 65535 1 F300 0 4709 Breaker 1 Phase C 0 to 65535 1 F300 0 470A Breaker 1 External Alarm 0 to 65535 1 F300 0 470B Breaker 1 Alarm Delay 0 to 1000000 s 0.001 F003 0 470D Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470E Breaker 1 Manual Close Recall Time 0 to 1000000 s 0.001 F003 0 471B Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2 1 F001 1 4711 Breaker 1 Ut Of Service 0 to 65535 1 F102 0 (Disabled) 4712 Breaker 1 Out Of Service 0 to 65535 1 F300 0 4713 Reserved (5 items) 0 to 65535	4705	Breaker 1 Open	0 to 65535		1	F300	0
4708 Breaker 1 Phase B 0 to 65535 1 F300 0 4709 Breaker 1 Phase C 0 to 65535 1 F300 0 470A Breaker 1 External Alarm 0 to 65535 1 F300 0 470B Breaker 1 Alarm Delay 0 to 1000000 s 0.001 F003 0 470D Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470E Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470E Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470E Breaker 1 Push Button Control 0 to 1000000 s 0.001 F003 0 470E Breaker 1 Manual Close Recall Time 0 to 1000000 s 0.001 F003 0 4710 Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2 1 F102 0 (Disabled) 4712 Breaker 1 Out Of	4706	Breaker 1 Close	0 to 65535		1	F300	0
4709 Breaker 1 Phase C 0 to 65535 1 F300 0 470A Breaker 1 External Alarm 0 to 65535 1 F300 0 470B Breaker 1 Alarm Delay 0 to 1000000 s 0.001 F003 0 470D Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470E Breaker 1 Manual Close Recall Time 0 to 1000000 s 0.001 F003 0 4710 Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2 1 F001 1 4711 Breaker 1 IEC 61850 XCBR 1 SBOEna 0 to 1 1 F102 0 (Disabled) 4712 Breaker 1 Out Of Service 0 to 65535 1 F300 0 4713 Reserved (5 items) 0 to 65535 s 1 F001 0 4718 Repeated for module number 2 Synchrocheck (Read/Write Setting) (2 modules) 4780 Synchrocheck 1 V1 Source 0 to 5 <td>4707</td> <td>Breaker 1 Phase A 3 Pole</td> <td>0 to 65535</td> <td></td> <td>1</td> <td>F300</td> <td>0</td>	4707	Breaker 1 Phase A 3 Pole	0 to 65535		1	F300	0
470A Breaker 1 External Alarm 0 to 65535 1 F300 0 470B Breaker 1 Alarm Delay 0 to 1000000 s 0.001 F003 0 470D Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470E Breaker 1 Manual Close Recall Time 0 to 1000000 s 0.001 F003 0 4710 Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2 1 F001 1 4711 Breaker 1 Out Of Service 0 to 65535 1 F102 0 (Disabled) 4712 Breaker 1 Out Of Service 0 to 65535 1 F300 0 4713 Reserved (5 items) 0 to 65535 s 1 F001 0 4718 Repeated for module number 2 Synchrocheck (Read/Write Setting) (2 modules) 4780 Synchrocheck 1 Function 0 to 5 1 F102 0 (Disabled) 4781 Synchrocheck 1 V2 Source 0 to 5 <td< td=""><td>4708</td><td>Breaker 1 Phase B</td><td>0 to 65535</td><td></td><td>1</td><td>F300</td><td>0</td></td<>	4708	Breaker 1 Phase B	0 to 65535		1	F300	0
470B Breaker 1 Alarm Delay 0 to 10000000 s 0.001 F003 0 470D Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470E Breaker 1 Manual Close Recall Time 0 to 1000000 s 0.001 F003 0 4710 Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2 1 F001 1 4711 Breaker 1 IEC 61850 XCBR 1 SBOEna 0 to 1 1 F102 0 (Disabled) 4712 Breaker 1 Out Of Service 0 to 65535 1 F300 0 4713 Reserved (5 items) 0 to 65535 s 1 F001 0 4718 Repeated for module number 2 1 F102 0 (Disabled) 4780 Synchrocheck 1 Function 0 to 1 1 F102 0 (Disabled) 4781 Synchrocheck 1 V1 Source 0 to 5 1 F167 0 (SRC 1) 4782 Synchrocheck 1 V2	4709	Breaker 1 Phase C	0 to 65535		1	F300	0
470D Breaker 1 Push Button Control 0 to 1 1 F102 0 (Disabled) 470E Breaker 1 Manual Close Recall Time 0 to 1000000 s 0.001 F003 0 4710 Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2 1 F001 1 4711 Breaker 1 IEC 61850 XCBR 1 SBOEna 0 to 1 1 F102 0 (Disabled) 4712 Breaker 1 Out Of Service 0 to 65535 1 F300 0 4713 Reserved (5 items) 0 to 65535 s 1 F001 0 4718 Repeated for module number 2 Tenaction 0 1 F102 0 (Disabled) 4780 Synchrocheck 1 Function 0 to 1 1 F167 0 (SRC 1) 4781 Synchrocheck 1 V2 Source 0 to 5 1 F167 1 (SRC 2) 4783 Synchrocheck 1 Maximum Voltage Difference 0 to 1000000 V 1 <td< td=""><td>470A</td><td>Breaker 1 External Alarm</td><td>0 to 65535</td><td></td><td>1</td><td>F300</td><td>0</td></td<>	470A	Breaker 1 External Alarm	0 to 65535		1	F300	0
470E Breaker 1 Manual Close Recall Time 0 to 10000000 s 0.001 F003 0 4710 Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2 1 F001 1 4711 Breaker 1 IEC 61850 XCBR 1 SBOEna 0 to 1 1 F102 0 (Disabled) 4712 Breaker 1 Out Of Service 0 to 65535 1 F300 0 4713 Reserved (5 items) 0 to 65535 s 1 F001 0 4718 Repeated for module number 2 s 1 F001 0 4780 Synchrocheck 1 Function 0 to 1 1 F102 0 (Disabled) 4781 Synchrocheck 1 V1 Source 0 to 5 1 F167 0 (SRC 1) 4782 Synchrocheck 1 V2 Source 0 to 5 1 F167 1 (SRC 2) 4783 Synchrocheck 1 Maximum Voltage Difference 0 to 100000 V 1 F060 100000		Breaker 1 Alarm Delay	0 to 1000000	s	0.001		0
4710 Breaker 1 IEC 61850 XCBR 1 SBOClass 1 to 2 1 F001 1 4711 Breaker 1 IEC 61850 XCBR 1 SBOEna 0 to 1 1 F102 0 (Disabled) 4712 Breaker 1 Out Of Service 0 to 65535 1 F300 0 4713 Reserved (5 items) 0 to 65535 s 1 F001 0 4718 Repeated for module number 2 Synchrocheck (Read/Write Setting) (2 modules) 4780 Synchrocheck 1 Function 0 to 1 1 F102 0 (Disabled) 4781 Synchrocheck 1 V1 Source 0 to 5 1 F167 0 (SRC 1) 4782 Synchrocheck 1 V2 Source 0 to 5 1 F167 1 (SRC 2) 4783 Synchrocheck 1 Maximum Voltage Difference 0 to 100000 V 1 F060 10000	470D	Breaker 1 Push Button Control	0 to 1		1	F102	0 (Disabled)
4711 Breaker 1 IEC 61850 XCBR 1 SBOEna 0 to 1 1 F102 0 (Disabled) 4712 Breaker 1 Out Of Service 0 to 65535 1 F300 0 4713 Reserved (5 items) 0 to 65535 s 1 F001 0 4718 Repeated for module number 2 Synchrocheck (Read/Write Setting) (2 modules) Synchrocheck (Read/Write Setting) (2 modules) 1 F102 0 (Disabled) 4780 Synchrocheck 1 Function 0 to 1 1 F102 0 (Disabled) 4781 Synchrocheck 1 V1 Source 0 to 5 1 F167 0 (SRC 1) 4782 Synchrocheck 1 V2 Source 0 to 5 1 F167 1 (SRC 2) 4783 Synchrocheck 1 Maximum Voltage Difference 0 to 1000000 V 1 F060 10000	470E	Breaker 1 Manual Close Recall Time	0 to 1000000	s	0.001	F003	0
4712 Breaker 1 Out Of Service 0 to 65535 1 F300 0 4713 Reserved (5 items) 0 to 65535 s 1 F001 0 4718 Repeated for module number 2	4710	Breaker 1 IEC 61850 XCBR 1 SBOClass	1 to 2		1	F001	1
4713 Reserved (5 items) 0 to 65535 s 1 F001 0 4718 Repeated for module number 2 Repeated for module number 2	4711	Breaker 1 IEC 61850 XCBR 1 SBOEna	0 to 1		1	F102	0 (Disabled)
4718 Repeated for module number 2 Synchrocheck (Read/Write Setting) (2 modules) 4780 Synchrocheck 1 Function 0 to 1 1 F102 0 (Disabled) 4781 Synchrocheck 1 V1 Source 0 to 5 1 F167 0 (SRC 1) 4782 Synchrocheck 1 V2 Source 0 to 5 1 F167 1 (SRC 2) 4783 Synchrocheck 1 Maximum Voltage Difference 0 to 100000 V 1 F060 10000	4712	Breaker 1 Out Of Service	0 to 65535		1	F300	0
Synchrocheck (Read/Write Setting) (2 modules) 4780 Synchrocheck 1 Function 0 to 1 1 F102 0 (Disabled) 4781 Synchrocheck 1 V1 Source 0 to 5 1 F167 0 (SRC 1) 4782 Synchrocheck 1 V2 Source 0 to 5 1 F167 1 (SRC 2) 4783 Synchrocheck 1 Maximum Voltage Difference 0 to 100000 V 1 F060 10000	4713	,	0 to 65535	s	1	F001	0
4780 Synchrocheck 1 Function 0 to 1 1 F102 0 (Disabled) 4781 Synchrocheck 1 V1 Source 0 to 5 1 F167 0 (SRC 1) 4782 Synchrocheck 1 V2 Source 0 to 5 1 F167 1 (SRC 2) 4783 Synchrocheck 1 Maximum Voltage Difference 0 to 100000 V 1 F060 10000	4718	Repeated for module number 2					
4781 Synchrocheck 1 V1 Source 0 to 5 1 F167 0 (SRC 1) 4782 Synchrocheck 1 V2 Source 0 to 5 1 F167 1 (SRC 2) 4783 Synchrocheck 1 Maximum Voltage Difference 0 to 100000 V 1 F060 10000	Synchroc	check (Read/Write Setting) (2 modules)					
4782 Synchrocheck 1 V2 Source 0 to 5 1 F167 1 (SRC 2) 4783 Synchrocheck 1 Maximum Voltage Difference 0 to 100000 V 1 F060 10000	4780	Synchrocheck 1 Function	0 to 1		1	F102	0 (Disabled)
4783 Synchrocheck 1 Maximum Voltage Difference 0 to 100000 V 1 F060 10000	4781	Synchrocheck 1 V1 Source	0 to 5		1	F167	, ,
	4782	Synchrocheck 1 V2 Source			1	F167	1 (SRC 2)
4785 Synchrochack 1 Maximum Angle Difference 0 to 100 degrees 1 E001 20	4783	Synchrocheck 1 Maximum Voltage Difference	0 to 100000	V	1	F060	10000
Synomochieck i Maximum Angle Difference 0 to 100 degrees 1 F001 30	4785	Synchrocheck 1 Maximum Angle Difference	0 to 100	degrees	1	F001	30

Table B-9: MODBUS MEMORY MAP (Sheet 13 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4786	Synchrocheck 1 Maximum Frequency Difference	0 to 2	Hz	0.01	F001	100
4787	Synchrocheck 1 Dead Source Select	0 to 5		1	F176	1 (LV1 and DV2)
4788	Synchrocheck 1 Dead V1 Maximum Voltage	0 to 1.25	pu	0.01	F001	30
4789	Synchrocheck 1 Dead V2 Maximum Voltage	0 to 1.25	pu	0.01	F001	30
478A	Synchrocheck 1 Live V1 Minimum Voltage	0 to 1.25	pu	0.01	F001	70
478B	Synchrocheck 1 Live V2 Minimum Voltage	0 to 1.25	pu	0.01	F001	70
478C	Synchrocheck 1 Target	0 to 2		1	F109	0 (Self-reset)
478D	Synchrocheck 1 Events	0 to 1		1	F102	0 (Disabled)
478E	Synchrocheck 1 Block	0 to 65535		1	F300	0
478F	Synchrocheck 1 Frequency Hysteresis	0 to 0.1	Hz	0.01	F001	6
4790	Repeated for module number 2					
Demand	(Read/Write Setting)					
47D0	Demand Current Method	0 to 2		1	F139	0 (Thrm. Exponential)
47D1	Demand Power Method	0 to 2		1	F139	0 (Thrm. Exponential)
47D2	Demand Interval	0 to 5		1	F132	2 (15 MIN)
47D3	Demand Input	0 to 65535		1	F300	0
Demand	(Read/Write Command)					
47D4	Demand Clear Record	0 to 1		1	F126	0 (No)
Modbus l	Jser Map (Read/Write Setting)					
4A00	Modbus Address Settings for User Map (256 items)	0 to 65535		1	F001	0
User Disp	plays Settings (Read/Write Setting) (16 modules)					
4C00	User display 1 top line text				F202	и и
4C0A	User display 1 bottom line text				F202	ш
4C14	Modbus addresses of displayed items (5 items)	0 to 65535		1	F001	0
4C19	Reserved (7 items)				F001	0
4C20	Repeated for module number 2					
4C40	Repeated for module number 3					
4C60	Repeated for module number 4					
4C80	Repeated for module number 5					
4CA0	Repeated for module number 6					
4CC0	Repeated for module number 7					
4CE0	Repeated for module number 8					
4D00	Repeated for module number 9					
4D20	Repeated for module number 10					
4D40	Repeated for module number 11					
4D60	Repeated for module number 12					
4D80	Repeated for module number 13					
4DA0	Repeated for module number 14					
4DC0	Repeated for module number 15					
4DE0	Repeated for module number 16					
User Prog	grammable Pushbuttons (Read/Write Setting) (12 modu	iles)				
4E00	User Programmable Pushbutton 1 Function	0 to 2		1	F109	2 (Disabled)
4E01	User Programmable Pushbutton 1 Top Line				F202	(none)
4E0B	User Programmable Pushbutton 1 On Text				F202	(none)
4E15	User Programmable Pushbutton 1 Off Text				F202	(none)
4E1F	User Programmable Pushbutton 1 Drop-Out Time	0 to 60	s	0.05	F001	0
4E20	User Programmable Pushbutton 1 Target	0 to 2		1	F109	0 (Self-reset)
4E21	User Programmable Pushbutton 1 Events	0 to 1		1	F102	0 (Disabled)
4E22	User Programmable Pushbutton 1 Reserved (2 items)	0 to 65535		1	F001	0
4E24	Repeated for module number 2					
4E48	Repeated for module number 3					
4E6C	Repeated for module number 4					
4E90	Repeated for module number 5					
4EB4	Repeated for module number 6					
	<u> </u>	I .	I .	·		I.

Table B-9: MODBUS MEMORY MAP (Sheet 14 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4ED8	Repeated for module number 7					
4EFC	Repeated for module number 8					
4F20	Repeated for module number 9					
4F44	Repeated for module number 10					
4F68	Repeated for module number 11					
4F8C	Repeated for module number 12			1		
Flexlogic	(Read/Write Setting)					
5000	FlexLogic Entry (512 items)	0 to 65535		1	F300	16384
Flexlogic	Timers (Read/Write Setting) (32 modules)		•			
5800	Timer 1 Type	0 to 2		1	F129	0 (millisecond)
5801	Timer 1 Pickup Delay	0 to 60000		1	F001	0
5802	Timer 1 Dropout Delay	0 to 60000		1	F001	0
5803	Timer 1 Reserved (5 items)	0 to 65535		1	F001	0
5808	Repeated for module number 2					
5810	Repeated for module number 3					
5818	Repeated for module number 4					
5820	Repeated for module number 5					
5828	Repeated for module number 6					
5830	Repeated for module number 7					
5838	Repeated for module number 8					
5840	Repeated for module number 9					
5848	Repeated for module number 10					
5850	Repeated for module number 11					
5858	Repeated for module number 12					
5860	Repeated for module number 13					
5868	Repeated for module number 14					
5870	Repeated for module number 15					
5878	Repeated for module number 16					
5880	Repeated for module number 17					
5888	Repeated for module number 18					
5890	Repeated for module number 19					
5898	Repeated for module number 20					
58A0	Repeated for module number 21					
58A8	Repeated for module number 22					
58B0	Repeated for module number 23					
58B8	Repeated for module number 24					
58C0	Repeated for module number 25					
58C8	Repeated for module number 26					
58D0	Repeated for module number 27					
58D8	Repeated for module number 28					
58E0	Repeated for module number 29					
58E8	Repeated for module number 30			1		
58F0	Repeated for module number 31					
58F8	Repeated for module number 32					
Phase Inst	tantaneous Overcurrent (Read/Write Grouped Setting)	(12 modules)				
5A00	Phase IOC1 Function	0 to 1		1	F102	0 (Disabled)
5A01	Phase IOC1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5A02	Phase IOC1 Pickup	0 to 30	pu	0.001	F001	1000
5A03	Phase IOC1 Delay	0 to 600	S	0.01	F001	0
5A04	Phase IOC1 Reset Delay	0 to 600	S	0.01	F001	0
5A05	Phase IOC1 Block For Each Phase (3 items)	0 to 65535		1	F300	0
	Phase IOC1 Target	0 to 2		1	F109	0 (Self-reset)
5A09	Phase IOC1 Events	0 to 1		1	F102	0 (Disabled)
		0 to 1	-	1	F001	0

Table B-9: MODBUS MEMORY MAP (Sheet 15 of 35)

E A 4 O	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
5A10	Repeated for module number 2					
5A20	Repeated for module number 3					
5A30	Repeated for module number 4					
5A40	Repeated for module number 5					
5A50	Repeated for module number 6					
5A60	Repeated for module number 7					
5A70	Repeated for module number 8					
5A80	Repeated for module number 9					
5A90	Repeated for module number 10					
5AA0	Repeated for module number 11					
5AB0	Repeated for module number 12					
Open Pol	le Detect (Read/Write Grouped Setting)					
6040	Open Pole Detect Function	0 to 1		1	F102	0 (Disabled)
6041	Open Pole Detect Block	0 to 65535		1	F300	0
6042	Open Pole Detect A Aux Co	0 to 65535		1	F300	0
6043	Open Pole Detect B Aux Co	0 to 65535		1	F300	0
6044	Open Pole Detect C Aux Co	0 to 65535		1	F300	0
6045	Open Pole Detect Current Source	0 to 5		1	F167	0 (SRC 1)
6046	Open Pole Detect Current Pickup	0.05 to 20	pu	0.01	F001	20
6047	Open Pole Detect Voltage Source	0 to 5		1	F167	0 (SRC 1)
6048	Open Pole Detect Voltage Input	0 to 1		1	F102	0 (Disabled)
6049	Open Pole Detect Pickup Delay	0 to 65.535	S	0.001	F001	60
604A	Open Pole Detect Reset Delay	0 to 65.535	S	0.001	F001	100
604B	Open Pole Detect Target	0 to 2		1	F109	0 (Self-reset)
604C	Open Pole Detect Events	0 to 1		1	F102	0 (Disabled)
604D	Open Pole Detect Broken Co	0 to 1		1	F102	0 (Disabled)
Overfreq	uency (Read/Write Setting) (4 modules)					
64D0	Overfrequency 1 Function	0 to 1		1	F102	0 (Disabled)
3700	Overhequency 11 unotion	0 10 1			-	- (,
64D1	Overfrequency 1 Block	0 to 65535		1	F300	0
64D1 64D2	Overfrequency 1 Block Overfrequency 1 Source	0 to 65535 0 to 5		1	F300 F167	0 0 (SRC 1)
64D1 64D2 64D3	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup	0 to 65535 0 to 5 20 to 65		1 0.01	F300 F167 F001	0 0 (SRC 1) 6050
64D1 64D2 64D3 64D4	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay	0 to 65535 0 to 5 20 to 65 0 to 65.535		1 0.01 0.001	F300 F167 F001 F001	0 0 (SRC 1) 6050 500
64D1 64D2 64D3 64D4 64D5	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535	 Hz	1 0.01 0.001 0.001	F300 F167 F001 F001 F001	0 0 (SRC 1) 6050 500
64D1 64D2 64D3 64D4 64D5 64D6	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2	Hz	1 0.01 0.001 0.001 1	F300 F167 F001 F001 F001 F109	0 0 (SRC 1) 6050 500 500 0 (Self-reset)
64D1 64D2 64D3 64D4 64D5 64D6 64D7	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Events	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1	Hz s s	1 0.01 0.001 0.001 1 1	F300 F167 F001 F001 F001 F109 F102	0 0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled)
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2	 Hz s s	1 0.01 0.001 0.001 1	F300 F167 F001 F001 F001 F109	0 0 (SRC 1) 6050 500 500 0 (Self-reset)
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1	 Hz s s	1 0.01 0.001 0.001 1 1	F300 F167 F001 F001 F001 F109 F102	0 0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled)
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 3	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1	 Hz s s	1 0.01 0.001 0.001 1 1	F300 F167 F001 F001 F001 F109 F102	0 0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled)
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1	 Hz s s	1 0.01 0.001 0.001 1 1	F300 F167 F001 F001 F001 F109 F102	0 0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled)
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 4 wing Detect (Read/Write Grouped Setting)	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1	Hz S S S	1 0.01 0.001 0.001 1 1	F300 F167 F001 F001 F001 F109 F102 F001	0 0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled)
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power Sv 65C0	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1	Hz S S S	1 0.01 0.001 0.001 1 1 1	F300 F167 F001 F001 F001 F109 F102 F001	0 0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 (Disabled)
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power Sv 65C0 65C1	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Source	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1	Hz S S S	1 0.01 0.001 0.001 1 1 1	F300 F167 F001 F001 F109 F102 F001 F102 F107	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 (Disabled) 0 (SRC 1)
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power Sv 65C0 65C1	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Mode	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 65.535 0 to 1 0 to 1 0 to 1	Hz S S S	1 0.01 0.001 0.001 1 1 1 1	F300 F167 F001 F001 F109 F102 F001 F102 F107 F107 F107	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 0 (Two Step)
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power Sv 65C0 65C1 65C2 65C3	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Mode Power Swing Detect Supervision	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 1 0 to 5 0 to 5	Hz s s s pu	1 0.01 0.001 1 1 1 1 1 1 1 0.001	F300 F167 F001 F001 F109 F102 F001 F102 F107 F107 F107 F107 F513 F001	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 0 (Two Step) 600
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power Sv 65C0 65C1 65C2 65C3	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Source Power Swing Detect Supervision Power Swing Detect Forward Reach	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 1 0 to 5 0 to 5 0 to 5 0 to 1 1 to 500	Hz S S pu ohms	1 0.01 0.001 1 1 1 1 1 1 0.001 0.001	F300 F167 F001 F001 F109 F102 F001 F102 F107 F107 F107 F513 F001 F001	0 (SRC 1) 6050 500 0 (Self-reset) 0 (Disabled) 0 (Disabled) 0 (SRC 1) 0 (Two Step) 600 5000
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power SV 65C0 65C1 65C2 65C3 65C4 65C5	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Source Power Swing Detect Supervision Power Swing Detect Forward Reach Power Swing Detect Forward RCA	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 1 0 to 5 0 to 5 0 to 5 0 to 9 0 to 1 0 to 5 0 to 1 0.05 to 30 0.1 to 500 40 to 90	Hz s s s pu ohms degrees	1 0.01 0.001 1 1 1 1 1 1 0.001 0.001	F300 F167 F001 F001 F109 F102 F001 F102 F001 F102 F167 F513 F001 F001	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 0 (Two Step) 600 5000 75
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power SV 65C0 65C1 65C2 65C3 65C4 65C5 65C6	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Source Power Swing Detect Supervision Power Swing Detect Forward Reach Power Swing Detect Forward RCA Power Swing Detect Reverse Reach	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 5 0 to 1 0.05 to 30 0.1 to 500 40 to 90 0.1 to 500	Hz s s s pu ohms degrees ohms	1 0.01 0.001 1 1 1 1 1 1 0.001 0.001 1 0.001	F300 F167 F001 F001 F001 F109 F102 F001 F102 F001 F107 F513 F001 F001 F001	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 0 (Two Step) 600 5000 75
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power SV 65C0 65C1 65C2 65C3 65C4 65C5 65C6 65C7	Overfrequency 1 Block Overfrequency 1 Source Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Source Power Swing Detect Mode Power Swing Detect Forward Reach Power Swing Detect Forward RCA Power Swing Detect Reverse Reach Power Swing Detect Reverse RCA	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 5 0 to 1 0.05 to 30 0.1 to 500 40 to 90 40 to 90	Hz s s s pu ohms degrees ohms degrees	1 0.01 0.001 1 1 1 1 1 1 0.001 0.001 1 0.001	F300 F167 F001 F001 F109 F102 F001 F102 F001 F102 F107 F513 F001 F001 F001 F001	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 0 (SRC 1) 0 (Two Step) 600 5000 75 5000
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power Sv 65C0 65C1 65C2 65C3 65C4 65C5 65C6 65C7	Overfrequency 1 Block Overfrequency 1 Pickup Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Source Power Swing Detect Supervision Power Swing Detect Forward Reach Power Swing Detect Forward RCA Power Swing Detect Reverse Reach Power Swing Detect Reverse RCA Power Swing Detect Outer Limit Angle	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 1 0 to 5 0 to 1 0.05 to 30 0.1 to 500 40 to 90 0.1 to 500 40 to 90 40 to 90 40 to 140	Hz s s s pu ohms degrees ohms degrees degrees	1 0.01 0.001 1 1 1 1 1 1 0.001 0.01 1 0.001	F300 F167 F001 F001 F001 F109 F102 F001 F102 F107 F513 F001 F001 F001 F001 F001	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 0 (Two Step) 600 5000 75 5000 75
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power SV 65C0 65C1 65C2 65C3 65C4 65C5 65C6 65C7 65C8	Overfrequency 1 Block Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Source Power Swing Detect Source Power Swing Detect Supervision Power Swing Detect Forward Reach Power Swing Detect Forward RCA Power Swing Detect Reverse Reach Power Swing Detect Reverse RCA Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 5 0 to 1 0.05 to 30 0.1 to 500 40 to 90 40 to 90 40 to 140 40 to 140	Hz s s s pu ohms degrees ohms degrees degrees degrees	1 0.01 0.001 1 1 1 1 1 1 0.001 0.01 1 0.01 1	F300 F167 F001 F001 F001 F109 F102 F001 F102 F107 F513 F001 F001 F001 F001 F001 F001 F001	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 0 (Two Step) 600 5000 75 5000 75 120
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power Sv 65C0 65C1 65C2 65C3 65C4 65C5 65C6 65C7 65C8 65C9 65CA	Overfrequency 1 Block Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Source Power Swing Detect Source Power Swing Detect Forward Reach Power Swing Detect Forward RCA Power Swing Detect Reverse Reach Power Swing Detect Reverse RCA Power Swing Detect Outer Limit Angle Power Swing Detect Inner Limit Angle	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 5 0 to 1 0.05 to 30 0.1 to 500 40 to 90 0.1 to 500 40 to 90 40 to 140 40 to 140 40 to 140	Hz s s s pu ohms degrees ohms degrees degrees	1 0.01 0.001 1 1 1 1 1 1 0.001 0.01 1 1 1	F300 F167 F001 F001 F109 F102 F001 F102 F001 F001 F001 F001 F001	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 0 (Two Step) 600 5000 75 5000 75 120 90 60
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power Sv 65C0 65C1 65C2 65C3 65C4 65C5 65C6 65C7 65C8 65C9 65CA	Overfrequency 1 Block Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Source Power Swing Detect Source Power Swing Detect Supervision Power Swing Detect Forward Reach Power Swing Detect Forward RCA Power Swing Detect Reverse Reach Power Swing Detect Reverse RCA Power Swing Detect Outer Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 5 0 to 1 0.05 to 30 0.1 to 500 40 to 90 0.1 to 500 40 to 90 40 to 140 40 to 140 40 to 140 0 to 65.535	Hz s s s pu ohms degrees ohms degrees degrees degrees	1 0.01 0.001 1 1 1 1 1 1 0.001 1 0.01 1 1 1	F300 F167 F001 F001 F001 F109 F102 F001 F101 F101 F101 F001 F001 F001	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 0 (Two Step) 600 5000 75 5000 75 120 90 60 30
64D1 64D2 64D3 64D4 64D5 64D6 64D7 64D8 64DC 64E8 64F4 Power Sv 65C0 65C1 65C2 65C3 65C4 65C5 65C6 65C7 65C8 65C9 65CA	Overfrequency 1 Block Overfrequency 1 Pickup Overfrequency 1 Pickup Delay Overfrequency 1 Reset Delay Overfrequency 1 Target Overfrequency 1 Target Overfrequency 1 Events Reserved (4 items)Repeated for module number 2Repeated for module number 3Repeated for module number 4 wing Detect (Read/Write Grouped Setting) Power Swing Detect Function Power Swing Detect Source Power Swing Detect Source Power Swing Detect Forward Reach Power Swing Detect Forward RCA Power Swing Detect Reverse Reach Power Swing Detect Reverse RCA Power Swing Detect Outer Limit Angle Power Swing Detect Inner Limit Angle	0 to 65535 0 to 5 20 to 65 0 to 65.535 0 to 65.535 0 to 65.535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 5 0 to 1 0.05 to 30 0.1 to 500 40 to 90 0.1 to 500 40 to 90 40 to 140 40 to 140 40 to 140	Hz s s s pu ohms degrees ohms degrees degrees degrees degrees	1 0.01 0.001 1 1 1 1 1 1 0.001 0.01 1 1 1	F300 F167 F001 F001 F109 F102 F001 F102 F001 F001 F001 F001 F001	0 (SRC 1) 6050 500 500 0 (Self-reset) 0 (Disabled) 0 0 (SRC 1) 0 (Two Step) 600 5000 75 5000 75 120 90 60

Table B-9: MODBUS MEMORY MAP (Sheet 16 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
65CE	Power Swing Detect Delay 3 Pickup	0 to 65.535	S	0.001	F001	9
65CF	Power Swing Detect Delay 4 Pickup	0 to 65.535	s	0.001	F001	17
65D0	Power Swing Detect Seal In Delay	0 to 65.535	S	0.001	F001	400
65D1	Power Swing Detect Trip Mode	0 to 1		1	F514	0 (Delayed)
65D2	Power Swing Detect Block	0 to 65535		1	F300	0
65D3	Power Swing Detect Target	0 to 2		1	F109	0 (Self-reset)
65D4	Power Swing Detect Event	0 to 1		1	F102	0 (Disabled)
65D5	Power Swing Detect Shape	0 to 1		1	F085	0 (Mho Shape)
65D6	Power Swing Detect Quad Forward Middle	0.1 to 500	ohms	0.01	F001	6000
65D7	Power Swing Detect Quad Forward Outer	0.1 to 500	ohms	0.01	F001	7000
65D8	Power Swing Detect Quad Reverse Middle	0.1 to 500	ohms	0.01	F001	6000
65D9	Power Swing Detect Quad Reverse Outer	0.1 to 500	ohms	0.01	F001	7000
65DA	Power Swing Detect Outer Right Blinder	0.1 to 500	ohms	0.01	F001	10000
65DB	Power Swing Detect Outer Left Blinder	0.1 to 500	ohms	0.01	F001	10000
65DC	Power Swing Detect Middle Right Blinder	0.1 to 500	ohms	0.01	F001	10000
65DD	Power Swing Detect Middle Left Blinder	0.1 to 500	ohms	0.01	F001	10000
65DE	Power Swing Detect Inner Right Blinder	0.1 to 500	ohms	0.01	F001	10000
65DF	Power Swing Detect Inner Left Blinder	0.1 to 500	ohms	0.01	F001	10000
Sensitive	Directional Power (Read/Write Grouped Setting) (2 mg	dules)			l.	
66A0	Sensitive Directional Power 1 Function	0 to 1		1	F102	0 (Disabled)
66A1	Sensitive Directional Power 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
66A2	Sensitive Directional Power 1 RCA	0 to 359	degrees	1	F001	0
66A3	Sensitive Directional Power 1 Calibration	0 to 0.95	degrees	0.05	F001	0
66A4	Sensitive Directional Power 1 STG1 SMIN	-1.2 to 1.2	pu	0.001	F002	100
66A5	Sensitive Directional Power 1 STG1 Delay	0 to 600	s	0.01	F001	50
66A6	Sensitive Directional Power 1 STG2 SMIN	-1.2 to 1.2	pu	0.001	F002	100
66A7	Sensitive Directional Power 1 STG2 Delay	0 to 600	s	0.01	F001	2000
66A8	Sensitive Directional Power 1 Block				F001	0
66A9	Sensitive Directional Power 1 Target	0 to 2		1	F109	0 (Self-reset)
66AA	Sensitive Directional Power 1 Events	0 to 1		1	F102	0 (Disabled)
66AB	Sensitive Directional Power 1 Reserved (5 items)	0 to 65535		1	F001	0
66B0	Repeated for module number 2					
Phase Un	ndervoltage (Read/Write Grouped Setting) (2 modules)					
7000	Phase UV1 Function	0 to 1		1	F102	0 (Disabled)
7001	Phase UV1 Signal Source	0 to 5		1	F167	0 (SRC 1)
7002	Phase UV1 Pickup	0 to 3	pu	0.001	F001	1000
7003	Phase UV1 Curve	0 to 1		1	F111	0 (Definite Time)
7004	Phase UV1 Delay	0 to 600	s	0.01	F001	100
7005	Phase UV1 Minimum Voltage	0 to 3	pu	0.001	F001	100
7006	Phase UV1 Block	0 to 65535		1	F300	0
7007	Phase UV1 Target	0 to 2		1	F109	0 (Self-reset)
7008	Phase UV1 Events	0 to 1		1	F102	0 (Disabled)
7009	Phase UV Measurement Mode	0 to 1		1	F186	0 (Phase to Ground)
700A	Reserved (6 items)	0 to 1		1	F001	0
7013	Repeated for module number 2					-
	vervoltage (Read/Write Grouped Setting)			l		
7040	Phase OV1 Function	0 to 1		1	F102	0 (Disabled)
7041	Phase OV1 Source	0 to 5		1	F167	0 (SRC 1)
7042	Phase OV1 Pickup	0 to 3	pu	0.001	F001	1000
7043	Phase OV1 Delay	0 to 600	S	0.001	F001	100
7043	Phase OV1 Belay Phase OV1 Reset Delay	0 to 600	s	0.01	F001	100
7044	Phase OV1 Reset Delay Phase OV1 Block	0 to 65535		1	F300	0
7045	Phase OV1 Target	0 to 03333		1	F109	0 (Self-reset)
7046	Phase OV1 Target Phase OV1 Events	0 to 1		1	F109 F102	0 (Sell-reset) 0 (Disabled)
1041	I HUSE OVI EVEIRS	0 (0 1		_ '	1 102	o (Disabicu)

Table B-9: MODBUS MEMORY MAP (Sheet 17 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
7048	Reserved (8 items)	0 to 1		1	F001	0
DCMA In	outs (Read/Write Setting) (24 modules)			•	•	
7300	DCMA Inputs 1 Function	0 to 1		1	F102	0 (Disabled)
7301	DCMA Inputs 1 ID				F205	"DCMA I 1"
7307	DCMA Inputs 1 Reserved 1 (4 items)	0 to 65535		1	F001	0
730B	DCMA Inputs 1 Units				F206	"mA"
730E	DCMA Inputs 1 Range	0 to 6		1	F173	6 (4 to 20 mA)
730F	DCMA Inputs 1 Minimum Value	-9999.999 to 9999.999		0.001	F004	4000
7311	DCMA Inputs 1 Maximum Value	-9999.999 to 9999.999		0.001	F004	20000
7313	DCMA Inputs 1 Reserved (5 items)	0 to 65535		1	F001	0
7318	Repeated for module number 2					
7330	Repeated for module number 3					
7348	Repeated for module number 4					
7360	Repeated for module number 5					
7378	Repeated for module number 6					
7390	Repeated for module number 7					
73A8	Repeated for module number 8					
73C0	Repeated for module number 9					
73D8	Repeated for module number 10					
73F0	Repeated for module number 11					
7408	Repeated for module number 12					
7420	Repeated for module number 13					
7438	Repeated for module number 14					
7450	Repeated for module number 15					
7468	Repeated for module number 16					
7480	Repeated for module number 17					
7498	Repeated for module number 18					
74B0	Repeated for module number 19					
74C8	Repeated for module number 20					
74E0	Repeated for module number 21					
74F8	Repeated for module number 22					
7510	Repeated for module number 23					
7528	Repeated for module number 24					
	ts (Read/Write Setting) (48 modules)	1				1
7540	RTD Inputs 1 Function	0 to 1		1	F102	0 (Disabled)
7541	RTD Inputs 1 ID				F205	"RTD lp 1"
7547	RTD Inputs 1 Reserved 1 (4 items)	0 to 65535		1	F001	0
754B	RTD Inputs 1 Type	0 to 3		1	F174	0 (100 Ohm Platinum)
754C	RTD Inputs 1 Reserved 2 (4 items)	0 to 65535		1	F001	0
7550	Repeated for module number 2Repeated for module number 3					
7560 7570	Repeated for module number 3Repeated for module number 4					
7570	'					
7580	Repeated for module number 5					
7590 75A0	Repeated for module number 6Repeated for module number 7					
75A0 75B0	Repeated for module number 7Repeated for module number 8					
75C0	Repeated for module number 8Repeated for module number 9					
75D0	Repeated for module number 9Repeated for module number 10					
75E0	Repeated for module number 10					
75E0 75F0	Repeated for module number 11					
7600	Repeated for module number 12Repeated for module number 13					
7610	Repeated for module number 13					
7610	Repeated for module number 14Repeated for module number 15					
7630	Repeated for module number 15Repeated for module number 16					
1030	repeated for module number to					

Table B-9: MODBUS MEMORY MAP (Sheet 18 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
7640		KANGE	UNITS	SIEF	FURIVIAI	DEFAULI
7650	Repeated for module number 17					
7660	Repeated for module number 18Repeated for module number 19					
7670						
	Repeated for module number 20					
7680	Repeated for module number 21					
7690	Repeated for module number 22					
76A0	Repeated for module number 23					
76B0	Repeated for module number 24					
76C0	Repeated for module number 25					
76D0	Repeated for module number 26					
76E0	Repeated for module number 27					
76F0	Repeated for module number 28					
7700	Repeated for module number 29					
7710	Repeated for module number 30					
7720	Repeated for module number 31					
7730	Repeated for module number 32					
7740	Repeated for module number 33					
7750	Repeated for module number 34					
7760	Repeated for module number 35					
7770	Repeated for module number 36					
7780	Repeated for module number 37					
7790	Repeated for module number 38					
77A0	Repeated for module number 39					
77B0	Repeated for module number 40					
77C0	Repeated for module number 41					
77D0	Repeated for module number 42					
77E0	Repeated for module number 43					
77F0	Repeated for module number 44					
7800	Repeated for module number 45					
7810	Repeated for module number 46					
7820	Repeated for module number 47					
7830	Repeated for module number 48					
	quency (Read/Write Setting) (6 modules)					
7E00	Underfrequency Function	0 to 1		1	F102	0 (Disabled)
7E01	Underfrequency 1 Block	0 to 65535		1	F300	0
7E02	Underfrequency 1 Minimum Current	0.1 to 1.25	pu	0.01	F001	10
7E03	Underfrequency 1 Pickup	20 to 65	Hz	0.01	F001	5950
7E04	Underfrequency 1 Pickup Delay	0 to 65.535	S	0.001	F001	2000
7E05	Underfrequency 1 Reset Delay	0 to 65.535	S	0.001	F001	2000
7E06	Underfrequency 1 Source	0 to 5		1	F167	0 (SRC 1)
7E07	Underfrequency 1 Events	0 to 1		1	F102	0 (Disabled)
7E08	Underfrequency 1 Target	0 to 2		1	F109	0 (Self-reset)
7E09	Underfrequency 1 Reserved (8 items)	0 to 1		1	F001	0
7E11	Repeated for module number 2					
7E22	Repeated for module number 3					
7E33	Repeated for module number 4					
7E44	Repeated for module number 5					
7E55	Repeated for module number 6					
Frequenc	y (Read Only)					
8000	Tracking Frequency	2 to 90	Hz	0.01	F001	0
Generic C	Comparator (Read/Write Setting) (6 modules)					
8010	Comparator 1 Function	0 to 1		1	F102	0 (Disabled)
8011	Comparator 1 Addition/Subtraction Mode Operand	0 to 65535		1	F300	0
8012	Comparator 1 Scale Factor	0.01 to 100		0.01	F001	100

Table B-9: MODBUS MEMORY MAP (Sheet 19 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
8013	Comparator 1 Block	0 to 65535		1	F300	0
8014	Comparator 1 Target	0 to 2		1	F109	0 (Self-reset)
8015	Comparator 1 Events	0 to 1		1	F102	0 (Disabled)
8016	Comparator 1 Argument A Bits (8 items)	0 to 65535		1	F300	0
801E	Comparator 1 Input Mode	0 to 1		1	F515	0 (SIGNED)
801F	Comparator 1 Direction Mode	0 to 1		1	F517	0 (OVER)
8020	Comparator 1 Pickup	-25400 to 25400		0.01	F004	1000000
8022	Comparator 1 Hysteresis	0 to 5000		0.01	F003	50000
8024	Comparator 1 Pickup Delay	0 to 65.353	S	0.001	F001	0
8025	Comparator 1 Reset Delay	0 to 65.353	s	0.001	F001	0
8026	Comparator 1 Argument B Bits (8 items)	0 to 65535		1	F300	0
802C	Comparator 1 Reserved (4 items)	0 to 65535		1	F001	0
8030	Repeated for module number 2					
8050	Repeated for module number 3					
8070	Repeated for module number 4					
8090	Repeated for module number 5					
80B0	Repeated for module number 6					
Generic (Comparator Actuals (Read Only) (6 modules)		_			
8100	Comparator 1 Argument A Value	-12700 to 12700		0.01	F004	0
8102	Comparator 1 Argument B Value	-12700 to 12700		0.01	F004	0
8104	Comparator 1 Output Value	-25400 to 25400		0.01	F004	0
8106	Repeated for module number 2					-
810C	Repeated for module number 3					
8112	Repeated for module number 4					
8118	Repeated for module number 5					
811E	Repeated for module number 6					
	(Read/Write Setting) (5 modules)					
8200	Digitizer 1 Function	0 to 1		1	F102	0 (Disabled)
8201	Digitizer 1 Source Input	0 to 65535		1	F600	0
8202	Digitizer 1 Limit Setting	0.05 to 90	pu	0.001	F003	1000
8204	Digitizer 1 Reserved (4 items)	0 to 65535		1	F001	0
8208	Repeated for module number 2					
8210	Repeated for module number 3					
8218	Repeated for module number 4					
8220	Repeated for module number 5					
	Actuals (Read Only) (5 modules)			L		
82A0	Digitizer 1 Output	-127 to 127		1	F004	0
82A2	Repeated for module number 2	1				<u> </u>
82A4	Repeated for module number 3					
02						
8246	Repeated for module number 4					
82A6 82A8	Repeated for module number 4					
82A8	Repeated for module number 5					
82A8 Switch (F	Repeated for module number 5 Read/Write Setting) (6 modules)	0 to 1		1	F102	0 (Disabled)
82A8 Switch (F 8300	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function	0 to 1		1 1	F102	0 (Disabled)
82A8 Switch (F 8300 8301	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function Switch 1 Argument A Bits (8 items)	0 to 65535		1	F300	0
82A8 Switch (F 8300 8301 8309	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function Switch 1 Argument A Bits (8 items) Switch 1 Argument B Bits (8 items)	0 to 65535 0 to 65535		1	F300 F300	0
82A8 Switch (F 8300 8301 8309 8311	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function Switch 1 Argument A Bits (8 items) Switch 1 Argument B Bits (8 items) Switch 1 Control	0 to 65535 0 to 65535 0 to 65535		1 1 1	F300 F300 F300	0 0 0
82A8 Switch (F 8300 8301 8309 8311 8312	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function Switch 1 Argument A Bits (8 items) Switch 1 Argument B Bits (8 items) Switch 1 Control Switch 1 Reserved (6 items)	0 to 65535 0 to 65535		1	F300 F300	0
82A8 Switch (F 8300 8301 8309 8311 8312 8318	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function Switch 1 Argument A Bits (8 items) Switch 1 Argument B Bits (8 items) Switch 1 Control Switch 1 Reserved (6 items) Repeated for module number 2	0 to 65535 0 to 65535 0 to 65535		1 1 1	F300 F300 F300	0 0 0
82A8 Switch (F 8300 8301 8309 8311 8312 8318 8330	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function Switch 1 Argument A Bits (8 items) Switch 1 Argument B Bits (8 items) Switch 1 Control Switch 1 Reserved (6 items) Repeated for module number 2 Repeated for module number 3	0 to 65535 0 to 65535 0 to 65535		1 1 1	F300 F300 F300	0 0 0
82A8 Switch (F 8300 8301 8309 8311 8312 8318 8330 8348	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function Switch 1 Argument A Bits (8 items) Switch 1 Argument B Bits (8 items) Switch 1 Control Switch 1 Reserved (6 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4	0 to 65535 0 to 65535 0 to 65535		1 1 1	F300 F300 F300	0 0 0
82A8 Switch (F 8300 8301 8309 8311 8312 8318 8330 8348 8360	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function Switch 1 Argument A Bits (8 items) Switch 1 Argument B Bits (8 items) Switch 1 Control Switch 1 Reserved (6 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5	0 to 65535 0 to 65535 0 to 65535		1 1 1	F300 F300 F300	0 0 0
82A8 Switch (F 8300 8301 8309 8311 8312 8318 8330 8348 8360 8378	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function Switch 1 Argument A Bits (8 items) Switch 1 Argument B Bits (8 items) Switch 1 Control Switch 1 Reserved (6 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6	0 to 65535 0 to 65535 0 to 65535		1 1 1	F300 F300 F300	0 0 0
82A8 Switch (F 8300 8301 8309 8311 8312 8318 8330 8348 8360 8378	Repeated for module number 5 Read/Write Setting) (6 modules) Switch 1 Function Switch 1 Argument A Bits (8 items) Switch 1 Argument B Bits (8 items) Switch 1 Control Switch 1 Reserved (6 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5	0 to 65535 0 to 65535 0 to 65535		1 1 1	F300 F300 F300	0 0 0

Table B-9: MODBUS MEMORY MAP (Sheet 20 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
	nent (Read/Write Setting) (16 modules)		-			
9000	FlexElement 1 Function	0 to 1		1	F102	0 (Disabled)
9001	FlexElement 1 Name				F206	"FxE 1 "
9004	FlexElement 1 InputP	0 to 65535		1	F600	0
9005	FlexElement 1 InputM	0 to 65535		1	F600	0
9006	FlexElement 1 Compare	0 to 1		1	F516	0 (LEVEL)
9007	FlexElement 1 Input	0 to 1		1	F515	0 (SIGNED)
9008	FlexElement 1 Direction	0 to 1		1	F517	0 (OVER)
9009	FlexElement 1 Hysteresis	0.1 to 50	%	0.1	F001	30
900A	FlexElement 1 Pickup	-90 to 90	pu	0.001	F004	1000
900C	FlexElement 1 DeltaT Units	0 to 2		1	F518	0 (Milliseconds)
900D	FlexElement 1 DeltaT	20 to 86400		1	F003	20
900F	FlexElement 1 Pickup Delay	0 to 65.535	S	0.001	F001	0
9010	FlexElement 1 Reset Delay	0 to 65.535	S	0.001	F001	0
9011	FlexElement 1 Block	0 to 65535		1	F300	0
9012	FlexElement 1 Target	0 to 2		1	F109	0 (Self-reset)
9013	FlexElement 1 Events	0 to 1		1	F102	0 (Disabled)
9014	Repeated for module number 2					
9028	Repeated for module number 3					
903C	Repeated for module number 4					
9050	Repeated for module number 5					
9064	Repeated for module number 6					
9078	Repeated for module number 7					
908C	Repeated for module number 8					
90A0	Repeated for module number 9					
90B4	Repeated for module number 10					
90C8	Repeated for module number 11					
90DC	Repeated for module number 12					
90F0	Repeated for module number 13					
9104	Repeated for module number 14					
9118	Repeated for module number 15					
912C	Repeated for module number 16					
DCMA O	utputs (Read/Write Setting) (24 modules)		•	•		
9300	DCMA Outputs 1 Source	0 to 65535		1	F600	0
9301	DCMA Outputs 1 Range	0 to 2		1	F522	0 (-1 to 1 mA)
9302	DCMA Output 1 Minimum	-90 to 90	pu	0.001	F004	0
9304	DCMA Outputs 1 Maximum	-90 to 90	pu	0.001	F004	1000
9306	Repeated for module number 2					
930C	Repeated for module number 3					
9312	Repeated for module number 4					
9318	Repeated for module number 5					
931E	Repeated for module number 6					
9324	Repeated for module number 7					
932A	Repeated for module number 8					
9330	Repeated for module number 9					
9336	Repeated for module number 10					
933C	Repeated for module number 11					
9342	Repeated for module number 12					
9348	Repeated for module number 13					
934E	Repeated for module number 14					
9354	Repeated for module number 15					
935A	Repeated for module number 16					
9360	Repeated for module number 17					
9366	Repeated for module number 18					
			_		_	

Table B-9: MODBUS MEMORY MAP (Sheet 21 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
936C	Repeated for module number 19					
9372	Repeated for module number 20					
9378	Repeated for module number 21					
937E	Repeated for module number 22					
9384	Repeated for module number 23					
938A	Repeated for module number 24					
FlexElem	ent Actuals (Read Only) (16 modules)					
9A01	FlexElement Actual	-2147483.647 to 2147483.647		0.001	F004	0
9A03	Repeated for module number 2					
9A05	Repeated for module number 3					
9A07	Repeated for module number 4					
9A09	Repeated for module number 5					
9A0B	Repeated for module number 6					
9A0D	Repeated for module number 7					
9A0F	Repeated for module number 8					
9A11	Repeated for module number 9					
9A13	Repeated for module number 10					
9A15	Repeated for module number 11					
9A17	Repeated for module number 12					
9A19	Repeated for module number 13					
9A1B	Repeated for module number 14					
9A1D	Repeated for module number 15					
9A1F	Repeated for module number 16					
Setting G	Groups (Read/Write Setting)					
A000	Setting Group for Modbus Comms (0 means group 1)	0 to 5		1	F001	0
A001	Setting Groups Block	0 to 65535		1	F300	0
A002	FlexLogic to Activate Groups 2 through 8 (5 items)	0 to 65535		1	F300	0
A009	Setting Group Function	0 to 1		1	F102	0 (Disabled)
A00A	Setting Group Events	0 to 1		1	F102	0 (Disabled)
Setting G	Groups (Read Only)					
A00B	Current Setting Group	0 to 5		1	F001	0
VT Fuse	Failure (Read/Write Setting) (6 modules)					
A040	VT Fuse Failure Function	0 to 1		1	F102	0 (Disabled)
A041	Repeated for module number 2					
A042	Repeated for module number 3					
A043						
4011	Repeated for module number 4					
A044	Repeated for module number 4Repeated for module number 5					
A044 A045	·					
A045	Repeated for module number 5					
A045	Repeated for module number 5Repeated for module number 6	1 to 7		1	F001	0
A045 Selector	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only)	1 to 7 1 to 7		1 1	F001 F001	0 1
A045 Selector A400 A401	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position					
A045 Selector A400 A401	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position Selector 2 Position					
A045 Selector A400 A401 Selector	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position Selector 2 Position Switch (Read/Write Setting) (2 modules)	1 to 7		1	F001	1
A045 Selector A400 A401 Selector A410	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position Selector 2 Position Switch (Read/Write Setting) (2 modules) Selector 1 Function	1 to 7		1	F001	1 0 (Disabled)
A045 Selector A400 A401 Selector A410 A411	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position Selector 2 Position Switch (Read/Write Setting) (2 modules) Selector 1 Function Selector 1 Range	1 to 7 0 to 1 1 to 7		1 1 1	F102 F001	0 (Disabled)
A045 Selector A400 A401 Selector A410 A411 A412	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position Selector 2 Position Switch (Read/Write Setting) (2 modules) Selector 1 Function Selector 1 Range Selector 1 Timeout	1 to 7 0 to 1 1 to 7 3 to 60	 S	1 1 1 0.1	F102 F001 F001	1 0 (Disabled) 7 50
A045 Selector A400 A401 Selector A410 A411 A412 A413	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position Selector 2 Position Switch (Read/Write Setting) (2 modules) Selector 1 Function Selector 1 Range Selector 1 Timeout Selector 1 Step Up	1 to 7 0 to 1 1 to 7 3 to 60 0 to 65535	 S	1 1 1 0.1 1	F102 F001 F001 F300	1 0 (Disabled) 7 50 0
A045 Selector A400 A401 Selector A410 A411 A412 A413 A414	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position Selector 2 Position Switch (Read/Write Setting) (2 modules) Selector 1 Function Selector 1 Range Selector 1 Timeout Selector 1 Step Up Selector 1 Step Mode	1 to 7 0 to 1 1 to 7 3 to 60 0 to 65535 0 to 1	 S	1 1 1 0.1 1	F102 F001 F001 F001 F300 F083	1 0 (Disabled) 7 50 0 0 (Time-out)
A045 Selector A400 A401 Selector A410 A411 A412 A413 A414 A415	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position Selector 2 Position Switch (Read/Write Setting) (2 modules) Selector 1 Function Selector 1 Range Selector 1 Timeout Selector 1 Step Up Selector 1 Step Mode Selector 1 Acknowledge	1 to 7 0 to 1 1 to 7 3 to 60 0 to 65535 0 to 1 0 to 65535	 S	1 1 0.1 1 1	F102 F001 F001 F001 F300 F083 F300	1 0 (Disabled) 7 50 0 (Time-out)
A045 Selector A400 A401 Selector A410 A411 A412 A413 A414 A415 A416	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position Selector 2 Position Switch (Read/Write Setting) (2 modules) Selector 1 Function Selector 1 Range Selector 1 Timeout Selector 1 Step Up Selector 1 Step Mode Selector 1 Acknowledge Selector 1 Bit0	1 to 7 0 to 1 1 to 7 3 to 60 0 to 65535 0 to 1 0 to 65535 0 to 65535	s	1 1 0.1 1 1 1	F102 F001 F001 F300 F083 F300 F300	1 0 (Disabled) 7 50 0 (Time-out) 0
A045 Selector A400 A401 Selector A410 A411 A412 A413 A414 A415 A416 A417	Repeated for module number 5Repeated for module number 6 Switch Actuals (Read Only) Selector 1 Position Selector 2 Position Switch (Read/Write Setting) (2 modules) Selector 1 Function Selector 1 Range Selector 1 Timeout Selector 1 Step Up Selector 1 Step Mode Selector 1 Acknowledge Selector 1 Bit0 Selector 1 Bit1	1 to 7 0 to 1 1 to 7 3 to 60 0 to 65535 0 to 1 0 to 65535 0 to 65535 0 to 65535	S	1 1 0.1 1 1 1 1	F001 F102 F001 F001 F300 F083 F300 F300 F300	1 0 (Disabled) 7 50 0 (Time-out) 0 0 0

Table B-9: MODBUS MEMORY MAP (Sheet 22 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
A41B	Selector 1 Power Up Mode	0 to 2		1	F084	0 (Restore)
A41C	Selector 1 Target	0 to 2		1	F109	0 (Self-reset)
A41D	Selector 1 Events	0 to 1		1	F102	0 (Disabled)
A41E	Selector 1 Reserved (10 items)			1	F001	0
A428	Repeated for module number 2					
Non Vola	tile Latches (Read/Write Setting) (16 modules)			ı		
AD00	Latch 1 Function	0 to 1		1	F102	0 (Disabled)
AD01	Latch 1 Type	0 to 1		1	F519	0 (Reset Dominant)
AD02	Latch 1 Set	0 to 65535		1	F300	0
AD03	Latch 1 Reset	0 to 65535		1	F300	0
AD04	Latch 1 Target	0 to 2		1	F109	0 (Self-reset)
AD05	Latch 1 Events	0 to 1		1	F102	0 (Disabled)
AD06	Latch 1 Reserved (4 items)				F001	0
AD0A	Repeated for module number 2					
AD14	Repeated for module number 3					
AD1E	Repeated for module number 4					
AD28	Repeated for module number 5					
AD32	Repeated for module number 6					
AD3C	Repeated for module number 7					
AD46	Repeated for module number 8					
AD50	Repeated for module number 9					
AD5A	Repeated for module number 10					
AD64	Repeated for module number 11					
AD6E	Repeated for module number 12					
AD78	Repeated for module number 13					
AD82	Repeated for module number 14					
AD8C	Repeated for module number 15					
AD96	Repeated for module number 16					
	ements (Read/Write Setting) (16 modules)					
B000	Digital Element 1 Function	0 to 1		1	F102	0 (Disabled)
B001	Digital Element 1 Name				F203	"Dig Element 1 "
B015	Digital Element 1 Input	0 to 65535		1	F300	0
B016	Digital Element 1 Pickup Delay	0 to 999999.999	s	0.001	F003	0
B018	Digital Element 1 Reset Delay	0 to 999999.999	s	0.001	F003	0
B01A	Digital Element 1 Block	0 to 65535		1	F300	0
B01B	Digital Element 1 Target	0 to 2		1	F109	0 (Self-reset)
B01C	Digital Element 1 Events	0 to 1		1	F102	0 (Disabled)
B01D	Digital Element 1 Reserved (3 items)				F001	0
B020	Repeated for module number 2					-
B040	Repeated for module number 3		†			
B060	Repeated for module number 4		1			
B080	Repeated for module number 5		+			
B0A0	Repeated for module number 6		1			
B0C0	Repeated for module number 7					
B0E0	Repeated for module number 8					
B100	Repeated for module number 9		+			
B120	Repeated for module number 10		+			
B140	Repeated for module number 11		1			
B160	Repeated for module number 12					
B180	Repeated for module number 13		1			
B1A0	Repeated for module number 14		+			
B1C0	Repeated for module number 15					
B1E0	Repeated for module number 16		-			
DIEU	repeated for infounte number to		1]	

Table B-9: MODBUS MEMORY MAP (Sheet 23 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Digital Co	ounter (Read/Write Setting) (8 modules)	I .				
B300	Digital Counter 1 Function	0 to 1		1	F102	0 (Disabled)
B301	Digital Counter 1 Name				F205	"Counter 1"
B307	Digital Counter 1 Units				F206	(none)
B30A	Digital Counter 1 Block	0 to 65535		1	F300	0
B30B	Digital Counter 1 Up	0 to 65535		1	F300	0
B30C	Digital Counter 1 Down	0 to 65535		1	F300	0
B30D	Digital Counter 1 Preset	-2147483647 to 2147483647		1	F004	0
B30F	Digital Counter 1 Compare	-2147483647 to 2147483647		1	F004	0
B311	Digital Counter 1 Reset	0 to 65535		1	F300	0
B312	Digital Counter 1 Freeze/Reset	0 to 65535		1	F300	0
B313	Digital Counter 1 Freeze/Count	0 to 65535		1	F300	0
B314	Digital Counter 1 Set To Preset	0 to 65535		1	F300	0
B315	Digital Counter 1 Reserved (11 items)				F001	0
B320	Repeated for module number 2					
B340	Repeated for module number 3					
B360	Repeated for module number 4					
B380	Repeated for module number 5					
B3A0	Repeated for module number 6					
B3C0	Repeated for module number 7					
B3E0	Repeated for module number 8					
Frequenc	y Rate of Change (Read/Write Setting) (4 modules)		•	•		
B500	Frequency Rate of Change 1 Function	0 to 1		1	F102	0 (Disabled)
B501	Frequency Rate of Change 1 OC Supervision	0 to 30	pu	0.001	F001	200
B502	Frequency Rate of Change 1 Min	20 to 80	Hz	0.01	F001	4500
B503	Frequency Rate of Change 1 Max	20 to 80	Hz	0.01	F001	6500
B504	Frequency Rate of Change 1 Pickup Delay	0 to 65.535	s	0.001	F001	0
B505	Frequency Rate of Change 1 Reset Delay	0 to 65.535	s	0.001	F001	0
B506	Frequency Rate of Change 1 Block	0 to 65535		1	F300	0
B507	Frequency Rate of Change 1 Target	0 to 2		1	F109	0 (Self-reset)
B508	Frequency Rate of Change 1 Events	0 to 1		1	F102	0 (Disabled)
B509	Frequency Rate of Change 1 Source	0 to 5		1	F167	0 (SRC 1)
B50A	Frequency Rate of Change 1 Trend	0 to 2		1	F224	0 (Increasing)
B50B	Frequency Rate of Change 1 Pickup	0.1 to 15	Hz/s	0.01	F001	50
B50C	Frequency Rate of Change 1 OV Supervision	0.1 to 3	pu	0.001	F001	700
B50D	Frequency Rate of Change 1 Reserved (3 items)	0 to 1		1	F001	0
B510	Repeated for module number 2					
B520	Repeated for module number 3					
B530	Repeated for module number 4					
Contact I	nputs (Read/Write Setting) (96 modules)					
C000	Contact Input 1 Name				F205	"Cont lp 1 "
C006	Contact Input 1 Events	0 to 1		1	F102	0 (Disabled)
C007	Contact Input 1 Debounce Time	0 to 16	ms	0.5	F001	20
C008	Repeated for module number 2					
C010	Repeated for module number 3					
C018	Repeated for module number 4					
C020	Repeated for module number 5					
C028	Repeated for module number 6					
C030	Repeated for module number 7					
C038	Repeated for module number 8					
C040	Repeated for module number 9		1			
C048	Repeated for module number 10					
C050	Repeated for module number 11					
5000	topoutou for modulo number 11	l	1			

Table B-9: MODBUS MEMORY MAP (Sheet 24 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C058	Repeated for module number 12					
C060	Repeated for module number 13					
C068	Repeated for module number 14					
C070	Repeated for module number 15					
C078	Repeated for module number 16					
C080	Repeated for module number 17					
C088	Repeated for module number 18					
C090	Repeated for module number 19					
C098	Repeated for module number 20					
C0A0	Repeated for module number 21					
C0A8	Repeated for module number 22					
C0B0	Repeated for module number 23					
C0B8	Repeated for module number 24					
C0C0	Repeated for module number 25					
C0C8	Repeated for module number 26					
C0D0	Repeated for module number 27					
C0D8	Repeated for module number 28					
C0E0	Repeated for module number 29					
C0E8	Repeated for module number 30					
C0F0	Repeated for module number 31					
C0F8	Repeated for module number 32					
C100	Repeated for module number 33					
C108	Repeated for module number 34					
C110	Repeated for module number 35					
C118	Repeated for module number 36					
C120	Repeated for module number 37					
C128	Repeated for module number 38					
C130	Repeated for module number 39					
C138	Repeated for module number 40					
C140	Repeated for module number 41					
C148	Repeated for module number 42					
C150	Repeated for module number 43					
C158	Repeated for module number 44					
C160	Repeated for module number 45					
C168	Repeated for module number 46					
C170	Repeated for module number 47					
C178	Repeated for module number 48					
C180	Repeated for module number 49					
C188	Repeated for module number 50					
C190	Repeated for module number 51					
C190	Repeated for module number 52					
C1A0	Repeated for module number 53					
C1A8	Repeated for module number 54					
C1B0	Repeated for module number 55					
C1B0	Repeated for module number 56					
C1C0	Repeated for module number 57					
C1C8	Repeated for module number 58					
C1D0	Repeated for module number 59					
C1D0	Repeated for module number 59					
C1E0	Repeated for module number 60					
C1E0	Repeated for module number 61Repeated for module number 62					
C1E8	· · · · · · · · · · · · · · · · · · ·					
	Repeated for module number 63					
C1F8	Repeated for module number 64					
C200	Repeated for module number 65					

Table B-9: MODBUS MEMORY MAP (Sheet 25 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C208	Repeated for module number 66					
C210	Repeated for module number 67					
C218	Repeated for module number 68					
C220	Repeated for module number 69					
C228	Repeated for module number 70					
C230	Repeated for module number 71					
C238	Repeated for module number 72					
C240	Repeated for module number 73					
C248	Repeated for module number 74					
C250	Repeated for module number 75					
C258	Repeated for module number 76					
C260	Repeated for module number 77					
C268	Repeated for module number 78					
C270	Repeated for module number 79					
C278	Repeated for module number 80					
C280	Repeated for module number 81					
C288	Repeated for module number 82					
C290	Repeated for module number 83					
C298	Repeated for module number 84					
C2A0	Repeated for module number 85					
C2A8	Repeated for module number 86					
C2B0	Repeated for module number 87					
C2B8	Repeated for module number 88					
C2C0	Repeated for module number 89					
C2C8	Repeated for module number 90					
C2D0	Repeated for module number 91					
C2D8	Repeated for module number 92					
C2E0	Repeated for module number 93					
C2E8	Repeated for module number 94					
C2F0	Repeated for module number 95					
C2F8	Repeated for module number 96					
Contact I	nput Thresholds (Read/Write Setting)					
C600	Contact Input x Threshold (24 items)	0 to 3		1	F128	1 (33 Vdc)
Virtual In	puts Global Settings (Read/Write Setting)					
C680	Virtual Inputs SBO Timeout	1 to 60	S	1	F001	30
Virtual In	puts (Read/Write Setting) (32 modules)					
C690	Virtual Input 1 Function	0 to 1		1	F102	0 (Disabled)
C691	Virtual Input 1 Name				F205	"Virt Ip 1 "
C69B	Virtual Input 1 Programmed Type	0 to 1		1	F127	0 (Latched)
C69C	Virtual Input 1 Events	0 to 1		1	F102	0 (Disabled)
C69D	Virtual Input 1 IEC 61850 SBOClass	1 to 2		1	F001	1
C69E	Virtual Input 1 IEC 61850 SBOEna	0 to 1		1	F102	0 (Disabled)
C69F	Virtual Input 1 Reserved				F001	0
C6A0	Repeated for module number 2					
C6B0	Repeated for module number 3					
C6C0	Repeated for module number 4					
C6D0	Repeated for module number 5					
C6E0	Repeated for module number 6					
C6F0	Repeated for module number 7					
C700	Repeated for module number 8					
C710	Repeated for module number 9					
C720	Repeated for module number 10					
C730	Repeated for module number 11					
	Repeated for module number 12		1			

Table B-9: MODBUS MEMORY MAP (Sheet 26 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C750	Repeated for module number 13					
C760	Repeated for module number 14					
C770	Repeated for module number 15					
C780	Repeated for module number 16					
C790	Repeated for module number 17					
C7A0	Repeated for module number 18					
C7B0	Repeated for module number 19					
C7C0	Repeated for module number 20					
C7D0	Repeated for module number 21					
C7E0	Repeated for module number 22					
C7F0	Repeated for module number 23					
C800	Repeated for module number 24					
C810	Repeated for module number 25					
C820	Repeated for module number 26					
C830	Repeated for module number 27					
C840	Repeated for module number 28					
C850	Repeated for module number 29					
C860	Repeated for module number 30					
C870	Repeated for module number 31					
C880	Repeated for module number 32					
Virtual O	utputs (Read/Write Setting) (64 modules)		•	•	•	
CC90	Virtual Output 1 Name				F205	"Virt Op 1 "
CC9A	Virtual Output 1 Events	0 to 1		1	F102	0 (Disabled)
CC9B	Virtual Output 1 Reserved (5 items)				F001	0
CCA0	Repeated for module number 2					
CCB0	Repeated for module number 3					
CCC0	Repeated for module number 4					
CCD0	Repeated for module number 5					
CCE0	Repeated for module number 6					
CCF0	Repeated for module number 7					
CD00	Repeated for module number 8					
CD10	Repeated for module number 9					
CD20	Repeated for module number 10					
CD30	Repeated for module number 11					
CD40	Repeated for module number 12					
CD50	Repeated for module number 13					
CD60	Repeated for module number 14					
CD70	Repeated for module number 15					
CD80	Repeated for module number 16					
CD90	Repeated for module number 17					
CDA0	Repeated for module number 18					
CDB0	Repeated for module number 19					
CDC0	Repeated for module number 20					
CDD0	Repeated for module number 21					
CDE0	Repeated for module number 22					
CDF0	Repeated for module number 23					
CE00	Repeated for module number 24					
CE10	Repeated for module number 25					
CE20	Repeated for module number 26					
CE30	Repeated for module number 27					
CE40	Repeated for module number 28					
CE50	Repeated for module number 29					
CE60	Repeated for module number 30					
CE70	Repeated for module number 31					

Table B-9: MODBUS MEMORY MAP (Sheet 27 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
CE80	Repeated for module number 32					
CE90	Repeated for module number 33					
CEA0	Repeated for module number 34					
CEB0	Repeated for module number 35					
CEC0	Repeated for module number 36					
CED0	Repeated for module number 37					
CEE0	Repeated for module number 38					
CEF0	Repeated for module number 39					
CF00	Repeated for module number 40					
CF10	Repeated for module number 41					
CF20	Repeated for module number 42					
CF30	Repeated for module number 43					
CF40	Repeated for module number 44					
CF50	Repeated for module number 45					
CF60	Repeated for module number 46					
CF70	Repeated for module number 47					
CF80	Repeated for module number 48					
CF90	Repeated for module number 49					
CFA0	Repeated for module number 50					
CFB0	Repeated for module number 51					
CFC0	Repeated for module number 52					
CFD0	Repeated for module number 53					
CFE0	Repeated for module number 54					
CFF0	Repeated for module number 55					
D000	Repeated for module number 56					
D010	Repeated for module number 57					
D020	Repeated for module number 58					
D030	Repeated for module number 59					
D040	Repeated for module number 60					
D050	Repeated for module number 61					
D060	Repeated for module number 62					
D070	Repeated for module number 63					
D080	Repeated for module number 64					
Mandator	y (Read/Write Setting)					
D280	Test Mode Function	0 to 1		1	F102	0 (Disabled)
Mandator	y (Read/Write)					
D281	Force VFD and LED	0 to 1		1	F126	0 (No)
Mandator	y (Read/Write Setting)					
D282	Test Mode Initiate	0 to 65535		1	F300	1
Mandator	ry (Read/Write Command)					
D283	Clear All Relay Records Command	0 to 1		1	F126	0 (No)
Contact C	Outputs (Read/Write Setting) (64 modules)					
D290	Contact Output 1 Name				F205	"Cont Op 1"
D29A	Contact Output 1 Operation	0 to 65535		1	F300	0
D29B	Contact Output 1 Seal In	0 to 65535		1	F300	0
D29C	Latching Output 1 Reset	0 to 65535		1	F300	0
D29D	Contact Output 1 Events	0 to 1		1	F102	1 (Enabled)
D29E	Latching Output 1 Type	0 to 1		1	F090	0 (Operate-dominant)
D29F	Reserved				F001	0
D2A0	Repeated for module number 2					
D2B0	Repeated for module number 3					
D2C0	Repeated for module number 4					
D2D0	Repeated for module number 5					
D2E0	Repeated for module number 6					

Table B-9: MODBUS MEMORY MAP (Sheet 28 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D2F0	Repeated for module number 7					
D300	Repeated for module number 8					
D310	Repeated for module number 9					
D320	Repeated for module number 10					
D330	Repeated for module number 11					
D340	Repeated for module number 12					
D350	Repeated for module number 13					
D360	Repeated for module number 14					
D370	Repeated for module number 15					
D380	Repeated for module number 16					
D390	Repeated for module number 17					
D3A0	Repeated for module number 18					
D3B0	Repeated for module number 19					
D3C0	Repeated for module number 20					
D3D0	Repeated for module number 21					
D3E0	Repeated for module number 22					
D3F0	Repeated for module number 23					
D400	Repeated for module number 24					
D410	Repeated for module number 25					
D420	Repeated for module number 26					
D430	Repeated for module number 27					
D440	Repeated for module number 28					
D450	Repeated for module number 29					
D460	Repeated for module number 30					
D470	Repeated for module number 31					
D480	Repeated for module number 32					
D490	Repeated for module number 33					
D4A0	Repeated for module number 34					
D4B0	Repeated for module number 35					
D4C0	Repeated for module number 36					
D4D0	Repeated for module number 37					
D4E0	Repeated for module number 38					
D4F0	Repeated for module number 39					
D500	Repeated for module number 40					
D510	Repeated for module number 41					
D520	Repeated for module number 42					
D530	Repeated for module number 43					
D540	Repeated for module number 44					
D550	Repeated for module number 45					
D560	Repeated for module number 46					
D570	Repeated for module number 47					
D580	Repeated for module number 48					
D590	Repeated for module number 49					
D5A0	Repeated for module number 50					
D5B0	Repeated for module number 51					
D5C0	Repeated for module number 52					
D5D0	Repeated for module number 53					
D5E0	Repeated for module number 54					
D5F0	Repeated for module number 55					
D600	Repeated for module number 56					
D610	Repeated for module number 57					
D620	Repeated for module number 58					
D630	Repeated for module number 59					
D630	Repeated for module number 60					
DUHU						

Table B-9: MODBUS MEMORY MAP (Sheet 29 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D650	Repeated for module number 61					
D660	Repeated for module number 62					
D670	Repeated for module number 63					
D680	Repeated for module number 64					
Reset (Re	ead/Write Setting)					
D800	FlexLogic operand which initiates a reset	0 to 65535		1	F300	0
Control P	Pushbuttons (Read/Write Setting) (7 modules)					
D810	Control Pushbuttons 1 Function	0 to 1		1	F102	0 (Disabled)
D811	Control Pushbuttons 1 Events	0 to 1		1	F102	0 (Disabled)
D812	Repeated for module number 2					
D814	Repeated for module number 3					
D816	Repeated for module number 4					
D818	Repeated for module number 5					
D81A	Repeated for module number 6					
D81C	Repeated for module number 7					
	cords (Read/Write Setting)					
D822	Clear Event Records operand	0 to 65535		1	F300	0
D823	Clear Oscillography operand	0 to 65535		1	F300	0
D824	Clear Data Logger operand	0 to 65535		1	F300	0
D82B	Clear Demand operand	0 to 65535		1	F300	0
D82D	Clear Energy operand	0 to 65535		1	F300	0
D82F	Clear Unauthorized Access operand	0 to 65535		1	F300	0
D831	Clear Platform Direct Input/Output Statistics operand	0 to 65535		1	F300	0
D832	Clear Relay Records Reserved (18 items)				F001	0
	ntact Inputs (Read/Write Setting)	0.1:0	1		F444	0 (B':t-1t)
D8B0	Force Contact Input x State (96 items) ntact Outputs (Read/Write Setting)	0 to 2		1	F144	0 (Disabled)
D910	Force Contact Output x State (64 items)	0 to 3	T	1	F131	0 (Disabled)
	puts/Outputs (Read/Write Setting)	0.00			1 101	o (Bloablea)
DB40	Direct Device ID	1 to 16		1	F001	1
DB41	Direct I/O Channel 1 Ring Configuration Function	0 to 1		1	F126	0 (No)
DB42	Platform Direct I/O Data Rate	64 to 128	kbps	64	F001	64
DB43	Direct I/O Channel 2 Ring Configuration Function	0 to 1		1	F126	0 (No)
DB44	Platform Direct I/O Crossover Function	0 to 1		1	F102	0 (Disabled)
Direct inp	out/output commands (Read/Write Command)	L	·!			
DB48	Direct input/output clear counters command	0 to 1		1	F126	0 (No)
Direct inp	outs (Read/Write Setting) (96 modules)		•	•		
DB50	Direct Input 1 Device Number	0 to 16		1	F001	0
DB51	Direct Input 1 Number	0 to 96		1	F001	0
DB52	Direct Input 1 Default State	0 to 3		1	F086	0 (Off)
DB53	Direct Input 1 Events	0 to 1		1	F102	0 (Disabled)
DB54	Repeated for module number 2					
DB58	Repeated for module number 3					
DB5C	Repeated for module number 4					
DB60	Repeated for module number 5					
DB64	Repeated for module number 6					
DB68	Repeated for module number 7					
DB6C	Repeated for module number 8					
DB70	Repeated for module number 9					
DB74	Repeated for module number 10					
DB78	Repeated for module number 11			1		
DB7C	Repeated for module number 12					
DB80	Repeated for module number 13Repeated for module number 14					
DB84		i e				

Table B-9: MODBUS MEMORY MAP (Sheet 30 of 35)

Repeated for module number 15	ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Repeated for module number 19 Repeated for module number 19 Repeated for module number 19 Repeated for module number 19 Repeated for module number 19 Repeated for module number 20 Repeated for module number 21 Repeated for module number 22 Repeated for module number 22 Repeated for module number 22 Repeated for module number 23 Repeated for module number 24 Repeated for module number 25 Repeated for module number 25 Repeated for module number 26 Repeated for module number 26 Repeated for module number 26 Repeated for module number 26 Repeated for module number 26 Repeated for module number 27 Repeated for module number 28 Repeated for module number 28 Repeated for module number 29 Repeated for module number 29 Repeated for module number 29 Repeated for module number 29 Repeated for module number 30 Repeated for module number 30 Repeated for module number 30 Repeated for module number 31 Repeated for module number 32 Repeated for module number 33 Repeated for module number 34 Repeated for module number 35 Repeated for module number 35 Repeated for module number 35 Repeated for module number 36 Repeated for module number 37 Repeated for module number 38 Repeated for module number 39 Repeated for module number 39 Repeated for module number 39 Repeated for module number 39 Repeated for module number 44 Repeated for module number 45 Repeated for module number 46 Repeated for module number 47 Repeated for module number 48 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 49 Repeated for module number 4						_	-
Repeated for module number 17	DB8C						
	DB90	•					
Repeated for module number 19	DB94	· · · · · · · · · · · · · · · · · · ·					
DBAD Repeated for module number 20							
DBA0		•					
BA54		•					
DBAC Repeated for module number 23		•					
DBAC Repeated for module number 24		•					
DBBB		•					
DB88							
DB88 Repeated for module number 27 DB80 Repeated for module number 28 DB00 Repeated for module number 30 DB04 Repeated for module number 31 DB05 Repeated for module number 32 DB00 Repeated for module number 32 DB00 Repeated for module number 33 DB01 Repeated for module number 34 DB02 Repeated for module number 35 DB00 Repeated for module number 37 DB00 Repeated for module number 37 DB01 Repeated for module number 38 DB02 Repeated for module number 39 DB03 Repeated for module number 40 DB74 Repeated for module number 41 DB76 Repeated for module number 43 DB76 Repeated for module number 43 DB70 Repeated for module number 40 DB70 Repeated for module number 41 DB70 Repeated for module number 43 DB70 Repeated for module number 43 DB70 Repeated for module number 44 DC00 <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></t<>		•					
DBBC Repeated for module number 28		•					
DBC0 Repeated for module number 29		•					
DBC4 Repeated for module number 30		•					
DBC6 Repeated for module number 31							
DBCC Repeated for module number 32		•					
DBD0		•					
DBD4		•					
DBDB Repeated for module number 36		'					
DBDC		•					
DBE0		•					
DBE4 Repeated for module number 38 Repeated for module number 39 DBEC Repeated for module number 40							
DBE6 Repeated for module number 39 DBEC Repeated for module number 40 DBF0 Repeated for module number 41 DBF4 Repeated for module number 42 DBF8 Repeated for module number 43 DBF0 Repeated for module number 44 DC00 Repeated for module number 45 DC04 Repeated for module number 46 DC08 Repeated for module number 47 DC00 Repeated for module number 48 DC10 Repeated for module number 49 DC14 Repeated for module number 50 DC18 Repeated for module number 51 DC10 Repeated for module number 52 DC20 Repeated for module number 53 DC24 Repeated for module number 54 DC25 Repeated for module number 55 DC26 Repeated for module number 56 DC30 Repeated for module number 58 DC31 Repeated for module number 58 DC32 Repeated for module number 58 DC33 Repeated for module number 69 DC40 <td< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></td<>		•					
DBEC Repeated for module number 40 DBFO Repeated for module number 41 DBF4 Repeated for module number 42 DBF8 Repeated for module number 43 DBF0 Repeated for module number 44 DC00 Repeated for module number 45 DC04 Repeated for module number 46 DC06 Repeated for module number 48 DC10 Repeated for module number 49 DC11 Repeated for module number 50 DC12 Repeated for module number 51 DC13 Repeated for module number 52 DC20 Repeated for module number 53 DC24 Repeated for module number 54 DC23 Repeated for module number 55 DC24 Repeated for module number 56 DC20 Repeated for module number 57 DC30 Repeated for module number 58 DC30 Repeated for module number 59 DC34 Repeated for module number 60 DC30 Repeated for module number 61 DC40 Repeated for module number 62 DC40 <td< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></td<>		•					
DBF0 Repeated for module number 41		•					
DBF4 Repeated for module number 42		•					
DBF8 Repeated for module number 43		· · · · · · · · · · · · · · · · · · ·					
DBFCRepeated for module number 44 DC00Repeated for module number 45 DC04Repeated for module number 46 DC08Repeated for module number 47 DC0CRepeated for module number 47 DC0CRepeated for module number 49 DC10Repeated for module number 50 DC14Repeated for module number 51 DC15Repeated for module number 52 DC20Repeated for module number 53 DC24Repeated for module number 54 DC28Repeated for module number 55 DC20Repeated for module number 56 DC30Repeated for module number 57 DC30Repeated for module number 57 DC31Repeated for module number 58 DC32Repeated for module number 59 DC33Repeated for module number 59 DC34Repeated for module number 59 DC35Repeated for module number 69 DC46Repeated for module number 60 DC47Repeated for module number 61 DC48Repeated for module number 62 DC49Repeated for module number 63 DC40Repeated for module number 64 DC40Repeated for module number 63 DC40Repeated for module number 63 DC40Repeated for module number 63 DC40Repeated for module number 63 DC40Repeated for module number 64 DC40Repeated for module number 63 DC40Repeated for module number 64 DC40Repeated for module number 65 DC50Repeated for module number 65 DC60Repeated for module number 60 DC70Repeated f							
DC00 Repeated for module number 45		•					
DC04 Repeated for module number 46 DC08 Repeated for module number 47 DC0C Repeated for module number 48 DC10 Repeated for module number 49 DC14 Repeated for module number 50 DC14 Repeated for module number 51 DC16 Repeated for module number 52 DC17 Repeated for module number 52 DC20 Repeated for module number 53 DC24 Repeated for module number 54 DC28 Repeated for module number 55 DC20 Repeated for module number 56 DC30 Repeated for module number 56 DC30 Repeated for module number 57 DC34 Repeated for module number 58 DC36 Repeated for module number 59 DC30 Repeated for module number 60 DC30 Repeated for module number 60 DC40 Repeated for module number 61 DC44 Repeated for module number 62 DC48 Repeated for module number 63 DC46 Repeated for module number 64 DC46 Repeated for module number 64 DC47 Repeated for module number 64 DC48 Repeated for module number 64 DC49 Repeated for module number 65 Repated for module number 65 Repeated for module number 65 .		•					
DC08 Repeated for module number 47		•					
DCOC Repeated for module number 48 DC10 Repeated for module number 50 DC14 Repeated for module number 50 DC18 Repeated for module number 51 DC10 Repeated for module number 52 DC20 Repeated for module number 53 DC24 Repeated for module number 54 DC28 Repeated for module number 55 DC20 Repeated for module number 56 DC30 Repeated for module number 57 DC34 Repeated for module number 58 DC38 Repeated for module number 59 DC30 Repeated for module number 60 DC30 Repeated for module number 61 DC40 Repeated for module number 62 DC44 Repeated for module number 63 DC45 Repeated for module number 64 Platform Direct Outputs (Read/Write Setting) (96 modules) DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 (Disabled)		•					
DC10 Repeated for module number 49 Repeated for module number 50 DC14 Repeated for module number 51		· · · · · · · · · · · · · · · · · · ·					
DC14 Repeated for module number 50 DC18 Repeated for module number 51 DC1C Repeated for module number 52 DC20 Repeated for module number 53 DC24 Repeated for module number 54 DC28 Repeated for module number 55 DC2C Repeated for module number 56 DC30 Repeated for module number 57 DC34 Repeated for module number 58 DC38 Repeated for module number 59 DC30 Repeated for module number 60 DC40 Repeated for module number 61 DC44 Repeated for module number 62 DC48 Repeated for module number 63 DC4C Repeated for module number 64 Platform Direct Outputs (Read/Write Setting) (96 modules) DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 DD01 Direct Output 1 Events 0 to 1 1 F102 0 (Disabled)							
DC18 Repeated for module number 51 DC1C Repeated for module number 52 DC20 Repeated for module number 53 DC24 Repeated for module number 54 DC28 Repeated for module number 55 DC2C Repeated for module number 56 DC30 Repeated for module number 57 DC34 Repeated for module number 58 DC38 Repeated for module number 59 DC30 Repeated for module number 60 DC40 Repeated for module number 61 DC44 Repeated for module number 62 DC48 Repeated for module number 63 DC4C Repeated for module number 64 Platform Direct Outputs (Read/Write Setting) (96 modules) DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 DD01 Direct Output 1 Events 0 to 1 1 F102 0 (Disabled)		•					
DC1C Repeated for module number 52 DC20 Repeated for module number 53 DC24 Repeated for module number 54 DC28 Repeated for module number 55 DC2C Repeated for module number 56 DC30 Repeated for module number 57 DC34 Repeated for module number 58 DC38 Repeated for module number 69 DC3C Repeated for module number 60 DC40 Repeated for module number 61 DC44 Repeated for module number 63 DC4C Repeated for module number 64 Platform Direct Outputs (Read/Write Setting) (96 modules) DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 DD01 Direct Output 1 Events 0 to 0 1 1 F102 0 (Disabled)		•					
DC20 Repeated for module number 53		<u>'</u>					
DC24 Repeated for module number 54		· · · · · · · · · · · · · · · · · · ·					
DC28 Repeated for module number 55 DC2C Repeated for module number 56 DC30 Repeated for module number 57 DC34 Repeated for module number 58 DC38 Repeated for module number 59 DC3C Repeated for module number 60 DC40 Repeated for module number 61 DC44 Repeated for module number 62 DC48 Repeated for module number 63 DC4C Repeated for module number 64 Platform Direct Outputs (Read/Write Setting) (96 modules) DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 DD01 Direct Output 1 Events 0 to 1 1 F102 0 (Disabled)		•					
DC2C Repeated for module number 56 DC30 Repeated for module number 57 DC34 Repeated for module number 58 DC38 Repeated for module number 59 DC3C Repeated for module number 60 DC40 Repeated for module number 61 DC44 Repeated for module number 62 DC48 Repeated for module number 63 DC4C Repeated for module number 64 Platform Direct Outputs (Read/Write Setting) (96 modules) DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 DD01 Direct Output 1 Events 0 to 1 1 F102 0 (Disabled)		•					
DC30 Repeated for module number 57 DC34 Repeated for module number 58 DC38 Repeated for module number 59 DC3C Repeated for module number 60 DC40 Repeated for module number 61 DC44 Repeated for module number 62 DC48 Repeated for module number 63 DC4C Repeated for module number 64 Platform Direct Outputs (Read/Write Setting) (96 modules) DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 DD01 Direct Output 1 Events 0 to 1 1 F102 0 (Disabled)		•					
DC34 Repeated for module number 58 Repeated for module number 59 DC3C Repeated for module number 60 Repeated for module number 61 DC40 Repeated for module number 62		•					
DC38 Repeated for module number 59 DC3C Repeated for module number 60 DC40 Repeated for module number 61 DC44 Repeated for module number 62 DC48 Repeated for module number 63 DC4C Repeated for module number 64 Platform Direct Outputs (Read/Write Setting) (96 modules) DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 DD01 Direct Output 1 Events 0 to 1 1 F102 0 (Disabled)		•					
DC3C Repeated for module number 60 Repeated for module number 61 DC40 Repeated for module number 61		•					
DC40 Repeated for module number 61 Repeated for module number 62 DC44 Repeated for module number 62		•					
DC44 Repeated for module number 62		•					
DC48 Repeated for module number 63		•					
DC4C Repeated for module number 64 Platform Direct Outputs (Read/Write Setting) (96 modules) DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 DD01 Direct Output 1 Events 0 to 1 1 F102 0 (Disabled)		•					
Platform Direct Outputs (Read/Write Setting) (96 modules) DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 DD01 Direct Output 1 Events 0 to 1 1 F102 0 (Disabled)		•					
DD00 Direct Output 1 Operand 0 to 65535 1 F300 0 DD01 Direct Output 1 Events 0 to 1 1 F102 0 (Disabled)							
DD01 Direct Output 1 Events 0 to 1 1 F102 0 (Disabled)							
· · · · · · · · · · · · · · · · · · ·							-
DD02Repeated for module number 2		•	0 to 1		1	F102	0 (Disabled)
	DD02	Repeated for module number 2					

Table B-9: MODBUS MEMORY MAP (Sheet 31 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
DD04	Repeated for module number 3					
DD06	Repeated for module number 4					
DD08	Repeated for module number 5					
DD0A	Repeated for module number 6					
DD0C	Repeated for module number 7					
DD0E	Repeated for module number 8					
DD10	Repeated for module number 9					
DD12	Repeated for module number 10					
DD14	Repeated for module number 11					
DD16	Repeated for module number 12					
DD18	Repeated for module number 13					
DD1A	Repeated for module number 14					
DD1C	Repeated for module number 15					
DD1E	Repeated for module number 16					
DD20	Repeated for module number 17					
DD22	Repeated for module number 18					
DD24	Repeated for module number 19					
DD26	Repeated for module number 20					
DD28	Repeated for module number 21					
DD2A	Repeated for module number 22					
DD2C	Repeated for module number 23					
DD2E	Repeated for module number 24					
DD30	Repeated for module number 25					
DD32	Repeated for module number 26					
DD34	Repeated for module number 27					
DD36	Repeated for module number 28					
DD38	Repeated for module number 29					
DD3A	Repeated for module number 30					
DD3C	Repeated for module number 31					
DD3E	Repeated for module number 32					
DD40	Repeated for module number 33					
DD42	Repeated for module number 34					
DD44	Repeated for module number 35					
DD46	Repeated for module number 36					
DD48	Repeated for module number 37					
DD4A	Repeated for module number 38					
DD4/C	Repeated for module number 39					
DD4E	Repeated for module number 40					
DD4E DD50	Repeated for module number 40					
DD50	Repeated for module number 42					
DD52	Repeated for module number 42					
DD54	Repeated for module number 44					
DD56	Repeated for module number 44Repeated for module number 45					
DD56	Repeated for module number 45					
DD5A DD5C	Repeated for module number 46					
DD5C DD5E	Repeated for module number 47Repeated for module number 48					
DD5E	Repeated for module number 48Repeated for module number 49					
	Repeated for module number 49Repeated for module number 50					
DD62	•					
DD64	Repeated for module number 51					
DD66	Repeated for module number 52					
DD68	Repeated for module number 53					
DD6A	Repeated for module number 54					
DD6C	Repeated for module number 55					
DD6E	Repeated for module number 56					

Table B-9: MODBUS MEMORY MAP (Sheet 32 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
DD70		RANGE	UNITS	SIEP	FURIMAI	DEFAULI
DD70	Repeated for module number 57					
DD72	Repeated for module number 58Repeated for module number 59					
DD74	· · · · · · · · · · · · · · · · · · ·					
	Repeated for module number 60					
DD78	Repeated for module number 61					
DD7A	Repeated for module number 62					
DD7C	Repeated for module number 63					
DD7E	Repeated for module number 64					
DE00	put/Output Alarms (Read/Write Setting)	0 to 1	1	1 1	F102	0 (Disabled)
DE00	Direct Input/Output Channel 1 CRC Alarm Function Direct I/O Channel 1 CRC Alarm Message Count			1	F102 F001	0 (Disabled)
DE01	Direct I/O Charmer 1 CRC Alarm Message Count Direct Input/Output Channel 1 CRC Alarm Threshold	100 to 10000 1 to 1000		1	F001	600 10
DE02		0 to 1			F102	-
DE03	Direct Input/Output Channel 1 CRC Alarm Events			1		0 (Disabled) 10
DE04	Reserved (4 items) Direct Input/Output Channel 2 CRC Alarm Function	1 to 1000 0 to 1		1	F001 F102	
						0 (Disabled)
DE09	Direct I/O Channel 2 CRC Alarm Message Count	100 to 10000		1	F001	600
DE0A	Direct Input/Output Channel 2 CRC Alarm Threshold	1 to 1000		1	F001	10
DE0B	Direct Input/Output Channel 2 CRC Alarm Events	0 to 1		1	F102	0 (Disabled)
DE0C	Reserved (4 items)	1 to 1000		1	F001	10
DE10	Direct I/O Ch 1 Unreturned Messages Alarm Function	0 to 1		1	F102	0 (Disabled)
DE11	Direct I/O Ch 1 Unreturned Messages Alarm Msg Count	100 to 10000		1	F001	600
DE12	Direct I/O Ch 1 Unreturned Messages Alarm Threshold	1 to 1000		1	F001	10
DE13	Direct I/O Ch 1 Unreturned Messages Alarm Events	0 to 1		1	F102	0 (Disabled)
DE14	Reserved (4 items)	1 to 1000		1	F001	10
DE18	Direct IO Ch 2 Unreturned Messages Alarm Function	0 to 1		1	F102	0 (Disabled)
DE19	Direct I/O Ch 2 Unreturned Messages Alarm Msg Count	100 to 10000		1	F001	600
DE1A	Direct I/O Ch 2 Unreturned Messages Alarm Threshold	1 to 1000		1	F001	10
DE1B	Direct I/O Channel 2 Unreturned Messages Alarm Events	0 to 1		1	F102	0 (Disabled)
DE1C	Reserved (4 items)	1 to 1000		1	F001	10
	Devices (Read/Write Setting) (16 modules)			1	F000	"D D
E000	Remote Device 1 ID				F202	"Remote Device 1 "
E00A	Repeated for module number 2					
E014	Repeated for module number 3					
E01E	Repeated for module number 4					
E028	Repeated for module number 5					
E032	Repeated for module number 6					
E03C	Repeated for module number 7					
E046	Repeated for module number 8					
E050	Repeated for module number 9			1		
E05A	Repeated for module number 10					
E064	Repeated for module number 11					
E06E	Repeated for module number 12					
E078	Repeated for module number 13			1		
E082	Repeated for module number 14					
E08C	Repeated for module number 15					
E096	Repeated for module number 16					
	nputs (Read/Write Setting) (64 modules)	44: 40		1 4	F004	,
E100	Remote Input 1 Device	1 to 16		1	F001	1 (1)
E101	Remote Input 1 Bit Pair	0 to 64		1	F156	0 (None)
E102	Remote Input 1 Default State	0 to 3		1	F086	0 (Off)
E103	Remote Input 1 Events	0 to 1		1	F102	0 (Disabled)
E104	Repeated for module number 2					
E108	Repeated for module number 3			1		
E10C	Repeated for module number 4		Í	Ī	l	

Table B-9: MODBUS MEMORY MAP (Sheet 33 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
E110	Repeated for module number 5					
E114	Repeated for module number 6					
E118	Repeated for module number 7					
E11C	Repeated for module number 8					
E120	Repeated for module number 9					
E124	Repeated for module number 10					
E128	Repeated for module number 11					
E12C	Repeated for module number 12					
E130	Repeated for module number 13					
E134	Repeated for module number 14					
E138	Repeated for module number 15					
E13C	Repeated for module number 16					
E140	Repeated for module number 17					
E144	Repeated for module number 18					
E148	Repeated for module number 19					
E14C	Repeated for module number 20					
E150	Repeated for module number 21					
E154	Repeated for module number 22					
E158	Repeated for module number 23					
E15C	Repeated for module number 24					
E160	Repeated for module number 25					
E164	Repeated for module number 26					
E168	Repeated for module number 27					
E16C	Repeated for module number 28					
E170	Repeated for module number 29					
E174	Repeated for module number 30					
E178	Repeated for module number 31					
E17C	Repeated for module number 32					
E180	Repeated for module number 33					
E184	Repeated for module number 34					
E188	Repeated for module number 35					
E18C	Repeated for module number 36					
E190	Repeated for module number 37					
E194	Repeated for module number 38					
E198	Repeated for module number 39					
E19C	Repeated for module number 40					
E1A0	Repeated for module number 41					
E1A4	Repeated for module number 42					
E1A8	Repeated for module number 43					
E1AC	Repeated for module number 44					
E1B0	Repeated for module number 45					
E1B4	Repeated for module number 46					
E1B8	Repeated for module number 47					
E1BC	Repeated for module number 48					
E1C0	Repeated for module number 49					
E1C4	Repeated for module number 50					
E1C8	Repeated for module number 51					
E1CC	Repeated for module number 52					
E1D0	Repeated for module number 53					
E1D4	Repeated for module number 54					
E1D8	Repeated for module number 55					
E1DC	Repeated for module number 56					
E1E0	Repeated for module number 57					
E1E4	Repeated for module number 58					
		l	l			

Table B-9: MODBUS MEMORY MAP (Sheet 34 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
E1E8	Repeated for module number 59					
E1EC	Repeated for module number 60					
E1F0	Repeated for module number 61					
E1F4	Repeated for module number 62					
E1F8	Repeated for module number 63					
E1FC	Repeated for module number 64					
Remote 0	Output DNA Pairs (Read/Write Setting) (32 modules)					
E600	Remote Output DNA 1 Operand	0 to 65535		1	F300	0
E601	Remote Output DNA 1 Events	0 to 1		1	F102	0 (Disabled)
E602	Remote Output DNA 1 Reserved (2 items)	0 to 1		1	F001	0
E604	Repeated for module number 2					
E608	Repeated for module number 3					
E60C	Repeated for module number 4					
E610	Repeated for module number 5					
E614	Repeated for module number 6					
E618	Repeated for module number 7					
E61C	Repeated for module number 8					
E620	Repeated for module number 9					
E624	Repeated for module number 10					
E628	Repeated for module number 11					
E62C	Repeated for module number 12					
E630	Repeated for module number 13					
E634	Repeated for module number 14					
E638	Repeated for module number 15					
E63C	Repeated for module number 16					
E640	Repeated for module number 17					
E644	Repeated for module number 18					
E648	Repeated for module number 19					
E64C	Repeated for module number 20					
E650	Repeated for module number 21					
E654	Repeated for module number 22					
E658	Repeated for module number 23					
E65C	Repeated for module number 24					
E660	Repeated for module number 25					
E664	Repeated for module number 26					
E668	Repeated for module number 27					
E66C	Repeated for module number 28					
E670	Repeated for module number 29					
E674	Repeated for module number 30					
E678	Repeated for module number 31					
E67C	Repeated for module number 32					
	Output UserSt Pairs (Read/Write Setting) (32 modules)					
E680	Remote Output UserSt 1 Operand	0 to 65535		1	F300	0
E681	Remote Output UserSt 1 Events	0 to 1		1	F102	0 (Disabled)
E682	Remote Output UserSt 1 Reserved (2 items)	0 to 1		1	F001	0
E684	Repeated for module number 2					
E688	Repeated for module number 3			ļ		
E68C	Repeated for module number 4					
E690	Repeated for module number 5					
E694	Repeated for module number 6					
E698	Repeated for module number 7					
E69C	Repeated for module number 8					
E6A0	Repeated for module number 9					
E6A4	Repeated for module number 10					

Table B-9: MODBUS MEMORY MAP (Sheet 35 of 35)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
E6A8	Repeated for module number 11					
E6AC	Repeated for module number 12					
E6B0	Repeated for module number 13					
E6B4	Repeated for module number 14					
E6B8	Repeated for module number 15					
E6BC	Repeated for module number 16					
E6C0	Repeated for module number 17					
E6C4	Repeated for module number 18					
E6C8	Repeated for module number 19					
E6CC	Repeated for module number 20					
E6D0	Repeated for module number 21					
E6D4	Repeated for module number 22					
E6D8	Repeated for module number 23					
E6DC	Repeated for module number 24					
E6E0	Repeated for module number 25					
E6E4	Repeated for module number 26					
E6E8	Repeated for module number 27					
E6EC	Repeated for module number 28					
E6F0	Repeated for module number 29					
E6F4	Repeated for module number 30					
E6F8	Repeated for module number 31					
E6FC	Repeated for module number 32					

B.4.2 DATA FORMATS

F001

UR_UINT16 UNSIGNED 16 BIT INTEGER

F002

UR_SINT16 SIGNED 16 BIT INTEGER

F003

UR_UINT32 UNSIGNED 32 BIT INTEGER (2 registers)

High order word is stored in the first register. Low order word is stored in the second register.

F004

UR_SINT32 SIGNED 32 BIT INTEGER (2 registers)

High order word is stored in the first register/ Low order word is stored in the second register.

F005

UR_UINT8 UNSIGNED 8 BIT INTEGER

F006

UR_SINT8 SIGNED 8 BIT INTEGER

F011

UR_UINT16 FLEXCURVE DATA (120 points)

A FlexCurve is an array of 120 consecutive data points (x, y) which are interpolated to generate a smooth curve. The y-axis is the user defined trip or operation time setting; the x-axis is the pickup ratio and is pre-defined. Refer to format F119 for a listing of the pickup ratios; the enumeration value for the pickup ratio indicates the offset into the FlexCurve base address where the corresponding time value is stored.

F012

DISPLAY_SCALE DISPLAY SCALING (unsigned 16-bit integer)

MSB indicates the SI units as a power of ten. LSB indicates the number of decimal points to display.

Example: Current values are stored as 32 bit numbers with three decimal places and base units in Amps. If the retrieved value is 12345.678 A and the display scale equals 0x0302 then the displayed value on the unit is 12.35 kA.

F013

POWER_FACTOR (SIGNED 16 BIT INTEGER)

Positive values indicate lagging power factor; negative values indicate leading.

F040

UR_UINT48 48-BIT UNSIGNED INTEGER

F050

UR UINT32 TIME and DATE (UNSIGNED 32 BIT INTEGER)

Gives the current time in seconds elapsed since 00:00:00 January 1, 1970.

F051

UR_UINT32 DATE in SR format (alternate format for F050)

First 16 bits are Month/Day (MM/DD/xxxx). Month: 1=January, 2=February,...,12=December; Day: 1 to 31 in steps of 1 Last 16 bits are Year (xx/xx/YYYY): 1970 to 2106 in steps of 1

F052

UR_UINT32 TIME in SR format (alternate format for F050)

First 16 bits are Hours/Minutes (HH:MM:xx.xxx). Hours: 0=12am, 1=1am,...,12=12pm,...23=11pm; Minutes: 0 to 59 in steps of 1

Last 16 bits are Seconds (xx:xx:.SS.SSS): 0=00.000s, 1=00.001,...,59999=59.999s)

F060

FLOATING_POINT IEEE FLOATING POINT (32 bits)

F070

HEX2 2 BYTES - 4 ASCII DIGITS

F071

HEX4 4 BYTES - 8 ASCII DIGITS

F072

HEX6 6 BYTES - 12 ASCII DIGITS

F073

HEX8 8 BYTES - 16 ASCII DIGITS

F074

HEX20 20 BYTES - 40 ASCII DIGITS

F083

ENUMERATION: SELECTOR MODES

0 = Time-Out, 1 = Acknowledge

F084

ENUMERATION: SELECTOR POWER UP

0 = Restore, 1 = Synchronize, 2 = Sync/Restore

F085

ENUMERATION: POWER SWING SHAPE

0 = Mho Shape, 1 = Quad Shape

F086

ENUMERATION: DIGITAL INPUT DEFAULT STATE

0 = Off, 1 = On, 2= Latest/Off, 3 = Latest/On

F090

ENUMERATION: LATCHING OUTPUT TYPE

0 = Operate-dominant, 1 = Reset-dominant

F100

ENUMERATION: VT CONNECTION TYPE

0 = Wye; 1 = Delta

F101

ENUMERATION: MESSAGE DISPLAY INTENSITY

0 = 25%, 1 = 50%, 2 = 75%, 3 = 100%

F102

ENUMERATION: DISABLED/ENABLED

0 = Disabled; 1 = Enabled

F104

ENUMERATION: RESET TYPE

0 = Instantaneous, 1 = Timed, 2 = Linear

F105

ENUMERATION: LOGIC INPUT

0 = Disabled, 1 = Input 1, 2 = Input 2

F106

ENUMERATION: PHASE ROTATION

0 = ABC, 1 = ACB

F108

ENUMERATION: OFF/ON

0 = Off, 1 = On

F109

ENUMERATION: CONTACT OUTPUT OPERATION

0 = Self-reset, 1 = Latched, 2 = Disabled

F110

ENUMERATION: CONTACT OUTPUT LED CONTROL

0 = Trip, 1 = Alarm, 2 = None

B.4 MEMORY MAPPING

F112 ENUMERATION: RS485 BAUD RATES

bitmask	value
0	300
1	1200
2	2400
3	4800

bitmask	value
4	9600
5	19200
6	38400
7	57600

bitmask	value
8	115200
9	14400
10	28800
11	33600

F113

ENUMERATION: PARITY

0 = None, 1 = Odd, 2 = Even

F114

ENUMERATION: IRIG-B SIGNAL TYPE

0 = None, 1 = DC Shift, 2 = Amplitude Modulated

F115

ENUMERATION: BREAKER STATUS

0 = Auxiliary A, 1 = Auxiliary B

F117

ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS

 $0 = 1 \times 72$ cycles, $1 = 3 \times 36$ cycles, $2 = 7 \times 18$ cycles, $3 = 15 \times 9$ cycles

F118

ENUMERATION: OSCILLOGRAPHY MODE

0 = Automatic Overwrite, 1 = Protected

F119 ENUMERATION: FLEXCURVE™ PICKUP RATIOS

mask	value	mask	value	mask	value	mask	value
0	0.00	30	0.88	60	2.90	90	5.90
1	0.05	31	0.90	61	3.00	91	6.00
2	0.10	32	0.91	62	3.10	92	6.50
3	0.15	33	0.92	63	3.20	93	7.00
4	0.20	34	0.93	64	3.30	94	7.50
5	0.25	35	0.94	65	3.40	95	8.00
6	0.30	36	0.95	66	3.50	96	8.50
7	0.35	37	0.96	67	3.60	97	9.00
8	0.40	38	0.97	68	3.70	98	9.50
9	0.45	39	0.98	69	3.80	99	10.00
10	0.48	40	1.03	70	3.90	100	10.50
11	0.50	41	1.05	71	4.00	101	11.00
12	0.52	42	1.10	72	4.10	102	11.50
13	0.54	43	1.20	73	4.20	103	12.00
14	0.56	44	1.30	74	4.30	104	12.50
15	0.58	45	1.40	75	4.40	105	13.00
16	0.60	46	1.50	76	4.50	106	13.50
17	0.62	47	1.60	77	4.60	107	14.00
18	0.64	48	1.70	78	4.70	108	14.50
19	0.66	49	1.80	79	4.80	109	15.00
20	0.68	50	1.90	80	4.90	110	15.50
21	0.70	51	2.00	81	5.00	111	16.00
22	0.72	52	2.10	82	5.10	112	16.50
23	0.74	53	2.20	83	5.20	113	17.00
24	0.76	54	2.30	84	5.30	114	17.50
25	0.78	55	2.40	85	5.40	115	18.00
26	0.80	56	2.50	86	5.50	116	18.50
27	0.82	57	2.60	87	5.60	117	19.00
28	0.84	58	2.70	88	5.70	118	19.50
29	0.86	59	2.80	89	5.80	119	20.00

F122

ENUMERATION: ELEMENT INPUT SIGNAL TYPE

0 = Phasor, 1 = RMS

F123

ENUMERATION: CT SECONDARY

0 = 1 A, 1 = 5 A

F124

ENUMERATION: LIST OF ELEMENTS

bitmask	element
0	Phase Instantaneous Overcurrent 1
1	Phase Instantaneous Overcurrent 2
2	Phase Instantaneous Overcurrent 3
3	Phase Instantaneous Overcurrent 4
4	Phase Instantaneous Overcurrent 5

bitmask	element
5	Phase Instantaneous Overcurrent 6
6	Phase Instantaneous Overcurrent 7
7	Phase Instantaneous Overcurrent 8
8	Phase Instantaneous Overcurrent 9
9	Phase Instantaneous Overcurrent 10
10	Phase Instantaneous Overcurrent 11
11	Phase Instantaneous Overcurrent 12
102	8-bit Comparator 1
103	8-bit Comparator 2
104	8-bit Comparator 3
105	8-bit Comparator 4
106	8-bit Comparator 5
107	8-bit Comparator 6
144	Phase Undervoltage 1
145	Phase Undervoltage 2
152	Phase Overvoltage 1
214	Sensitive Directional Power 1
215	Sensitive Directional Power 2
224	SRC1 VT Fuse Failure
225	SRC2 VT Fuse Failure
226	SRC3 VT Fuse Failure
227	SRC4 VT Fuse Failure
228	SRC5 VT Fuse Failure
229	SRC6 VT Fuse Failure
232	SRC1 50DD (Disturbance Detection)
233	SRC2 50DD (Disturbance Detection)
234	SRC3 50DD (Disturbance Detection)
235	SRC4 50DD (Disturbance Detection)
236	SRC5 50DD (Disturbance Detection)
237	SRC6 50DD (Disturbance Detection)
242	Open Pole Detector
266	Digitizer 1
267	Digitizer 2
268	Digitizer 3
269	Digitizer 4
270	Digitizer 5
272	Breaker 1
273	Breaker 2
312	Synchrocheck 1
313	Synchrocheck 2
336	Setting Group
337	Reset
344	Overfrequency 1
345	Overfrequency 2
346	Overfrequency 3
347	Overfrequency 4
352	Underfrequency 1
353	Underfrequency 2
354	Underfrequency 3
355	Underfrequency 4
356	Underfrequency 5
357	Underfrequency 6
385	Selector 1

bitmask	element
386	Selector 2
390	Control Pushbutton 1
391	Control Pushbutton 2
392	Control Pushbutton 3
393	Control Pushbutton 4
394	Control Pushbutton 5
395	Control Pushbutton 6
396	Control Pushbutton 7
400	FlexElement™ 1
401	FlexElement™ 2
402	FlexElement™ 3
403	FlexElement™ 4
404	FlexElement™ 5
405	FlexElement™ 6
406	FlexElement™ 7
407	FlexElement™ 8
408	FlexElement™ 9
409	FlexElement™ 10
410	FlexElement™ 11
411	FlexElement™ 12
412	FlexElement™ 13
413	FlexElement™ 14
414	FlexElement™ 15
415	FlexElement™ 16
420	Non-volatile Latch 1
421	Non-volatile Latch 2
422	Non-volatile Latch 3
423	Non-volatile Latch 4
424	Non-volatile Latch 5
425	Non-volatile Latch 6
426	Non-volatile Latch 7
427	Non-volatile Latch 8
428	Non-volatile Latch 9
429	Non-volatile Latch 10
430	Non-volatile Latch 11
431	Non-volatile Latch 12
432	Non-volatile Latch 13
433	Non-volatile Latch 14
434	Non-volatile Latch 15
435	Non-volatile Latch 16
512	Digital Element 1
513	Digital Element 2
514	Digital Element 3
515	Digital Element 4
516	Digital Element 5
517	Digital Element 6
518	Digital Element 7
519	Digital Element 8
520	Digital Element 9
521	Digital Element 10
522	Digital Element 11
523	Digital Element 12
524	Digital Element 13
	<u> </u>

bitmask	element			
525	Digital Element 14			
526	Digital Element 15			
527	Digital Element 16			
530	Frequency Rate of Change 1			
531	Frequency Rate of Change 2			
532	Frequency Rate of Change 3			
533	Frequency Rate of Change 4			
536	8-bit Switch 1			
537	8-bit Switch 2			
538	8-bit Switch 3			
539	8-bit Switch 4			
540	8-bit Switch 5			
541	8-bit Switch 6			
544	Digital Counter 1			
545	Digital Counter 2			
546	Digital Counter 3			
547	Digital Counter 4			
548	Digital Counter 5			
549	Digital Counter 6			
550	Digital Counter 7			
551	Digital Counter 8			
680	User-Programmable Pushbutton 1			
681	User-Programmable Pushbutton 2			
682	User-Programmable Pushbutton 3			
683	User-Programmable Pushbutton 4			
684	User-Programmable Pushbutton 5			
685	User-Programmable Pushbutton 6			
686	User-Programmable Pushbutton 7			
687	User-Programmable Pushbutton 8			
688	User-Programmable Pushbutton 9			
689	User-Programmable Pushbutton 10			
690	User-Programmable Pushbutton 11			
691	User-Programmable Pushbutton 12			

F125

ENUMERATION: ACCESS LEVEL

0 = Restricted; 1 = Command, 2 = Setting, 3 = Factory Service

F126

ENUMERATION: NO/YES CHOICE

0 = No, 1 = Yes

F127

ENUMERATION: LATCHED OR SELF-RESETTING

0 = Latched, 1 = Self-Reset

F128

ENUMERATION: CONTACT INPUT THRESHOLD

0 = 17 V DC, 1 = 33 V DC, 2 = 84 V DC, 3 = 166 V DC

F129

ENUMERATION: FLEXLOGIC TIMER TYPE

0 = millisecond, 1 = second, 2 = minute

F130

ENUMERATION: SIMULATION MODE

0 = Off. 1 = Pre-Fault, 2 = Fault, 3 = Post-Fault

F131

ENUMERATION: FORCED CONTACT OUTPUT STATE

0 = Disabled, 1 = Energized, 2 = De-energized, 3 = Freeze

F132

ENUMERATION: DEMAND INTERVAL

0 = 5 min, 1 = 10 min, 2 = 15 min, 3 = 20 min, 4 = 30 min, 5 = 60 min

F133

ENUMERATION: PROGRAM STATE

0 = Not Programmed, 1 = Programmed

F134

ENUMERATION: PASS/FAIL

0 = Fail, 1 = OK, 2 = n/a

F135

ENUMERATION: GAIN CALIBRATION

0 = 0x1, 1 = 1x16

F136

ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS

 $0 = 31 \times 8$ cycles, $1 = 15 \times 16$ cycles, $2 = 7 \times 32$ cycles $3 = 3 \times 64$ cycles, $4 = 1 \times 128$ cycles

F138

ENUMERATION: OSCILLOGRAPHY FILE TYPE

0 = Data File, 1 = Configuration File, 2 = Header File

F139

ENUMERATION: DEMAND CALCULATIONS

0 = Thermal Exponential, 1 = Block Interval, 2 = Rolling Demand

F140

ENUMERATION: CURRENT, SENS CURRENT, VOLTAGE, DISABLED

0 = Disabled, 1 = Current 46 A, 2 = Voltage 280 V, 3 = Current 4.6 A, 4 = Current 2 A, 5 = Notched 4.6 A, 6 = Notched 2 A

F141 ENUMERATION: SELF TEST ERROR

bitmask	error			
0	Any Self Tests			
1	IRIG-B Failure			
2	DSP Error			
4	No DSP Interrupts			
5	Unit Not Calibrated			
9	Prototype Firmware			
10	Flexlogic Error Token			
11	Equipment Mismatch			
13	Unit Not Programmed			
14	System Exception			
15	Latching Out Error			
18	SNTP Failure			
19	Battery Failure			
20	Primary Ethernet Failure			
21	Secondary Ethernet Failure			
22	EEPROM Data Error			
23	SRAM Data Error			
24	Program Memory			
25	Watchdog Error			
26	Low On Memory			
27	Remote Device Off			
28	Direct Device Off			
29	Direct Ring Break			
30	Any Minor Error			
31	Any Major Error			

F142 ENUMERATION: EVENT RECORDER ACCESS FILE TYPE

0 = All Record Data, 1 = Headers Only, 2 = Numeric Event Cause

F143

UR_UINT32: 32 BIT ERROR CODE (F141 specifies bit number)

A bit value of 0 = no error, 1 = error

F144 ENUMERATION: FORCED CONTACT INPUT STATE

0 = Disabled, 1 = Open, 2 = Closed

F145 ENUMERATION: ALPHABET LETTER

bitmask	type	bitmask	type	bitmask	type	bitmask	type
0	null	7	G	14	N	21	U
1	Α	8	Н	15	0	22	V
2	В	9	I	16	Р	23	W
3	С	10	J	17	Q	24	Х
4	D	11	K	18	R	25	Υ
5	Е	12	L	19	S	26	Z
6	F	13	М	20	T		

F146 ENUMERATION: MISC. EVENT CAUSES

bitmask	definition
0	Events Cleared
1	Oscillography Triggered
2	Date/time Changed
3	Default Settings Loaded
4	Test Mode On
5	Test Mode Off
6	Power On
7	Power Off
8	Relay In Service
9	Relay Out Of Service
10	Watchdog Reset
11	Oscillography Clear
12	Reboot Command
13	Led Test Initiated
14	Flash Programming
15	Fault Report Trigger
16	User Programmable Fault Report Trigger

F151 ENUMERATION: RTD SELECTION

bitmask	RTD#	bitmask	RTD#	bitma	sk RTD#
0	NONE	17	RTD 17	33	RTD 33
1	RTD 1	18	RTD 18	34	RTD 34
2	RTD 2	19	RTD 19	35	RTD 35
3	RTD 3	20	RTD 20	36	RTD 36
4	RTD 4	21	RTD 21	37	RTD 37
5	RTD 5	22	RTD 22	38	RTD 38
6	RTD 6	23	RTD 23	39	RTD 39
7	RTD 7	24	RTD 24	40	RTD 40
8	RTD 8	25	RTD 25	41	RTD 41
9	RTD 9	26	RTD 26	42	RTD 42
10	RTD 10	27	RTD 27	43	RTD 43
11	RTD 11	28	RTD 28	44	RTD 44
12	RTD 12	29	RTD 29	45	RTD 45
13	RTD 13	30	RTD 30	46	RTD 46
14	RTD 14	31	RTD 31	47	RTD 47
15	RTD 15	32	RTD 32	48	RTD 48
16	RTD 16			•	

F152

ENUMERATION: SETTING GROUP

0 = Active Group, 1 = Group 1, 2 = Group 2, 3 = Group 3

4 = Group 4, 5 = Group 5, 6 = Group 6

F155

ENUMERATION: REMOTE DEVICE STATE

0 = Offline, 1 = Online

F156 ENUMERATION: REMOTE INPUT BIT PAIRS

bitmask	RTD#	bitmask	RTD#] [bitmask	RTD#
0	NONE	22	DNA-22	lF	44	UserSt-12
1	DNA-1	23	DNA-23	İſ	45	UserSt-13
2	DNA-2	24	DNA-24		46	UserSt-14
3	DNA-3	25	DNA-25		47	UserSt-15
4	DNA-4	26	DNA-26		48	UserSt-16
5	DNA-5	27	DNA-27	İſ	49	UserSt-17
6	DNA-6	28	DNA-28	İſ	50	UserSt-18
7	DNA-7	29	DNA-29	İſ	51	UserSt-19
8	DNA-8	30	DNA-30	İſ	52	UserSt-20
9	DNA-9	31	DNA-31	İſ	53	UserSt-21
10	DNA-10	32	DNA-32	İſ	54	UserSt-22
11	DNA-11	33	UserSt-1	İſ	55	UserSt-23
12	DNA-12	34	UserSt-2		56	UserSt-24
13	DNA-13	35	UserSt-3		57	UserSt-25
14	DNA-14	36	UserSt-4		58	UserSt-26
15	DNA-15	37	UserSt-5		59	UserSt-27
16	DNA-16	38	UserSt-6		60	UserSt-28
17	DNA-17	39	UserSt-7		61	UserSt-29
18	DNA-18	40	UserSt-8	\prod	62	UserSt-30
19	DNA-19	41	UserSt-9	\prod	63	UserSt-31
20	DNA-20	42	UserSt-10	\prod	64	UserSt-32
21	DNA-21	43	UserSt-11]		

APPENDIX B

F157

ENUMERATION: BREAKER MODE

0 = 3-Pole, 1 = 1-Pole

F159

ENUMERATION: BREAKER AUX CONTACT KEYING

0 = 52a, 1 = 52b, 2 = None

F166

ENUMERATION: AUXILIARY VT CONNECTION TYPE

0 = Vn, 1 = Vag, 2 = Vbg, 3 = Vcg, 4 = Vab, 5 = Vbc, 6 = Vca

F167

ENUMERATION: SIGNAL SOURCE

0 = SRC 1, 1 = SRC 2, 2 = SRC 3, 3 = SRC 4, 4 = SRC 5, 5 = SRC 6

F168

ENUMERATION: INRUSH INHIBIT FUNCTION

0 = Disabled, 1 = Adapt. 2nd, 2 = Trad. 2nd

ENUMERATION: LOW/HIGH OFFSET and GAIN TRANSDUCER INPUT/OUTPUT SELECTION

0 = LOW. 1 = HIGH

F171

ENUMERATION: TRANSDUCER CHANNEL INPUT TYPE

0 = dcmA IN, 1 = Ohms IN, 2 = RTD IN, 3 = dcmA OUT

F172

ENUMERATION: SLOT LETTERS

bitmask	slot	bitm
0	F	4
1	G	5
2	Н	6
3	J	7

slot
K
L
М
N

bitmask	slot	bitmask	slot
8	Р	12	U
9	R	13	V
10	S	14	W
11	Т	15	Χ

F173

ENUMERATION: TRANSDUCER DCMA I/O RANGE

bitmask	dcmA I/O range					
0	0 to -1 mA					
1	0 to 1 mA					
2	-1 to 1 mA					
3	0 to 5 mA					
4	0 to 10 mA					
5	0 to 20 mA					
6	4 to 20 mA					

F174

ENUMERATION: TRANSDUCER RTD INPUT TYPE

0 = 100 Ohm Platinum, 1 = 120 Ohm Nickel, 2 = 100 Ohm Nickel, 3 = 10 Ohm Copper

F175

ENUMERATION: PHASE LETTERS

0 = A, 1 = B, 2 = C

ENUMERATION: SYNCHROCHECK DEAD SOURCE SELECT

bitmask	synchrocheck dead source
0	None
1	LV1 and DV2
2	DV1 and LV2
3	DV1 or DV2
4	DV1 Xor DV2
5	DV1 and DV2

F177

ENUMERATION: COMMUNICATION PORT

0 = None, 1 = COM1-RS485, 2 = COM2-RS485,

3 = Front Panel-RS232, 4 = Network

F178

ENUMERATION: DATA LOGGER RATES

0 = 1 sec, 1 = 1 min, 2 = 5 min, 3 = 10 min, 4 = 15 min, 5 = 20 min, 6 = 30 min, 7 = 60 min

F180

ENUMERATION: PHASE/GROUND

0 = PHASE, 1 = GROUND

F181

ENUMERATION: ODD/EVEN/NONE

0 = ODD, 1 = EVEN, 2 = NONE

F183

ENUMERATION: AC INPUT WAVEFORMS

bitmask	definition
0	Off
1	8 samples/cycle
2	16 samples/cycle
3	32 samples/cycle
4	64 samples/cycle

F185

ENUMERATION: PHASE A,B,C, GROUND SELECTOR

0 = A, 1 = B, 2 = C, 3 = G

F186

ENUMERATION: MEASUREMENT MODE

0 = Phase to Ground, 1 = Phase to Phase

F190 ENUMERATION: SIMULATED KEYPRESS

bitmsk	keypress
0	use between real keys
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	0
11	Decimal Pt
12	Plus/Minus
13	Value Up
14	Value Down
15	Message Up
16	Message Down
17	Message Left
18	Message Right
19	Menu
20	Help

bitmsk	keypress
21	Escape
22	Enter
23	Reset
24	User 1
25	User 2
26	User 3
27	User-programmable key 1
28	User-programmable key 2
29	User-programmable key 3
30	User-programmable key 4
31	User-programmable key 5
32	User-programmable key 6
33	User-programmable key 7
34	User-programmable key 8
35	User-programmable key 9
36	User-programmable key 10
37	User-programmable key 11
38	User-programmable key 12
39	User 4 (control pushbutton)
40	User 5 (control pushbutton)
41	User 6 (control pushbutton)
42	User 7 (control pushbutton)

F192

ENUMERATION: ETHERNET OPERATION MODE

0 = Half-Duplex, 1 = Full-Duplex

F194

ENUMERATION: DNP SCALE

A bitmask of 0 = 0.01, 1 = 0.1, 2 = 1, 3 = 10, 4 = 100, 5 = 1000, 6 = 10000, 7 = 100000, 8 = 0.001

F197 ENUMERATION: DNP BINARY INPUT POINT BLOCK

bitmask	Input Point Block
0	Not Used
1	Virtual Inputs 1 to 16
2	Virtual Inputs 17 to 32
3	Virtual Outputs 1 to 16
4	Virtual Outputs 17 to 32
5	Virtual Outputs 33 to 48
6	Virtual Outputs 49 to 64
7	Contact Inputs 1 to 16
8	Contact Inputs 17 to 32
9	Contact Inputs 33 to 48
10	Contact Inputs 49 to 64
11	Contact Inputs 65 to 80

bitmask	Input Point Block
12	Contact Inputs 81 to 96
13	Contact Outputs 1 to 16
14	Contact Outputs 17 to 32
15	Contact Outputs 33 to 48
16	Contact Outputs 49 to 64
17	Remote Inputs 1 to 16
18	Remote Inputs 17 to 32
19	Remote Devs 1 to 16
20	Elements 1 to 16
21	Elements 17 to 32
22	Elements 33 to 48
23	Elements 49 to 64
24	Elements 65 to 80
25	Elements 81 to 96
26	Elements 97 to 112
27	Elements 113 to 128
28	Elements 129 to 144
29	Elements 145 to 160
30	Elements 161 to 176
31	Elements 177 to 192
32	Elements 193 to 208
33	Elements 209 to 224
34	Elements 225 to 240
35	Elements 241 to 256
36	Elements 257 to 272
37	Elements 273 to 288
38	Elements 289 to 304
39	Elements 305 to 320
40	Elements 321 to 336
41	Elements 337 to 352
42	Elements 353 to 368
43	Elements 369 to 384
44	Elements 385 to 400
45	Elements 401 to 406
46	Elements 417 to 432
47	Elements 433 to 448
48	Elements 449 to 464
49	Elements 465 to 480
50	Elements 481 to 496
51	Elements 497 to 512
52	Elements 513 to 528
53	Elements 529 to 544
54	Elements 545 to 560
55	LED States 1 to 16
56	LED States 17 to 32
57	Self Tests 1 to 16
58	Self Tests 17 to 32
<u> </u>	1

F199

ENUMERATION: DISABLED/ENABLED/CUSTOM

0 = Disabled, 1 = Enabled, 2 = Custom

APPENDIX B B.4 MEMORY MAPPING

F200

TEXT40: 40-CHARACTER ASCII TEXT

20 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F201

TEXT8: 8-CHARACTER ASCII PASSCODE

4 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F202

TEXT20: 20-CHARACTER ASCII TEXT

10 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F203

TEXT16: 16-CHARACTER ASCII TEXT

F204

TEXT80: 80-CHARACTER ASCII TEXT

F205

TEXT12: 12-CHARACTER ASCII TEXT

F206

TEXT6: 6-CHARACTER ASCII TEXT

F207

TEXT4: 4-CHARACTER ASCII TEXT

F208

TEXT2: 2-CHARACTER ASCII TEXT

F222

ENUMERATION: TEST ENUMERATION

0 = Test Enumeration 0, 1 = Test Enumeration 1

F224

ENUMERATION: RATE TREND FOR FREQ RATE OF CHANGE

0 = Increasing, 1 = Decreasing, 2 = Bidirectional

F300

UR_UINT16: FLEXLOGIC™ BASE TYPE (6-bit type)

The FlexLogic™ BASE type is 6 bits and is combined with a 9 bit descriptor and 1 bit for protection element to form a 16 bit value. The combined bits are of the form: PTTTTTTDDDDDDDDD, where P bit if set, indicates that the FlexLogic™ type is associated with a protection element state and T represents bits for the BASE type, and D represents bits for the descriptor.

The values in square brackets indicate the base type with P prefix [PTTTTTT] and the values in round brackets indicate the descriptor range.

[0] Off(0) this is boolean FALSE value

[0] On (1)This is boolean TRUE value

[2] CONTACT INPUTS (1 - 96)

[3] CONTACT INPUTS OFF (1-96)

[4] VIRTUAL INPUTS (1-64)

[6] VIRTUAL OUTPUTS (1-64)

[10] CONTACT OUTPUTS VOLTAGE DETECTED (1-64)

[11] CONTACT OUTPUTS VOLTAGE OFF DETECTED (1-64)

[12] CONTACT OUTPUTS CURRENT DETECTED (1-64)

[13] CONTACT OUTPUTS CURRENT OFF DETECTED (1-64)

[14] REMOTE INPUTS (1-32)

[28] INSERT (Via Keypad only)

[32] END

[34] NOT (1 INPUT)

[36] 2 INPUT XOR (0)

[38] LATCH SET/RESET (2 inputs)

[40] OR (2 to 16 inputs)

[42] AND (2 to 16 inputs)

[44] NOR (2 to 16 inputs)

[46] NAND (2 to 16 inputs)

[48] TIMER (1 to 32)

[50] ASSIGN VIRTUAL OUTPUT (1 to 64)

[52] SELF-TEST ERROR (see F141 for range)

[56] ACTIVE SETTING GROUP (1 to 6)

[62] MISCELLANEOUS EVENTS (see F146 for range)

[64 to 127] ELEMENT STATES

F400

UR UINT16: CT/VT BANK SELECTION

bitmask	bank selection
0	Card 1 Contact 1 to 4
1	Card 1 Contact 5 to 8
2	Card 2 Contact 1 to 4
3	Card 2 Contact 5 to 8
4	Card 3 Contact 1 to 4
5	Card 3 Contact 5 to 8

F500

UR_UINT16: PACKED BITFIELD

First register indicates input/output state with bits 0(MSB)-15(LSB) corresponding to input/output state 1-16. The second register indicates input/output state with bits 0-15 corresponding to input/output state 17-32 (if required) The third register indicates input/output state with bits 0-15 corresponding to input/output state 33-48 (if required). The fourth register indicates input/output state with bits 0-15 corresponding to input/output state 49-64 (if required).

The number of registers required is determined by the specific data item. A bit value of 0 = Off, 1 = On

F501

UR_UINT16: LED STATUS

Low byte of register indicates LED status with bit 0 representing the top LED and bit 7 the bottom LED. A bit value of 1 indicates the LED is on, 0 indicates the LED is off.

F502

BITFIELD: ELEMENT OPERATE STATES

Each bit contains the operate state for an element. See the F124 format code for a list of element IDs. The operate bit for element ID X is bit [X mod 16] in register [X/16].

F504

BITFIELD: 3-PHASE ELEMENT STATE

bitmask	element state
0	Pickup
1	Operate
2	Pickup Phase A
3	Pickup Phase B
4	Pickup Phase C
5	Operate Phase A
6	Operate Phase B
7	Operate Phase C

F505

BITFIELD: CONTACT OUTPUT STATE

0 = Contact State, 1 = Voltage Detected, 2 = Current Detected

F506|

BITFIELD: 1 PHASE ELEMENT STATE

0 = Pickup, 1 = Operate

F507

BITFIELD: COUNTER ELEMENT STATE

0 = Count Greater Than, 1 = Count Equal To, 2 = Count Less Than

F509

BITFIELD: SIMPLE ELEMENT STATE

0 = Operate

F511

BITFIELD: 3-PHASE SIMPLE ELEMENT STATE

0 = Operate, 1 = Operate A, 2 = Operate B, 3 = Operate C

F513

ENUMERATION: POWER SWING MODE

0 = Two Step, 1 = Three Step

F514

ENUMERATION: POWER SWING TRIP MODE

0 = Delayed, 1 = Early

F515

ENUMERATION ELEMENT INPUT MODE

0 = SIGNED, 1 = ABSOLUTE

F516

ENUMERATION ELEMENT COMPARE MODE

0 = LEVEL, 1 = DELTA

F518

ENUMERATION: FLEXELEMENT™ UNITS

0 = Milliseconds, 1 = Seconds, 2 = Minutes

F519

ENUMERATION: NON-VOLATILE LATCH

0 = Reset-Dominant, 1 = Set-Dominant

F522

ENUMERATION: TRANSDUCER DCMA OUTPUT RANGE

0 = -1 to 1 mA; 1 = 0 to 1 mA; 2 = 4 to 20 mA

F523

ENUMERATION: DNP OBJECTS 20, 22, AND 23 DEFAULT VARIATION

bitmask	Default Variation
0	1
1	2
2	5
3	6

F524

ENUMERATION: DNP OBJECT 21 DEFAULT VARIATION

bitmask	Default Variation
0	1
1	2
2	9
3	10

F525

ENUMERATION: DNP OBJECT 32 DEFAULT VARIATION

bitmask	Default Variation
0	1
1	2
2	3
3	4
4	5
5	7

F530
ENUMERATION: FRONT PANEL INTERFACE KEYPRESS

bitmask	keypress
0	None
1	Menu
2	Message Up
3	7
4	8
5	9
6	Help
7	Message Left
8	4
9	5
10	6
11	Escape
12	Message Right
13	1
14	2
15	3
16	Enter
17	Message Down
18	0
19	Decimal
20	+/_
21	Value Up

bitmask	keypress
22	Value Down
23	Reset
24	User 1
25	User 2
26	User 3
31	User PB 1
32	User PB 2
33	User PB 3
34	User PB 4
35	User PB 5
36	User PB 6
37	User PB 7
38	User PB 8
39	User PB 9
40	User PB 10
41	User PB 11
42	User PB 12
44	User 4
45	User 5
46	User 6
47	User 7

F600

UR_UINT16: FLEXANALOG PARAMETER

Corresponds to the modbus address of the value used when this parameter is selected. Only certain values may be used as Flex-Analogs (basically all metering quantities used in protection)

E

C.1.1 INTEROPERABILITY DOCUMENT

This document is adapted from the IEC 60870-5-104 standard. For ths section the boxes indicate the following: \blacksquare – used in standard direction; \blacksquare – not used; \blacksquare – cannot be selected in IEC 60870-5-104 standard.

1. SYSTEM OR DEVICE:

- System Definition
- ☐ Controlling Station Definition (Master)
- Controlled Station Definition (Slave)

2. NETWORK CONFIGURATION:

- Point to Point
- Multipoint
- Multiple Point to Point
- Multipoint Star

3. PHYSICAL LAYER

Transmission Speed (control direction):

Unbalanced Interchange Circuit V.24/V.28 Standard:	Unbalanced Interchange Circuit V.24/V.28 Recommended if >1200 bits/s:	Balanced Interchange Circuit X.24/X.27:
100 bits/sec.	2400 bits/sec.	2400 bits/sec.
200 bits/sec.	4800 bits/sec.	4800 bits/sec.
300 bits/sec.	9600 bits/sec.	9600 bits/sec.
600 bits/sec.		19200 bits/sec.
1200 bits/sec.		38400 bits/sec.
		56000 bits/sec.
		64000 bits/sec.

Transmission Speed (monitor direction):

Unbalanced Interchange Circuit V.24/V.28 Standard:	Unbalanced Interchange Circuit V.24/V.28 Recommended if >1200 bits/s:	Balanced Interchange Circuit X.24/X.27:
100 bits/sec.	2400 bits/sec.	2400 bits/sec.
200 bits/sec.	4800 bits/sec.	4800 bits/sec.
300 bits/sec.	9600 bits/sec.	9600 bits/sec.
600 bits/sec.		19200 bits/sec.
1200 bits/sec.		38400 bits/sec.
		56000 bits/sec.
		64000 bits/sec.

4. LINK LAYER

Link Transmission Procedure:	Address Field of the Link:								
Balanced Transmision	Not Present (Balanced Transmission Only)								
Unbalanced Transmission	One Octet								
	Two Octets								
	Structured								
	Unstructured								
Frame Length (maximum length, number of octets): Not selectable in companion IEC 60870-5-104 standard									

When using an unbalanced link layer, the following ADSU types are returned in class 2 messages (low priority) with the indicated causes of transmission:

- The standard assignment of ADSUs to class 2 messages is used as follows:
- A special assignment of ADSUs to class 2 messages is used as follows:

5. APPLICATION LAYER

Transmission Mode for Application Data:

Mode 1 (least significant octet first), as defined in Clause 4.10 of IEC 60870-5-4, is used exclusively in this companion standard.

Common Address of ADSU:

- One Octet
- Two Octets

Information Object Address:

- One Octet
- Two Octets Unstructured
- Three Octets

Cause of Transmission:

- One Octet
- Two Octets (with originator address). Originator address is set to zero if not used.

Maximum Length of APDU: 253 (the maximum length may be reduced by the system.

Structured

Selection of standard ASDUs:

For the following lists, the boxes indicate the following: 🗖 – used in standard direction; 🗖 – not used; 🔳 – cannot be selected in IEC 60870-5-104 standard.

Process information in monitor direction

	M_SP_NA_1
· 2> := Single point information with time tag	M_SP_TA_1
<3> := Double-point information	M_DP_NA_1
Double point information with time tag	M_DP_TA_1
<5> := Step position information	M_ST_NA_1
· ■ <6> := Step position information with time tag	M_ST_TA_1
<7> := Bitstring of 32 bits	M_BO_NA_1
-8> := Bitstring of 32 bits with time tag	M_BO_TA_1
<9> := Measured value, normalized value	M_ME_NA_1
· 10> := Measured value, normalized value with time tag	M_NE_TA_1
<11> := Measured value, scaled value	M_ME_NB_1
· ■ <12> := Measured value, scaled value with time tag	M_NE_TB_1
▼ <13> := Measured value, short floating point value	M_ME_NC_1
· - <14> := Measured value, short floating point value with time tag	M_NE_TC_1
<15> := Integrated totals	M_IT_NA_1
· ■ <16> := Integrated totals with time tag	M_IT_TA_1
· ■ <17> := Event of protection equipment with time tag	M_EP_TA_1
· Packed start events of protection equipment with time tag	M_EP_TB_1
· Packed output circuit information of protection equipment with time tag	M_EP_TC_1
<20> := Packed single-point information with status change detection	M_SP_NA_1

<21> := Measured value, normalized value without quantity descriptor	M_ME_ND_1
<30> := Single-point information with time tag CP56Time2a	M_SP_TB_1
<31> := Double-point information wiht time tag CP56Time2a	M_DP_TB_1
<32> := Step position information with time tag CP56Time2a	M_ST_TB_1
<33> := Bitstring of 32 bits with time tag CP56Time2a	M_BO_TB_1
<34> := Measured value, normalized value with time tag CP56Time2a	M_ME_TD_1
<35> := Measured value, scaled value with time tag CP56Time2a	M_ME_TE_1
<36> := Measured value, short floating point value with time tag CP56Time2a	M_ME_TF_1
<37> := Integrated totals with time tag CP56Time2a	M_IT_TB_1
<38> := Event of protection equipment with time tag CP56Time2a	M_EP_TD_1
<39> := Packed start events of protection equipment with time tag CP56Time2a	M_EP_TE_1
<40> := Packed output circuit information of protection equipment with time tag CP56Time2a	M_EP_TF_1

Either the ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, and <19> or of the set <30> to <40> are used.

Process information in control direction

<45> := Single command	C_SC_NA_1
<46> := Double command	C_DC_NA_1
<47> := Regulating step command	C_RC_NA_1
<48> := Set point command, normalized value	C_SE_NA_1
<49> := Set point command, scaled value	C_SE_NB_1
<50> := Set point command, short floating point value	C_SE_NC_1
<51> := Bitstring of 32 bits	C_BO_NA_1
<58> := Single command with time tag CP56Time2a	C_SC_TA_1
<59> := Double command with time tag CP56Time2a	C_DC_TA_1
<60> := Regulating step command with time tag CP56Time2a	C_RC_TA_1
<61> := Set point command, normalized value with time tag CP56Time2a	C_SE_TA_1
<62> := Set point command, scaled value with time tag CP56Time2a	C_SE_TB_1
<63> := Set point command, short floating point value with time tag CP56Time2a	C_SE_TC_1
<64> := Bitstring of 32 bits with time tag CP56Time2a	C_BO_TA_1

Either the ASDUs of the set <45> to <51> or of the set <58> to <64> are used.

System information in monitor direction

<70> := End of initialization	M EI NA 1

System information in control direction

<100> := Interrogation command	C_IC_NA_1
<101> := Counter interrogation command	C_CI_NA_1
₹ <102> := Read command	C_RD_NA_1
	C_CS_NA_1
<104> := Test command	C_TS_NA_1
	C_RP_NA_1
<106> := Delay acquisition command	C_CD_NA_1
<107> := Test command with time tag CP56Time2a	C_TS_TA_1

F_SG_NA_1

C_CD_NA_1

Parameter in control direction

<110> := Parameter of measured value, normalized value	PE_ME_NA_1
<111> := Parameter of measured value, scaled value	PE_ME_NB_1
<112> := Parameter of measured value, short floating point value	PE_ME_NC_1
<113> := Parameter activation	PE_AC_NA_1
File transfer	
<120> := File Ready	F_FR_NA_1
<121> := Section Ready	F_SR_NA_1
<122> := Call directory, select file, call file, call section	F_SC_NA_1
<123> := Last section, last segment	F_LS_NA_1
<124> := Ack file, ack section	F_AF_NA_1

Type identifier and cause of transmission assignments

<126> := Directory (blank or X, available only in monitor [standard] direction)

(station-specific parameters)

In the following table:

<125> := Segment

- Shaded boxes are not required.
- Black boxes are not permitted in this companion standard.
- Blank boxes indicate functions or ASDU not used.
- 'X' if only used in the standard direction

TYPE	IDENTIFICATION		CAUSE OF TRANSMISSION																	
		PERIODIC, CYCLIC	BACKGROUND SCAN	SPONTANEOUS	INTIALIZED	REQUEST OR REQUESTED	ACTIVATION	ACTIVATION CONFIRMATION	DEACTIVATION	DEACTIVATION CONFIRMATION	ACTIVATION TERMINATION	RETURN INFO CAUSED BY LOCAL CMD	FILE TRANSFER	INTERROGATED BY GROUP <number></number>	REQUEST BY GROUP <n> COUNTER REQ</n>	UNKNOWN TYPE IDENTIFICATION	UNKNOWN CAUSE OF TRANSMISSION	UNKNOWN COMMON ADDRESS OF ADSU	UNKNOWN INFORMATION OBJECT ADDR	UNKNOWN INFORMATION OBJECT ADDR
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<1>	M_SP_NA_1			Х		Х						Х	Х		Х					
<2>	M_SP_TA_1																			
<3>	M_DP_NA_1																			
<4>	M_DP_TA_1																			
<5>	M_ST_NA_1																			
<6>	M_ST_TA_1																			
<7>	M_BO_NA_1																			
<8>	M_BO_TA_1																			

TYPE	IDENTIFICATION		CAUSE OF TRANSMISSION																	
		PERIODIC, CYCLIC	BACKGROUND SCAN	SPONTANEOUS	INITIALIZED	REQUEST OR REQUESTED	ACTIVATION	ACTIVATION CONFIRMATION	DEACTIVATION	DEACTIVATION CONFIRMATION	ACTIVATION TERMINATION	RETURN INFO CAUSED BY LOCAL CMD	FILE TRANSFER	INTERROGATED BY GROUP <number></number>	REQUEST BY GROUP <n> COUNTER REQ</n>	UNKNOWN TYPE IDENTIFICATION	UNKNOWN CAUSE OF TRANSMISSION	UNKNOWN COMMON ADDRESS OF ADSU	UNKNOWN INFORMATION OBJECT ADDR	UNKNOWN INFORMATION OBJECT ADDR
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<9>	M_ME_NA_1																			
<10>	M_ME_TA_1																			
<11>	M_ME_NB_1																			
<12>	M_ME_TB_1																			
<13>	M_ME_NC_1	Х		Х		Х									Х					
<14>	M_ME_TC_1																			
<15>	M_IT_NA_1			Х												Х				
<16>	M_IT_TA_1																			
<17>	M_EP_TA_1																			
<18>	M_EP_TB_1																			
<19>	M_EP_TC_1																			
<20>	M_PS_NA_1																			
<21>	M_ME_ND_1																			
<30>	M_SP_TB_1			Х								X	X							
<31>	M_DP_TB_1																			
<32>	M_ST_TB_1																			
<33>	M_BO_TB_1																			
<34>	M_ME_TD_1																			
<35>	M_ME_TE_1																			
<36>	M_ME_TF_1																			
<37>	M_IT_TB_1			Х												Х				
<38>	M_EP_TD_1																			
<39>	M_EP_TE_1																			
<40>	M_EP_TF_1																			
<45>	C_SC_NA_1						Х	X	X	X	X									<u> </u>
<46>	C_DC_NA_1																			<u> </u>
<47>	C_RC_NA_1																			
<48>	C_SE_NA_1																			<u> </u>
<49>	C_SE_NB_1																			

TYPE IDENTIFICATION								С	AUS	E OF	TRA	NSM	ISSIC	N						
		PERIODIC, CYCLIC	BACKGROUND SCAN	SPONTANEOUS	INITIALIZED	REQUEST OR REQUESTED	ACTIVATION	ACTIVATION CONFIRMATION	DEACTIVATION	DEACTIVATION CONFIRMATION	ACTIVATION TERMINATION	RETURN INFO CAUSED BY LOCAL CMD	FILE TRANSFER	INTERROGATED BY GROUP <number></number>	REQUEST BY GROUP <n> COUNTER REQ</n>	UNKNOWN TYPE IDENTIFICATION	UNKNOWN CAUSE OF TRANSMISSION	UNKNOWN COMMON ADDRESS OF ADSU	UNKNOWN INFORMATION OBJECT ADDR	UNKNOWN INFORMATION OBJECT ADDR
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<50>	C_SE_NC_1																			
<51>	C_BO_NA_1																			
<58>	C_SC_TA_1						Х	Х	Х	Х	Х									
<59>	C_DC_TA_1																			
<60>	C_RC_TA_1																			
<61>	C_SE_TA_1																			
<62>	C_SE_TB_1																			
<63>	C_SE_TC_1																			
<64>	C_BO_TA_1																			
<70>	M_EI_NA_1*)				Х															
<100>	C_IC_NA_1						Х	X	X	X	X									
<101>	C_CI_NA_1						Х	X			X									
<102>	C_RD_NA_1					Х														
<103>	C_CS_NA_1			Х			Х	Х												
<104>	C_TS_NA_1																			
<105>	C_RP_NA_1						Х	Х												
<106>	C_CD_NA_1																			
<107>	C_TS_TA_1																			
<110>	P_ME_NA_1																			
<111>	P_ME_NB_1																			
<112>	P_ME_NC_1						Х	Х							Х					
<113>	P_AC_NA_1																			
<120>	F_FR_NA_1																			
<121>	F_SR_NA_1																			
<122>	F_SC_NA_1																			
<123>	F_LS_NA_1																			
<124>	F_AF_NA_1																			
<125>	F_SG_NA_1																			
<126>	F_DR_TA_1*)																			

6. BASIC APPLICATION FUNCTIONS

Station Initialization:

Remote initialization

Cyclic Data Transmission:

Cyclic data transmission

Read Procedure:

Read procedure

Spontaneous Transmission:

Spontaneous transmission

Double transmission of information objects with cause of transmission spontaneous:

The following type identifications may be transmitted in succession caused by a single status change of an information object. The particular information object addresses for which double transmission is enabled are defined in a project-specific list.

Single point information: M_SP_NA_1, M_SP_TA_1, M_SP_TB_1, and M_PS_NA_1
 Double point information: M_DP_NA_1, M_DP_TA_1, and M_DP_TB_1
 Step position information: M_ST_NA_1, M_ST_TA_1, and M_ST_TB_1
 Bitstring of 32 bits: M_BO_NA_1, M_BO_TA_1, and M_BO_TB_1 (if defined for a specific project)
 Measured value, normalized value: M_ME_NA_1, M_ME_TA_1, M_ME_ND_1, and M_ME_TD_1
 Measured value, scaled value: M_ME_NB_1, M_ME_TB_1, and M_ME_TE_1
 Measured value, short floating point number: M_ME_NC_1, M_ME_TC_1, and M_ME_TT_1

Station interrogation:

- Global
- ☐ Group 5 ☐ Group 5 ☐ Group 6
- ☑ Group 5☑ Group 9☑ Group 10
- ☐ Group 3 ☐ Group 7 ☐ Group 8 ☐ Group 8
- Group 11

Group 12

Group 15
Group 16

Group 13

Group 14

Clock synchronization:

Clock synchronization (optional, see Clause 7.6)

Command transmission:

- □ Direct command transmission
- Direct setpoint command transmission
- Select and execute command
- Select and execute setpoint command
- C SE ACTTERM used
- No additional definition
- Short pulse duration (duration determined by a system parameter in the outstation)
- ▼ Long pulse duration (duration determined by a system parameter in the outstation)
- Persistent output
- Supervision of maximum delay in command direction of commands and setpoint commands

Maximum allowable delay of commands and setpoint commands: 10 s

Transmission of integrated totals: Mode A: Local freeze with spontaneous transmission Mode B: Local freeze with counter interrogation Mode C: Freeze and transmit by counter interrogation

- Mode C: Freeze and transmit by counter-interrogation commands
- Mode D: Freeze by counter-interrogation command, frozen values reported simultaneously
- Counter read
- Counter freeze without reset
- Counter freeze with reset
- Counter reset
- General request counter
- Request counter group 1
- Request counter group 2
- Request counter group 3
- Request counter group 4

Parameter loading:

Threshold value	
Smoothing factor	
Low limit for trans	smission of measured values
High limit for trans	smission of measured values
Parameter activation:	
Activation/deactive	vation of persistent cyclic or periodic transmission of the addressed object
Test procedure:	

Test procedure

File transfer:

File transfer in monitor direction:

- Transparent file
- Transmission of disturbance data of protection equipment
- ☐ Transmission of sequences of events
- Transmission of sequences of recorded analog values

File transfer in control direction:

Transparent file

Background scan:

→ Background scan

Acquisition of transmission delay:

Acquisition of transmission delay

Definition of time outs:

PARAMETER	DEFAULT VALUE	REMARKS	SELECTED VALUE
t_{0}	30 s	Timeout of connection establishment	120 s
t_1	15 s	Timeout of send or test APDUs	15 s
t ₂	10 s	Timeout for acknowlegements in case of no data messages $t_2 < t_1$	10 s
t ₃	20 s	Timeout for sending test frames in case of a long idle state	20 s

Maximum range of values for all time outs: 1 to 255 s, accuracy 1 s

Maximum number of outstanding I-format APDUs k and latest acknowledge APDUs (w):

PARAMETER	DEFAULT VALUE	REMARKS	SELECTED VALUE
k	12 APDUs	Maximum difference receive sequence number to send state variable	12 APDUs
W	8 APDUs	Latest acknowledge after receiving w I-format APDUs	8 APDUs

Maximum range of values k: 1 to 32767 ($2^{15} - 1$) APDUs, accuracy 1 APDU

Maximum range of values w: 1 to 32767 APDUs, accuracy 1 APDU

Recommendation: w should not exceed two-thirds of k.

Portnumber:

PARAMETER	VALUE	REMARKS
Portnumber	2404	In all cases

RFC 2200 suite:

RFC 2200 is an official Internet Standard which describes the state of standardization of protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers a broad spectrum of actual standards used in the Internet. The suitable selection of documents from RFC 2200 defined in this standard for given projects has to be chosen by the user of this standard.

Ethernet 802.3

→ Serial X.21 interface

Other selection(s) from RFC 2200 (list below if selected)

C.1.2 POINTS LIST

Only Source 1 data points are shown in the following table. If the **NUMBER OF SOURCES IN MMENC LIST** setting is increased, data points for subsequent sources will be added to the list immediately following the Source 1 data points.

Table C-1: IEC 60870-5-104 POINTS (Sheet 1 of 4)

POINT	DESCRIPTION	UNITS
M_ME_NO	C_1 Points	
2000	SRC 1 Phase A Current RMS	А
2001	SRC 1 Phase B Current RMS	Α
2002	SRC 1 Phase C Current RMS	Α
2003	SRC 1 Neutral Current RMS	Α
2004	SRC 1 Phase A Current Magnitude	Α
2005	SRC 1 Phase A Current Angle	degrees
2006	SRC 1 Phase B Current Magnitude	Α
2007	SRC 1 Phase B Current Angle	degrees
2008	SRC 1 Phase C Current Magnitude	Α
2009	SRC 1 Phase C Current Angle	degrees
2010	SRC 1 Neutral Current Magnitude	Α
2011	SRC 1 Neutral Current Angle	degrees
2012	SRC 1 Ground Current RMS	Α
2013	SRC 1 Ground Current Magnitude	Α
2014	SRC 1 Ground Current Angle	degrees
2015	SRC 1 Zero Sequence Current Magnitude	A
2016	SRC 1 Zero Sequence Current Angle	degrees
2017	SRC 1 Positive Sequence Current Magnitude	Α
2018	SRC 1 Positive Sequence Current Angle	degrees
2019	SRC 1 Negative Sequence Current Magnitude	Α
2020	SRC 1 Negative Sequence Current Angle	degrees
2021	SRC 1 Differential Ground Current Magnitude	Α
2022	SRC 1 Differential Ground Current Angle	degrees
2023	SRC 1 Phase AG Voltage RMS	V
2024	SRC 1 Phase BG Voltage RMS	V
2025	SRC 1 Phase CG Voltage RMS	V
2026	SRC 1 Phase AG Voltage Magnitude	V
2027	SRC 1 Phase AG Voltage Angle	degrees
2028	SRC 1 Phase BG Voltage Magnitude	V
2029	SRC 1 Phase BG Voltage Angle	degrees
2030	SRC 1 Phase CG Voltage Magnitude	V
2031	SRC 1 Phase CG Voltage Angle	degrees
2032	SRC 1 Phase AB Voltage RMS	V
2033	SRC 1 Phase BC Voltage RMS	V
2034	SRC 1 Phase CA Voltage RMS	V
2035	SRC 1 Phase AB Voltage Magnitude	V
2036	SRC 1 Phase AB Voltage Angle	degrees
2037	SRC 1 Phase BC Voltage Magnitude	V
2038	SRC 1 Phase BC Voltage Angle	degrees
2039	SRC 1 Phase CA Voltage Magnitude	V
2040	SRC 1 Phase CA Voltage Angle	degrees
2041	SRC 1 Auxiliary Voltage RMS	V
2042	SRC 1 Auxiliary Voltage Magnitude	V
2043	SRC 1 Auxiliary Voltage Angle	degrees
2044	SRC 1 Zero Sequence Voltage Magnitude	V
	1	1

Table C-1: IEC 60870-5-104 POINTS (Sheet 2 of 4)

POINT	DESCRIPTION	UNITS
2045	SRC 1 Zero Sequence Voltage Angle	degrees
2046	SRC 1 Positive Sequence Voltage Magnitude	V
2047	SRC 1 Positive Sequence Voltage Angle	degrees
2048	SRC 1 Negative Sequence Voltage Magnitude	V
2049	SRC 1 Negative Sequence Voltage Angle	degrees
2050	SRC 1 Three Phase Real Power	W
2051	SRC 1 Phase A Real Power	W
2052	SRC 1 Phase B Real Power	W
2053	SRC 1 Phase C Real Power	W
2054	SRC 1 Three Phase Reactive Power	var
2055	SRC 1 Phase A Reactive Power	var
2056	SRC 1 Phase B Reactive Power	var
2057	SRC 1 Phase C Reactive Power	var
2058	SRC 1 Three Phase Apparent Power	VA
2059	SRC 1 Phase A Apparent Power	VA
2060	SRC 1 Phase B Apparent Power	VA
2061	SRC 1 Phase C Apparent Power	VA
2062	SRC 1 Three Phase Power Factor	none
2063	SRC 1 Phase A Power Factor	none
2064	SRC 1 Phase B Power Factor	none
2065	SRC 1 Phase C Power Factor	none
2066	SRC 1 Positive Watthour	Wh
2067	SRC 1 Negative Watthour	Wh
2068	SRC 1 Positive Varhour	varh
2069	SRC 1 Negative Varhour	varh
2070	SRC 1 Frequency	Hz
2071	SRC 1 Demand Ia	Α
2072	SRC 1 Demand Ib	Α
2073	SRC 1 Demand Ic	Α
2074	SRC 1 Demand Watt	W
2075	SRC 1 Demand Var	var
2076	SRC 1 Demand Va	VA
2077	Sens Dir Power 1 Actual	W
2078	Sens Dir Power 2 Actual	W
2079	Rate of Change 1 Actual	Hz/s
2080	Rate of Change 2 Actual	Hz/s
2081	Rate of Change 3 Actual	Hz/s
2082	Rate of Change 4 Actual	Hz/s
2083	Synchrocheck 1 Delta Voltage	V
2084	Synchrocheck 1 Delta Frequency	Hz
2085	Synchrocheck 1 Delta Phase	degrees
2086	Synchrocheck 2 Delta Voltage	V
2087	Synchrocheck 2 Delta Frequency	Hz
2088	Synchrocheck 2 Delta Phase	degrees
2089	DCMA Inputs 1 Value	none
2090	DCMA Inputs 2 Value	none

Table C-1: IEC 60870-5-104 POINTS (Sheet 3 of 4)

POINT	DESCRIPTION	UNITS
2091	DCMA Inputs 3 Value	none
2092	DCMA Inputs 4 Value	none
2093	RTD Inputs 1 Value	degreesC
2094	RTD Inputs 2 Value	degreesC
2095	RTD Inputs 3 Value	degreesC
2096	RTD Inputs 4 Value	degreesC
2097	Tracking Frequency	Hz
2098	Comp 1 A	none
2099	Comp 1 B	none
2100	Comp 1 Out	none
2101	Comp 2 A	none
2102	Comp 2 B	none
2103	Comp 2 Out	none
2104	Comp 3 A	none
2105	Comp 3 B	none
2106	Comp 3 Out	none
2107	Comp 4 A	none
2108	Comp 4 B	none
2109	Comp 4 Out	none
2110	Comp 5 A	none
2111	Comp 5 B	none
2112	Comp 5 Out	none
2113	Comp 6 A	none
2114	Comp 6 B	none
2115	Comp 6 Out	none
2116	Digitizer 1 Output	none
2117	Digitizer 2 Output	none
2118	Digitizer 3 Output	none
2119	Digitizer 4 Output	none
2120	Digitizer 5 Output	none
2121	FlexElement 1 Actual	none
2122	FlexElement 2 Actual	none
2123	FlexElement 3 Actual	none
2124	FlexElement 4 Actual	none
2125	FlexElement 5 Actual	none
2126	FlexElement 6 Actual	none
2127	FlexElement 7 Actual	none
2128	FlexElement 8 Actual	none
2129	FlexElement 9 Actual	none
2130	FlexElement 10 Actual	none
2131	FlexElement 11 Actual	none
2132	FlexElement 12 Actual	none
2133	FlexElement 13 Actual	none
2134	FlexElement 14 Actual	none
2135	FlexElement 15 Actual	none
2136	FlexElement 16 Actual	none
2137	Current Setting Group	none
P_ME_NC	_1 Points	
5000 - 5136	Threshold values for M_ME_NC_1 points	-
M_SP_NA	1 Points	
100 - 115	Virtual Input States[0]	_

Table C-1: IEC 60870-5-104 POINTS (Sheet 4 of 4)

POINT	DESCRIPTION	UNITS
116 - 131	Virtual Input States[1]	-
132 - 147	Virtual Output States[0]	-
148 - 163	Virtual Output States[1]	-
164 - 179	Virtual Output States[2]	-
180 - 195	Virtual Output States[3]	-
196 - 211	Contact Input States[0]	-
212 - 227	Contact Input States[1]	-
228 - 243	Contact Input States[2]	-
244 - 259	Contact Input States[3]	-
260 - 275	Contact Input States[4]	-
276 - 291	Contact Input States[5]	-
292 - 307	Contact Output States[0]	-
308 - 323	Contact Output States[1]	-
324 - 339	Contact Output States[2]	-
340 - 355	Contact Output States[3]	-
356 - 371	Remote Input 1 States[0]	-
372 - 387	Remote Input 1 States[1]	-
388 - 403	Remote Device 1 States	-
404 - 419	LED Column 1 State[0]	-
420 - 435	LED Column 1 State[1]	-
C_SC_NA	_1 Points	
1100 - 1115	Virtual Input States[0] - No Select Required	-
1116 - 1131	Virtual Input States[1] - Select Required	-
M_IT_NA_	1 Points	
4000	Digital Counter 1 Value	-
4001	Digital Counter 2 Value	-
4002	Digital Counter 3 Value	-
4003	Digital Counter 4 Value	-
4004	Digital Counter 5 Value	-
4005	Digital Counter 6 Value	-
4006	Digital Counter 7 Value	-
4007	Digital Counter 8 Value	-

Г

The following table provides a 'Device Profile Document' in the standard format defined in the DNP 3.0 Subset Definitions Document.

Table D-1: DNP V3.00 DEVICE PROFILE (Sheet 1 of 3)

(Also see the IMPLEMENTATION TABLE in the following	(Also see the IMPLEMENTATION TABLE in the following section)				
Vendor Name: General Electric Multilin					
Device Name: UR Series Relay					
Highest DNP Level Supported:	Device Function:				
For Requests: Level 2 For Responses: Level 2	☐ Master ☑ Slave				
Notable objects, functions, and/or qualifiers supported list is described in the attached table):	I in addition to the Highest DNP Levels Supported (the complete				
Binary Inputs (Object 1)					
Binary Input Changes (Object 2)					
Binary Outputs (Object 10)					
Binary Counters (Object 20)					
Frozen Counters (Object 21)					
Counter Change Event (Object 22)					
Frozen Counter Event (Object 23)					
Analog Inputs (Object 30)					
Analog Input Changes (Object 32)					
Analog Deadbands (Object 34)					
Maximum Data Link Frame Size (octets):	Maximum Application Fragment Size (octets):				
Transmitted: 292	Transmitted: 240				
Received: 292	Received: 2048				
Maximum Data Link Re-tries:	Maximum Application Layer Re-tries:				
☐ None	None Non				
Fixed at 2 Configurable					
☐ Configurable					
Requires Data Link Layer Confirmation:					
Never					
Always					
☐ Sometimes☐ Configurable					

Table D-1: DNP V3.00 DEVICE PROFILE (Sheet 2 of 3)

Requires Application Layer Confirmation: Never Always When reporting Event Data When sending multi-fragment responses Sometimes						
Configurable						
Timeouts while waiting for:						
Data Link Confirm: Complete Appl. Fragment: Application Confirm: Complete Appl. Response:	None None None None	Fixed at 3 s □ Variable □ Configurable □ Fixed at □ Variable □ Configurable ▼ Fixed at 4 s □ Variable □ Configurable □ Fixed at □ Variable □ Configurable				
Others:						
Transmission Delay: Inter-character Timeout: Need Time Delay: Select/Operate Arm Timeout: Binary input change scanning packed binary change process Analog input change scanning Counter change scanning perioder counter event scanning Unsolicited response notification Unsolicited response retry delay	period: period: od: period: n delay:	No intentional delay 50 ms Configurable (default = 24 hrs.) 10 s 8 times per power system cycle 1 s 500 ms 500 ms 500 ms configurable 0 to 60 sec.				
Sends/Executes Control Ope	rations:					
WRITE Binary Outputs SELECT/OPERATE DIRECT OPERATE DIRECT OPERATE – NO ACK	Never Never Never Never	☐ Always ☐ Sometimes ☐ Configurable ☒ Always ☐ Sometimes ☐ Configurable ☒ Always ☐ Sometimes ☐ Configurable ☒ Always ☐ Sometimes ☐ Configurable ☒ Always ☐ Sometimes ☐ Configurable				
Count > 1 Pulse On Pulse Off Pulse Off Latch On Latch Off Never Never Never	☐ Always ☐ Always ☐ Always ☐ Always ☐ Always	Sometimes ☐ Configurable Sometimes ☐ Configurable Sometimes ☐ Configurable Configurable ☐ Configurable Configurable ☐ Configurable				
Queue Never Clear Queue Never	☐ Always ☐ Always	☐ Sometimes ☐ Configurable ☐ Configurable				
Explanation of 'Sometimes': Object 12 points are mapped to UR Virtual Inputs. The persistence of Virtual Inputs is determined by the VIRTUAL INPUT X TYPE settings. Both "Pulse On" and "Latch On" operations perform the same function in the UR; that is, the appropriate Virtual Input is put into the "On" state. If the Virtual Input is set to "Self-Reset", it will reset after one pass of FlexLogic™. The On/Off times and Count value are ignored. "Pulse Off" and "Latch Off" operations put the appropriate Virtual Input into the "Off" state. "Trip" and "Close" operations both put the appropriate Virtual Input into the "On" state.						

APPENDIX D D.1 DNP PROTOCOL

Table D-1: DNP V3.00 DEVICE PROFILE (Sheet 3 of 3)

Reports Binary Input Change Events when no specific variation requested:	Reports time-tagged Binary Input Change Events when no specific variation requested:
Never✓ Only time-tagged✓ Only non-time-tagged✓ Configurable	 Never Binary Input Change With Time Binary Input Change With Relative Time Configurable (attach explanation)
Sends Unsolicited Responses:	Sends Static Data in Unsolicited Responses:
 Never Configurable Only certain objects Sometimes (attach explanation) ENABLE/DISABLE unsolicited Function codes supported 	Never When Device Restarts When Status Flags Change No other options are permitted.
Default Counter Object/Variation:	Counters Roll Over at:
 No Counters Reported Configurable (attach explanation) Default Object: 20 Default Variation: 1 Point-by-point list attached 	 No Counters Reported Configurable (attach explanation) 16 Bits (Counter 8) 32 Bits (Counters 0 to 7, 9) Other Value: Point-by-point list attached
Sends Multi-Fragment Responses:	
Yes No	

ח

D.1.2 IMPLEMENTATION TABLE

The following table identifies the variations, function codes, and qualifiers supported by the N60 in both request messages and in response messages. For static (non-change-event) objects, requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01. Static object requests sent with qualifiers 17 or 28 will be responded with qualifiers 17 or 28. For change-event objects, qualifiers 17 or 28 are always responded.

Table D-2: IMPLEMENTATION TABLE (Sheet 1 of 4)

OBJECT			REQUEST		RESPONSE	
OBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
1	0	Binary Input (Variation 0 is used to request default variation)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	Binary Input	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	2	Binary Input with Status	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
2	0	Binary Input Change (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	Binary Input Change without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	2	Binary Input Change with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response 130 (unsol. resp.)	17, 28 (index)
	3 (parse only)	Binary Input Change with Relative Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
10	0	Binary Output Status (Variation 0 is used to request default variation)	1 (read)	00, 01(start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	2	Binary Output Status	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
12	1	Control Relay Output Block	3 (select) 4 (operate) 5 (direct op) 6 (dir. op, noack)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	echo of request
20	0	Binary Counter (Variation 0 is used to request default variation)	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01(start-stop) 06(no range, or all) 07, 08(limited quantity) 17, 28(index)		
	1	32-Bit Binary Counter	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. Refer to the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts – the N60 is not restarted, but the DNP process is restarted.

Table D-2: IMPLEMENTATION TABLE (Sheet 2 of 4)

OBJECT			REQUEST		RESPONSE	
OBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
20 cont'd	2	16-Bit Binary Counter	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	5	32-Bit Binary Counter without Flag	22 (assign class) 1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	6	16-Bit Binary Counter without Flag	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
21	0	Frozen Counter (Variation 0 is used to request default variation)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	32-Bit Frozen Counter	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	2	16-Bit Frozen Counter	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	9	32-Bit Frozen Counter without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	10	16-Bit Frozen Counter without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
22	0	Counter Change Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Counter Change Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		17, 28 (index)
	2	16-Bit Counter Change Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	5	32-Bit Counter Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	, , ,	17, 28 (index)
	6	16-Bit Counter Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
23	0	Frozen Counter Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Frozen Counter Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	2	16-Bit Frozen Counter Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. Refer to the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts – the N60 is not restarted, but the DNP process is restarted.

Table D-2: IMPLEMENTATION TABLE (Sheet 3 of 4)

OBJECT			REQUEST		RESPONSE	
NO.	NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
23 cont'd	5	32-Bit Frozen Counter Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	6	16-Bit Frozen Counter Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
30	0	Analog Input (Variation 0 is used to request default variation)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	32-Bit Analog Input	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	2	16-Bit Analog Input	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	3	32-Bit Analog Input without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	4	16-Bit Analog Input without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	5	short floating point	1 (read) 22 (assign class)	00, 01 (start-stop) 06(no range, or all) 07, 08(limited quantity) 17, 28(index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
32	0	Analog Change Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	2	16-Bit Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	3	32-Bit Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	4	16-Bit Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	5	short floating point Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	7	short floating point Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
34	0	Analog Input Reporting Deadband (Variation 0 is used to request default variation)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	16-bit Analog Input Reporting Deadband (default – see Note 1)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
Note 1:		iation refers to the variation responded when	2 (write)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)		

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. Refer to the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts - the N60 is not restarted, but the DNP process is restarted.

Table D-2: IMPLEMENTATION TABLE (Sheet 4 of 4)

OBJECT			REQUEST		RESPONSE	
OBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
34 cont'd	2	32-bit Analog Input Reporting Deadband	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
			2 (write)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)		
	3	Short floating point Analog Input Reporting Deadband	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
50	0	Time and Date	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	1	Time and Date (default – see Note 1)	1 (read) 2 (write)	00, 01 (start-stop) 06 (no range, or all) 07 (limited qty=1) 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
52	2	Time Delay Fine			129 (response)	07 (limited quantity) (quantity = 1)
60	0	Class 0, 1, 2, and 3 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all)		
	1	Class 0 Data	1 (read) 22 (assign class)	06 (no range, or all)		
	2	Class 1 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all) 07, 08 (limited quantity)		
	3	Class 2 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all) 07, 08 (limited quantity)		
	4	Class 3 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all) 07, 08 (limited quantity)		
80	1	Internal Indications	2 (write)	00 (start-stop) (index must =7)		
		No Object (function code only) see Note 3	13 (cold restart)			_
		No Object (function code only)	14 (warm restart)			
		No Object (function code only)	23 (delay meas.)			

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. Refer to the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts – the N60 is not restarted, but the DNP process is restarted.

APPENDIX D

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

BINARY INPUT POINTS

Static (Steady-State) Object Number: 1

Change Event Object Number: 2

Request Function Codes supported: 1 (read), 22 (assign class)

Static Variation reported when variation 0 requested: 2 (Binary Input with status)

Change Event Variation reported when variation 0 requested: 2 (Binary Input Change with Time)

Change Event Scan Rate: 8 times per power system cycle

Change Event Buffer Size: 1000

Table D-3: BINARY INPUTS (Sheet 1 of 12)

point	name/description	change event class
0	Virtual Input 1	2
1	Virtual Input 2	2
2	Virtual Input 3	2
3	Virtual Input 4	2
4	Virtual Input 5	2
5	Virtual Input 6	2
6	Virtual Input 7	2
7	Virtual Input 8	2
8	Virtual Input 9	2
9	Virtual Input 10	2
10	Virtual Input 11	2
11	Virtual Input 12	2
12	Virtual Input 13	2
13	Virtual Input 14	2
14	Virtual Input 15	2
15	Virtual Input 16	2
16	Virtual Input 17	2
17	Virtual Input 18	2
18	Virtual Input 19	2
19	Virtual Input 20	2
20	Virtual Input 21	2
21	Virtual Input 22	2
22	Virtual Input 23	2
23	Virtual Input 24	2
24	Virtual Input 25	2
25	Virtual Input 26	2
26	Virtual Input 27	2
27	Virtual Input 28	2
28	Virtual Input 29	2
29	Virtual Input 30	2

Table D-3: BINARY INPUTS (Sheet 2 of 12)

point	name/description	change event class
30	Virtual Input 31	2
31	Virtual Input 32	2
32	Virtual Output 1	2
33	Virtual Output 2	2
34	Virtual Output 3	2
35	Virtual Output 4	2
36	Virtual Output 5	2
37	Virtual Output 6	2
38	Virtual Output 7	2
39	Virtual Output 8	2
40	Virtual Output 9	2
41	Virtual Output 10	2
42	Virtual Output 11	2
43	Virtual Output 12	2
44	Virtual Output 13	2
45	Virtual Output 14	2
46	Virtual Output 15	2
47	Virtual Output 16	2
48	Virtual Output 17	2
49	Virtual Output 18	2
50	Virtual Output 19	2
51	Virtual Output 20	2
52	Virtual Output 21	2
53	Virtual Output 22	2
54	Virtual Output 23	2
55	Virtual Output 24	2
56	Virtual Output 25	2
57	Virtual Output 26	2
58	Virtual Output 27	2
59	Virtual Output 28	2

APPENDIX D D.2 DNP POINT LISTS

Table D-3: BINARY INPUTS (Sheet 3 of 12)

point	name/description	change event class
60	Virtual Output 29	2
61	Virtual Output 30	2
62	Virtual Output 31	2
63	Virtual Output 32	2
64	Virtual Output 33	2
65	Virtual Output 34	2
66	Virtual Output 35	2
67	Virtual Output 36	2
68	Virtual Output 37	2
69	Virtual Output 38	2
70	Virtual Output 39	2
71	Virtual Output 40	2
72	Virtual Output 41	2
73	Virtual Output 42	2
74	Virtual Output 43	2
75	Virtual Output 44	2
76	Virtual Output 45	2
77	Virtual Output 46	2
78	Virtual Output 47	2
79	Virtual Output 48	2
80	Virtual Output 49	2
81	Virtual Output 50	2
82	Virtual Output 51	2
83	Virtual Output 52	2
84	Virtual Output 53	2
85	Virtual Output 54	2
86	Virtual Output 55	2
87	Virtual Output 56	2
88	Virtual Output 57	2
89	Virtual Output 58	2
90	Virtual Output 59	2
91	Virtual Output 60	2
92	Virtual Output 61	2
93	Virtual Output 62	2
94	Virtual Output 63	2
95	Virtual Output 64	2
96	Contact Input 1	1
97	Contact Input 2	1
98	Contact Input 3	1
99	Contact Input 3	1
100	·	1
100	Contact Input 5	1
	Contact Input 6	1
102	Contact Input 7	
103	Contact Input 8	1
104	Contact Input 9	1
105	Contact Input 10	1
106	Contact Input 11	1

Table D-3: BINARY INPUTS (Sheet 4 of 12)

point	name/description	change event class
107	Contact Input 12	1
108	Contact Input 13	1
109	Contact Input 14	1
110	Contact Input 15	1
111	Contact Input 16	1
112	Contact Input 17	1
113	Contact Input 18	1
114	Contact Input 19	1
115	Contact Input 20	1
116	Contact Input 21	1
117	Contact Input 22	1
118	Contact Input 23	1
119	Contact Input 24	1
120	Contact Input 25	1
121	Contact Input 26	1
122	Contact Input 27	1
123	Contact Input 28	1
124	Contact Input 29	1
125	Contact Input 30	1
126	Contact Input 31	1
127	Contact Input 32	1
128	Contact Input 33	1
129	Contact Input 34	1
130	Contact Input 35	1
131	Contact Input 36	1
132	Contact Input 37	1
133	Contact Input 38	1
134	Contact Input 39	1
135	Contact Input 40	1
136	Contact Input 41	1
137	Contact Input 42	1
138	Contact Input 43	1
139	Contact Input 44	1
140	Contact Input 45	1
141	Contact Input 46	1
142	Contact Input 47	1
143	Contact Input 48	1
144	Contact Input 49	1
145	Contact Input 50	1
146	Contact Input 51	1
147	Contact Input 52	1
148	Contact Input 53	1
149	Contact Input 54	1
150	Contact Input 55	1
151	Contact Input 56	1
152	Contact Input 57	1
153	Contact Input 58	1

Table D-3: BINARY INPUTS (Sheet 5 of 12)

point	name/description	change event class
154	Contact Input 59	1
155	Contact Input 60	1
156	Contact Input 61	1
157	Contact Input 62	1
158	Contact Input 63	1
159	Contact Input 64	1
160	Contact Input 65	1
161	Contact Input 66	1
162	Contact Input 67	1
163	Contact Input 68	1
164	Contact Input 69	1
165	Contact Input 70	1
166	Contact Input 71	1
167	Contact Input 72	1
168	Contact Input 73	1
169	Contact Input 74	1
170	Contact Input 75	1
171	Contact Input 76	1
172	Contact Input 77	1
173	Contact Input 78	1
174	Contact Input 79	1
175	Contact Input 80	1
176	Contact Input 81	1
177	Contact Input 82	1
178	Contact Input 83	1
179	Contact Input 84	1
180	Contact Input 85	1
181	Contact Input 86	1
182	Contact Input 87	1
183	Contact Input 88	1
184	Contact Input 89	1
185	Contact Input 90	1
186	Contact Input 91	1
187	Contact Input 92	1
188	Contact Input 93	1
189	Contact Input 94	1
190	Contact Input 95	1
190	Contact Input 96	1
191	Contact input 96 Contact Output 1	1
	· ·	1
193	Contact Output 2	
194	Contact Output 3	1 1
195	Contact Output 4	
196	Contact Output 5	1
197	Contact Output 6	1
198	Contact Output 7	1
199	Contact Output 8	1
200	Contact Output 9	1

Table D-3: BINARY INPUTS (Sheet 6 of 12)

point	name/description	change event class
201	Contact Output 10	1
202	Contact Output 11	1
203	Contact Output 12	1
204	Contact Output 13	1
205	Contact Output 14	1
206	Contact Output 15	1
207	Contact Output 16	1
208	Contact Output 17	1
209	Contact Output 18	1
210	Contact Output 19	1
211	Contact Output 20	1
212	Contact Output 21	1
213	Contact Output 22	1
214	Contact Output 23	1
215	Contact Output 24	1
216	Contact Output 25	1
217	Contact Output 26	1
218	Contact Output 27	1
219	Contact Output 28	1
220	Contact Output 29	1
221	Contact Output 30	1
222	Contact Output 31	1
223	Contact Output 32	1
224	Contact Output 33	1
225	Contact Output 34	1
226	Contact Output 35	1
227	Contact Output 36	1
228	Contact Output 37	1
229	Contact Output 38	1
230	Contact Output 39	1
231	Contact Output 40	1
232	Contact Output 41	1
233	Contact Output 42	1
234	Contact Output 43	1
235	Contact Output 44	1
236	Contact Output 45	1
237	Contact Output 46	1
238	Contact Output 47	1
239	Contact Output 48	1
240	Contact Output 49	1
241	Contact Output 50	1
242	Contact Output 51	1
243	Contact Output 52	1
244	Contact Output 53	1
245	Contact Output 54	1
246	Contact Output 55	1
247	Contact Output 56	1
	<u> </u>	1

APPENDIX D D.2 DNP POINT LISTS

Table D-3: BINARY INPUTS (Sheet 7 of 12)

point	name/description	change event class
248	Contact Output 57	1
249	Contact Output 58	1
250	Contact Output 59	1
251	Contact Output 60	1
252	Contact Output 61	1
253	Contact Output 62	1
254	Contact Output 63	1
255	Contact Output 64	1
256	Remote Input 1	1
257	Remote Input 2	1
258	Remote Input 3	1
259	Remote Input 4	1
260	Remote Input 5	1
261	Remote Input 6	1
262	Remote Input 7	1
263	Remote Input 8	1
264	Remote Input 9	1
265	Remote Input 10	1
266	Remote Input 11	1
267	Remote Input 12	1
268	Remote Input 13	1
269	Remote Input 14	1
270	Remote Input 15	1
271	Remote Input 16	1
272	Remote Input 17	1
273	Remote Input 18	1
274	Remote Input 19	1
275	Remote Input 20	1
276	Remote Input 21	1
277	Remote Input 22	1
278	Remote Input 23	1
279	Remote Input 24	1
280	Remote Input 25	1
281	Remote Input 26	1
282	Remote Input 27	1
283	Remote Input 28	1
284	Remote Input 29	1
285	Remote Input 30	1
286	Remote Input 31	1
287	Remote Input 32	1
288	Remote Device 1	1
289	Remote Device 2	1
290	Remote Device 3	1
291	Remote Device 4	1
292	Remote Device 5	1
293	Remote Device 6	1
294	Remote Device 7	1

Table D-3: BINARY INPUTS (Sheet 8 of 12)

point	name/description	change event class
295	Remote Device 8	1
296	Remote Device 9	1
297	Remote Device 10	1
298	Remote Device 11	1
299	Remote Device 12	1
300	Remote Device 13	1
301	Remote Device 14	1
302	Remote Device 15	1
303	Remote Device 16	1
304	Phase Instantaneous Overcurrent 1	1
305	Phase Instantaneous Overcurrent 2	1
306	Phase Instantaneous Overcurrent 3	1
307	Phase Instantaneous Overcurrent 4	1
308	Phase Instantaneous Overcurrent 5	1
309	Phase Instantaneous Overcurrent 6	1
310	Phase Instantaneous Overcurrent 7	1
311	Phase Instantaneous Overcurrent 8	1
312	Phase Instantaneous Overcurrent 9	1
313	Phase Instantaneous Overcurrent 10	1
314	Phase Instantaneous Overcurrent 11	1
315	Phase Instantaneous Overcurrent 12	1
406	Eight-Bit Comparator 1	1
407	Eight-Bit Comparator 2	1
408	Eight-Bit Comparator 3	1
409	Eight-Bit Comparator 4	1
410	Eight-Bit Comparator 5	1
411	Eight-Bit Comparator 6	1
448	Phase Undervoltage 1	1
449	Phase Undervoltage 2	1
456	Phase Overvoltage 1	1
494	Power Swing Detect	1
518	Sensitive Directional Power 1	1
519	Sensitive Directional Power 1	1
528	Source 1 VT Fuse Failure	1
529	Source 2 VT Fuse Failure	1
530	Source 3 VT Fuse Failure	1
531	Source 4 VT Fuse Failure	1
532	Source 5 VT Fuse Failure	1
533	Source 6 VT Fuse Failure	1
536	50DD Disturbance Detector 1	1
537	50DD Disturbance Detector 2	1
538	50DD Disturbance Detector 3	1
539	50DD Disturbance Detector 4	1
540	50DD Disturbance Detector 5	1
541	50DD Disturbance Detector 6	1
546	Open Pole Detector	1
570	Digitizer 1	1

Table D-3: BINARY INPUTS (Sheet 9 of 12)

point	name/description	change event class
571	Digitizer 2	1
572	Digitizer 3	1
573	Digitizer 4	1
574	Digitizer 5	1
576	Breaker Control 1	1
577	Breaker Control 2	1
616	Synchrocheck 1	1
617	Synchrocheck 2	1
640	Setting Group	1
641	Reset	1
648	Overfrequency 1	1
649	Overfrequency 2	1
650	Overfrequency 3	1
651	Overfrequency 4	1
656	Underfrequency 1	1
657	Underfrequency 2	1
658	Underfrequency 3	1
659	Underfrequency 4	1
660	Underfrequency 5	1
661	Underfrequency 6	1
689	Selector Switch 1	1
690	Selector Switch 2	1
694	Control Pushbutton 1	1
695	Control Pushbutton 2	1
696	Control Pushbutton 3	1
697	Control Pushbutton 4	1
698	Control Pushbutton 5	1
699	Control Pushbutton 6	1
700	Control Pushbutton 7	1
704	FlexElement™ 1	1
705	FlexElement™ 2	1
706	FlexElement™ 3	1
707	FlexElement™ 4	1
708	FlexElement™ 5	1
709	FlexElement™ 6	1
710	FlexElement™ 7	1
711	FlexElement™ 8	1
712	FlexElement™ 9	1
713	FlexElement™ 10	1
714	FlexElement™ 11	1
715	FlexElement™ 12	1
716	FlexElement™ 13	1
717	FlexElement™ 14	1
718	FlexElement™ 15	1
719	FlexElement™ 16	1
724	Non-Volatile Latch 1	1
725	Non-Volatile Latch 2	1

Table D-3: BINARY INPUTS (Sheet 10 of 12)

point	name/description	change event class
726	Non-Volatile Latch 3	1
727	Non-Volatile Latch 4	1
728	Non-Volatile Latch 5	1
729	Non-Volatile Latch 6	1
730	Non-Volatile Latch 7	1
731	Non-Volatile Latch 8	1
732	Non-Volatile Latch 9	1
733	Non-Volatile Latch 10	1
734	Non-Volatile Latch 11	1
735	Non-Volatile Latch 12	1
736	Non-Volatile Latch 13	1
737	Non-Volatile Latch 14	1
738	Non-Volatile Latch 15	1
739	Non-Volatile Latch 16	1
816	Digital Element 1	1
817	Digital Element 2	1
818	Digital Element 3	1
819	Digital Element 4	1
820	Digital Element 5	1
821	Digital Element 6	1
822	Digital Element 7	1
823	Digital Element 8	1
824	Digital Element 9	1
825	Digital Element 10	1
826	Digital Element 11	1
827	Digital Element 12	1
828	Digital Element 13	1
829	Digital Element 14	1
830	Digital Element 15	1
831	Digital Element 16	1
834	Frequency Rate of Change 1	1
835	Frequency Rate of Change 2	1
836	Frequency Rate of Change 3	1
837	Frequency Rate of Change 4	1
840	Eight-Bit Switch 1	1
841	Eight-Bit Switch 2	1
842	Eight-Bit Switch 3	1
843	Eight-Bit Switch 4	1
844	Eight-Bit Switch 5	1
845	Eight-Bit Switch 6	1
848	Digital Counter 1	1
849	Digital Counter 2	1
850	Digital Counter 3	1
851	Digital Counter 4	1
852	Digital Counter 5	1
853	Digital Counter 6	1
854	Digital Counter 7	1

name/description change event class point Digital Counter 8 LED State 1 (IN SERVICE) LED State 2 (TROUBLE) LED State 3 (TEST MODE) LED State 4 (TRIP) LED State 5 (ALARM) LED State 6 (PICKUP) LED State 9 (VOLTAGE) LED State 10 (CURRENT) LED State 11 (FREQUENCY) LED State 12 (OTHER) LED State 13 (PHASE A) LED State 14 (PHASE B) LED State 15 (PHASE C) LED State 16 (NTL/GROUND) SNTP FAILURE **BATTERY FAIL** PRI ETHERNET FAIL SEC ETHERNET FAIL EEPROM DATA ERROR SRAM DATA ERROR PROGRAM MEMORY WATCHDOG ERROR LOW ON MEMORY REMOTE DEVICE OFF DIRECT DEVICE OFF DIRECT RING BREAK ANY MINOR ERROR ANY MAJOR ERROR ANY SELF-TESTS IRIG-B FAILURE DSP ERROR NO DSP INTERUPTS UNIT NOT CALIBRATED PROTOTYPE FIRMWARE FLEXLOGIC ERR TOKEN **EQUIPMENT MISMATCH** UNIT NOT PROGRAMMED SYSTEM EXCEPTION LATCHING OUT ERROR User-Programmable Pushbutton 1 User-Programmable Pushbutton 2 User-Programmable Pushbutton 3 User-Programmable Pushbutton 4 User-Programmable Pushbutton 5 User-Programmable Pushbutton 6 User-Programmable Pushbutton 7

Table D-3: BINARY INPUTS (Sheet 12 of 12)

point	name/description	change event class
991	User-Programmable Pushbutton 8	1
992	User-Programmable Pushbutton 9	1
993	User-Programmable Pushbutton 10	1
994	User-Programmable Pushbutton 11	1
995	User-Programmable Pushbutton 12	1

Supported Control Relay Output Block fields: Pulse On, Pulse Off, Latch On, Latch Off, Paired Trip, Paired Close.

BINARY OUTPUT STATUS POINTS

Object Number: 10

Request Function Codes supported: 1 (read)

Default Variation reported when Variation 0 requested: 2 (Binary Output Status)

CONTROL RELAY OUTPUT BLOCKS

Object Number: 12

Request Function Codes supported: 3 (select), 4 (operate), 5 (direct operate), 6 (direct operate, noack)

Table D-4: BINARY/CONTROL OUTPUTS

POINT	NAME/DESCRIPTION
0	Virtual Input 1
1	Virtual Input 2
2	Virtual Input 3
3	Virtual Input 4
4	Virtual Input 5
5	Virtual Input 6
6	Virtual Input 7
7	Virtual Input 8
8	Virtual Input 9
9	Virtual Input 10
10	Virtual Input 11
11	Virtual Input 12
12	Virtual Input 13
13	Virtual Input 14
14	Virtual Input 15
15	Virtual Input 16
16	Virtual Input 17
17	Virtual Input 18
18	Virtual Input 19
19	Virtual Input 20
20	Virtual Input 21
21	Virtual Input 22
22	Virtual Input 23
23	Virtual Input 24
24	Virtual Input 25
25	Virtual Input 26
26	Virtual Input 27
27	Virtual Input 28
28	Virtual Input 29
29	Virtual Input 30
30	Virtual Input 31
31	Virtual Input 32

D.2.3 COUNTERS

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

BINARY COUNTERS

Static (Steady-State) Object Number: 20

Change Event Object Number: 22

Request Function Codes supported: 1 (read), 7 (freeze), 8 (freeze noack), 9 (freeze and clear),

10 (freeze and clear, noack), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Binary Counter with Flag)

Change Event Variation reported when variation 0 requested: 1 (32-Bit Counter Change Event without time)

Change Event Buffer Size: 10
Default Class for all points: 2

FROZEN COUNTERS

Static (Steady-State) Object Number: 21

Change Event Object Number: 23

Request Function Codes supported: 1 (read)

Static Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter with Flag)

Change Event Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter Event without time)

Change Event Buffer Size: **10**Default Class for all points: **2**

Table D-5: BINARY AND FROZEN COUNTERS

POINT INDEX	NAME/DESCRIPTION
0	Digital Counter 1
1	Digital Counter 2
2	Digital Counter 3
3	Digital Counter 4
4	Digital Counter 5
5	Digital Counter 6
6	Digital Counter 7
7	Digital Counter 8
8	Oscillography Trigger Count
9	Events Since Last Clear

A counter freeze command has no meaning for counters 8 and 9. N60 Digital Counter values are represented as 32-bit integers. The DNP 3.0 protocol defines counters to be unsigned integers. Care should be taken when interpreting negative counter values.

n

The following table lists Analog Inputs (Object 30). It is important to note that 16-bit and 32-bit variations of analog inputs are transmitted through DNP as signed numbers. Even for analog input points that are not valid as negative values, the maximum positive representation is 32767 for 16-bit values and 2147483647 for 32-bit values. This is a DNP requirement.

The deadbands for all Analog Input points are in the same units as the Analog Input quantity. For example, an Analog Input quantity measured in volts has a corresponding deadband in units of volts. This is in conformance with DNP Technical Bulletin 9809-001 Analog Input Reporting Deadband. Relay settings are available to set default deadband values according to data type. Deadbands for individual Analog Input Points can be set using DNP Object 34.

When using the N60 in DNP systems with limited memory, the Analog Input Points below may be replaced with a user-definable list. This user-definable list uses the same settings as the Modbus User Map and can be configured with the Modbus User Map settings. When used with DNP, each entry in the Modbus User Map represents the starting Modbus address of a data item available as a DNP Analog Input point. To enable use of the Modbus User Map for DNP Analog Input points, set the USER MAP FOR DNP ANALOGS setting to Enabled (this setting is in the PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ DNP PROTOCOL menu). The new DNP Analog points list can be checked via the "DNP Analog Input Points List" webpage, accessible from the "Device Information menu" webpage.

After changing the **USER MAP FOR DNP ANALOGS** setting, the relay must be powered off and then back on for the setting to take effect.

Only Source 1 data points are shown in the following table. If the **NUMBER OF SOURCES IN ANALOG LIST** setting is increased, data points for subsequent sources will be added to the list immediately following the Source 1 data points.

Units for Analog Input points are as follows:

Current: A (amps)
 Voltage: V (volts)
 Real Power: W (watts)
 Frequency: Hz (hertz)
 Angle: degrees
 Ohm Input: ohms

Reactive Power: var (vars) • RTD Input: °C (degrees Celsius)

Apparent Power: VA (volt-amps)

Energy Wh, varh (watt-hours, var-hours)

Static (Steady-State) Object Number: 30

Change Event Object Number: 32

Request Function Codes supported: 1 (read), 2 (write, deadbands only), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input)

Change Event Variation reported when variation 0 requested: 1 (Analog Change Event without Time)

Change Event Scan Rate: defaults to 500 ms

Change Event Buffer Size: **800**Default Class for all Points: **1**

Table D-6: ANALOG INPUT POINTS (Sheet 1 of 3)

POINT	DESCRIPTION
0	SRC 1 Phase A Current RMS
-	SRC 1 Phase B Current RMS
2	SRC 1 Phase B Current RMS
	SRC 1 Neutral Current RMS
3	SRC 1 Phase A Current Magnitude
5	3
6	SRC 1 Phase A Current Angle SRC 1 Phase B Current Magnitude
7	5
8	SRC 1 Phase B Current Angle SRC 1 Phase C Current Magnitude
9	SRC 1 Phase C Current Magnitude SRC 1 Phase C Current Angle
10	SRC 1 Phase C current Angle SRC 1 Neutral Current Magnitude
11	SRC 1 Neutral Current Angle
12	SRC 1 Ground Current RMS
13	SRC 1 Ground Current Magnitude
14	SRC 1 Ground Current Angle
15	SRC 1 Zero Sequence Current Magnitude
16	SRC 1 Zero Sequence Current Angle
17	SRC 1 Positive Sequence Current Magnitude
18	SRC 1 Positive Sequence Current Angle
19	SRC 1 Negative Sequence Current Magnitude
20	SRC 1 Negative Sequence Current Angle
21	SRC 1 Differential Ground Current Magnitude
22	SRC 1 Differential Ground Current Angle
23	SRC 1 Phase AG Voltage RMS
24	SRC 1 Phase BG Voltage RMS
25	SRC 1 Phase CG Voltage RMS
26	SRC 1 Phase AG Voltage Magnitude
27	SRC 1 Phase AG Voltage Angle
28	SRC 1 Phase BG Voltage Magnitude
29	SRC 1 Phase BG Voltage Angle
30	SRC 1 Phase CG Voltage Magnitude
31	SRC 1 Phase CG Voltage Angle
32	SRC 1 Phase AB Voltage RMS
33	SRC 1 Phase BC Voltage RMS
34	SRC 1 Phase CA Voltage RMS
35	SRC 1 Phase AB Voltage Magnitude
36	SRC 1 Phase AB Voltage Angle
37	SRC 1 Phase BC Voltage Magnitude
38	SRC 1 Phase BC Voltage Angle
39	SRC 1 Phase CA Voltage Magnitude
40	SRC 1 Phase CA Voltage Angle
41	SRC 1 Auxiliary Voltage RMS
42	SRC 1 Auxiliary Voltage Magnitude
43	SRC 1 Auxiliary Voltage Angle
44	SRC 1 Zero Sequence Voltage Magnitude
45	SRC 1 Zero Sequence Voltage Angle
46	SRC 1 Positive Sequence Voltage Magnitude
47	SRC 1 Positive Sequence Voltage Angle
48	SRC 1 Negative Sequence Voltage Magnitude
49	SRC 1 Negative Sequence Voltage Angle
50	SRC 1 Three Phase Real Power
51	SRC 1 Phase A Real Power
52	SRC 1 Phase B Real Power
53	SRC 1 Phase C Real Power
54	SRC 1 Three Phase Reactive Power
55	SRC 1 Phase A Reactive Power
56	SRC 1 Phase B Reactive Power
57	SRC 1 Phase C Reactive Power

Table D-6: ANALOG INPUT POINTS (Sheet 2 of 3)

POINT	DESCRIPTION		
58	SRC 1 Three Phase Apparent Power		
59	SRC 1 Phase A Apparent Power		
60	SRC 1 Phase B Apparent Power		
61	SRC 1 Phase C Apparent Power		
62	SRC 1 Three Phase Power Factor		
63	SRC 1 Phase A Power Factor		
64	SRC 1 Phase B Power Factor		
65	SRC 1 Phase C Power Factor		
66	SRC 1 Positive Watthour		
67	SRC 1 Negative Watthour		
68	SRC 1 Positive Varhour		
69	SRC 1 Negative Varhour		
70	SRC 1 Frequency		
71	SRC 1 Demand Ia		
72	SRC 1 Demand Ib		
73	SRC 1 Demand Ic		
74	SRC 1 Demand Watt		
75	SRC 1 Demand Var		
76	SRC 1 Demand Va		
77	Sens Dir Power 1 Actual		
78	Sens Dir Power 2 Actual		
79	Rate of Change 1 Actual		
80	Rate of Change 2 Actual		
81	Rate of Change 3 Actual		
82	Rate of Change 4 Actual		
83	Synchrocheck 1 Delta Voltage		
84	Synchrocheck 1 Delta Frequency		
85	Synchrocheck 1 Delta Phase		
86	Synchrocheck 2 Delta Voltage		
87	Synchrocheck 2 Delta Frequency		
88	Synchrocheck 2 Delta Phase		
89	DCMA Inputs 1 Value		
90	DCMA Inputs 2 Value		
91	DCMA Inputs 3 Value		
92	DCMA Inputs 4 Value		
93	RTD Inputs 1 Value		
94	RTD Inputs 2 Value		
95	RTD Inputs 3 Value		
96	RTD Inputs 4 Value		
97	Tracking Frequency		
98	Comp 1 A		
99	Comp 1 B		
100	Comp 1 Out		
101	Comp 2 A		
102	Comp 2 B		
103	Comp 2 Out		
104	Comp 3 A		
105	Comp 3 B		
106	Comp 3 Out		
107	Comp 4 A		
108	Comp 4 B		
109	Comp 4 Out		
110	Comp 5 A		
111	Comp 5 B		
112	Comp 5 Out		
113	Comp 6 A		
114	Comp 6 B		
115	Comp 6 Out		

Table D-6: ANALOG INPUT POINTS (Sheet 3 of 3)

POINT	DESCRIPTION
116	Digitizer 1 Output
117	Digitizer 2 Output
118	Digitizer 3 Output
119	Digitizer 4 Output
120	Digitizer 5 Output
121	FlexElement 1 Actual
122	FlexElement 2 Actual
123	FlexElement 3 Actual
124	FlexElement 4 Actual
125	FlexElement 5 Actual
126	FlexElement 6 Actual
127	FlexElement 7 Actual
128	FlexElement 8 Actual
129	FlexElement 9 Actual
130	FlexElement 10 Actual
131	FlexElement 11 Actual
132	FlexElement 12 Actual
133	FlexElement 13 Actual
134	FlexElement 14 Actual
135	FlexElement 15 Actual
136	FlexElement 16 Actual
137	Current Setting Group

E.1.1 REVISION HISTORY

MANUAL P/N	REVISION	RELEASE DATE	ECO
1601-0125-F1	3.4x	10 December 2003	URX-111
1601-0125-F2	3.4x	09 February 2004	URX-115
1601-0125-G1	4.0x	23 March 2004	URX-123
1601-0125-G2	4.0x	17 May 2004	URX-136
1601-0125-H1	4.2x	30 June 2004	URX-145
1601-0125-H2	4.2x	23 July 2004	URX-151
1601-0125-J1	4.4x	15 September 2004	URX-156
1601-0125-J2	4.4x	05 January 2005	URX-173

E.1.2 CHANGES TO THE MANUAL

Table E-1: MAJOR UPDATES FOR N60 MANUAL REVISION J2

PAGE (J1)	PAGE (J2)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0125-J2
3-19	3-19	Update	Updated RS485 SERIAL CONNECTION diagram to 827757A7

Table E-2: MAJOR UPDATES FOR N60 MANUAL REVISION J1

PAGE (H2)	PAGE (J1)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0125-J1
5-16		Remove	Removed UCA/MMS PROTOCOL sub-section
	5-16	Add	Added IEC 61850 PROTOCOL sub-section
5-43	5-43	Update	Updated BREAKERS section
5-115	5-115	Update	Updated VIRTUAL INPUTS section
B-8	B-8	Update	Updated MODBUS MEMORY MAP for firrmware revision 4.4x
C-1		Remove	Removed UCA/MMS COMMUNICATIONS appendix

Table E-3: MAJOR UPDATES FOR N60 MANUAL REVISION H2

PAGE (H1)	PAGE (H2)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0125-H2
3-22	3-22	Update	Updated CHANNEL COMMUNICATION OPTIONS table

Table E-4: MAJOR UPDATES FOR N60 MANUAL REVISION H1

PAGE (G2)	PAGE (H1)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0125-H1.
1-12	1-13	Update	Updated COMMISSIONING section
2-3	2-3	Update	Updated N60 ORDER CODES table
3-10	3-10	Update	Updated FORM-A CONTACT FUNCTIONS diagram to 827821A5
5-14	5-14	Update	Updated DNP PROTOCOL sub-section to reflect new settings
B-8	B-8	Update	Updated MODBUS MEMORY MAP for firmware release 4.2x

Table E-5: MAJOR UPDATES FOR N60 MANUAL REVISION G2

PAGE (G1)	PAGE (G2)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0125-G2
2-2	2-2	Update	Updated SINGLE LINE DIAGRAM to 847700A2
3-6	3-6	Update	Updated TYPICAL WIRING DIAGRAM to 847702A2

Table E-6: MAJOR UPDATES FOR N60 MANUAL REVISION G1

PAGE (F2)	PAGE (G1)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0125-G1.
2-3	2-3	Update	Updated N60 ORDER CODES table
2-4	2-4	Update	Updated ORDER CODES FOR REPLACEMENT MODULES table
2-9	2-9	Add	Added dcmA outputs specifications to OUTPUTS section
2-9	2-9	Add	Added IRIG-B outputs specifications to OUTPUTS section
3-4	3-4	Update	Updated MODULE WITHDRAWAL AND INSERTION section to reflect new hardware
3-6	3-6	Add	Added TYPICAL WIRING DIAGRAM
3-7	3-7	Update	Updated DIELECTRIC STRENGTH section
3-8	3-8	Update	Updated CT/VT MODULES section for new hardware
3-16	3-16	Update	Updated drawings and description in TRANSDUCER INPUTS/OUTPUTS section
3-17	3-18	Update	Updated drawings and description in CPU COMMUNICATIONS PORTS section
3-19	3-20	Update	Updated IRIG-B section to indicate updated functionality
5-18	5-	Update	Updated REAL TIME CLOCK section
5-45		Remove	Removed FLEXCURVES™ section (not applicable to the N60 relay)
5-54	5-49	Update	Updated FLEXLOGIC™ OPERANDS table
5-66	5-61	Update	Updated FLEXELEMENT™ SCHEME LOGIC diagram to 842004A3
5-67	5-62	Update	Updated FLEXELEMENT™ INPUT MODE SETTING diagram to 842706A2
5-133	5-128	Add	Added DCMA OUTPUTS section
B-8	B-8	Update	Updated MODBUS MEMORY MAP for firmware release 4.0x

Table E-7: MAJOR UPDATES FOR N60 MANUAL REVISION F2

PAGE (F1)	PAGE (F2)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0125-F2.
3-16	3-16	Update	Updated TRANSDUCER I/O MODULE WIRING diagram to 827831A9-X1.
5-9	5-9	Update	Updated DISPLAY PROPERTIES section.
5-78	5-79	Update	Updated PHASE IOC1 SCHEME LOGIC diagram to 827033A6.
5-80	5-81	Update	Updated PHASE UNDERVOLTAGE1 SCHEME LOGIC diagram to 827039AB.
5-81	5-82	Update	Updated PHASE OVERVOLTAGE1 SCHEME LOGIC diagram to 827066A5.
5-125	5-126	Update	Updated the number of remote inputs from 32 to 64.
6-3	6-3	Update	Updated the number of remote inputs from 32 to 64.

E.2.1 STANDARD ABBREVIATIONS

A. Ampere A.C. Alteriating Duriest A.C. Alteriating Duriest A.C. Alteriating Duriest A.C. Alteriating Duriest A.C. Alteriating Duriest A.C. Alteriating Duriest A.C. Alteriating Duriest A.C. Alteriating Duriest A.C. Alteriating Duriest A.C. And Markey A. Angle A. Audiomatic Reclosure A.R. Automatic Reclosure A.S.D. Application-layer Service Data Unit A.S.YM. Asymmetry A.W. Awrenge A.W. Advantatic A.W. Awrenge A.W. Awrenge A.W. Awrenge B.F. Besaker Failure Initiate B.F. Breaker Failure Initiate B.F. Breaker Failure Initiate B.F. Breaker H.M. Human-Machine Interface B.K. Breaker B.R. Br				
An Aralog to Digital An Aralog to Digital An Aralog to Digital An Aralog to Digital An Aralog to Digital An Aralog to Arabication Entity AN Aralog AN Angle ANSI Anancian National Standards Institute AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure BER Bit Bere Rate BE Bit Bere Rate BE Bit Bror Rate BER Bit Br	A	. Ampere	FREQ	. Frequency
An Aralog to Digital An Aralog to Digital An Aralog to Digital An Aralog to Digital An Aralog to Digital An Aralog to Arabication Entity AN Aralog AN Angle ANSI Anancian National Standards Institute AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure Automatic Reclosure BER Bit Bere Rate BE Bit Bere Rate BE Bit Bror Rate BER Bit Br	AC	. Alternating Current	FSK	. Frequency-Shift Keying
Accidental Energization, Application Entity AME Amper AMSI Amper AMSI Amper ANSI Amper ANSI Amper ANSI American National Standards Institute AR Automatic Reclosure ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Application-layer Service Data Unit ASDU Auxiliary AVA Auxiliary AVA Auxiliary AVA Auxiliary AVA Auxiliary AVA Avarage BER Breaker BIR Breaker Failure Initiate BF Breaker	A/D	Analog to Digital	FTP	File Transfer Protocol
AMP Anger ANCI And Ander Antibonal Standards Institute AR Automatic Reclosure AR Automatic Reclosure AR Automatic Reclosure ARSDU Application-layer Service Data Unit ASYM Asymmetry Automatic Reclosure AVITO Automatic AUTO Automatic AUTO Automatic AVITO Automatic BER BIL Error Rate BIL Block BIL Bl	ΔF	Accidental Energization, Application Entity	FyF	FlexFlement™
ANSI. Angle ANSI. American National Standards Institute ANSI. Automatic Reclosure ARI. Automatic Reclosure ARI. Automatic Reclosure ARI. Automatic Reclosure ARI. Automatic Reclosure ARI. Automatic Reclosure ARI. Automatic Reclosure ARI. Automatic Reclosure ARI. Automatic Reclosure ARI. Automatic AUTO. Automatic AUTO. Automatic AUTO. Automatic AUTO. Automatic AUTO. Automatic AUX. Auxiliary AVG. Average BR. Bit Ernor Rate BR. Bit Ernor Rate BR. Bit Ernor Rate BR. Breaker Failure Initiate BRI. Breaker Failure Init			FWD	Forward
ANSI. American National Standards Institute RR. Application-layer Service Data Unit ASDU. Application-layer Service Data Unit ASDU. Application-layer Service Data Unit ASDU. Application-layer Service Data Unit ASDU. Application-layer Service Data Unit ASDU. Application-layer Service Data Unit ASDU. Automatic AUX Automatic BEF. Breaker Failure Initiate BEF. Breaker Failure Initiate BF. Breaker Failure			1 VVD	. i oiwaid
AR. Automatic Reciosure ASDU. Application-layer Service Data Unit ASYM. Asymmetry ASYM. Asymmetry ASYM. Asymmetry ASYM. Asymmetry AUTO. Automatic COSE. General Object Oriented Substation Event GOSE. General Object Oriented Substation Event GOSE. General Object Oriented Substation Event GOSE. General Object Oriented Substation Event GOSE. General Object Oriented Substation Event GOSE. General Object Oriented Substation Event GOSE. General Object Oriented Substation Event GOSE. General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Object Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation Event GOSE General Oriented Substation	ANG	American National Standards Institute	C	Congretor
ASPUM. Application-layer Service Data Unit ASYM. Asymmetry AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic AUTO Automatic BER. Bit Error Rate BER. Bit Error Rate BER. Breaker Fall BER. Breaker Fall BER. Breaker Fall BER. Breaker Fall BER. Breaker Fall BER. Breaker Fall BER. Breaker BLK. Block BLK. Blockin BERNT. Breakpoint of a characteristic BERN				
ASYM Asymmetry Automatic GOOSE General Object Oriented Substation Event AUX Automatic GOOSE General Object Oriented Substation Event AUX Automatic GOOSE General Object Oriented Substation Event AUX Automatic GOOSE General Object Oriented Substation Event AUX Automatic GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event AUX Automatic GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object Oriented Substation Event GOOSE General Object				
AUX Auxiliary AVG Average AVG Average BFR BI Error Rate BF. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker Failure Initiate BFI. Breaker BFI. Breaker Failure Initiate BFI. Breaker Failure Initiat			GND	. Ground
AUX — Auxillary AVG — Average BER — Bit Error Rate BF — Breaker Failur Initiate HGF — High-Impedance and Arcing Ground HIZ — High-Impedance and Arcing Ground HIZ — High-Impedance and Arcing Ground HIZ — High-Impedance and Arcing Ground HIZ — High-Impedance and Arcing Ground HIT — Hybrid Initiate Initiate Initiate Sequence current Lo — Zero Sequence current Lo — Zero Sequence current Lo — Phase A current Lo — Phase A current Lo — Phase A current Lo — Phase A current Lo — Phase A current Lo — Phase B minus C current Lo — Phase B minus C current Lo — Phase C minus A current Lo — Phase C minus A current Lo — Phase C minus A current Lo — Phase C minus A current Lo — Phase C minus A current Lo — Phase C minus A current Lo — Phase C minus A current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase D minus Courrent Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C current Lo — Phase C curre				
AUX — Auxillary AVG — Average BER — Bit Error Rate BF — Breaker Failu BFI — Breaker Failure Initiate HIZ — High-Impedance and Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Ground HIZ — High-Impedance Arcing Frobotol Looped Loopedance Loopedance	AUTO	. Automatic	GOOSE	. General Object Oriented Substation Event
AVG — Average BER ETT Pate BF — Breaker Fall BF — Breaker Fall Hillare BF — Breaker Fall Hillare BF — Breaker Fall Hillare BKR Breaker Fall Hillare BKR Breaker Fall Hillare BKR Breaker Fall Hillare BKR Breaker Fall Hillare BKR Breaker Fall Hillare BKR Breaker Hillare BKR Hillare BKR Breaker Hillare BKR Hillare BKR Breaker Hillare BKR Hillare BKR Breaker Hillare BKR Breaker Hillare BKR Breaker Hillare BKR Breaker Hillare BKR Breaker Hillare BKR Breaker Hillare BKR Breaker Hillare BKR Breaker Hillare BKR Breaker Hillare BKR Hillare BKR Breaker Breaker Breacher BKR Burnare BKR	AUX	. Auxiliary	GPS	. Global Positioning System
BER. Bit Error Rate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker BF. B	AVG	. Average		• •
BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Breaker BF. Breaker Block Breaker Breake		-	HARM	. Harmonic / Harmonics
BF. Breaker Failure Initiate BF. Breaker Failure Initiate BF. Breaker Breaker BF. Breaker Block Breaker Breake	BER	. Bit Error Rate	HCT	. High Current Time
BFI. Breaker Failure Initiate BKR. Breaker BLK. Block BLK. Block BLV. Block BLV. Block BLV. Block BLV. Block BLV. Block BLV. Block BLV. Block BLV. Block BLV. Breaker) BLV. Breaker) BLV. Breaker BLV. B			HGF	High-Impedance Ground Fault (CT)
BKR. Breaker BLK. Block Block Bl			HI7	High-Impedance and Arcing Ground
BLK. Block BLK. Blocking BPMT. Breakpoint of a characteristic BFMRR Breakpoint of a characteristic BFRR Breakpoint of a characteristic BFRR Bre			HMI	Human-Machine Interface
BLKG Blocking BPMT Breakpoint of a characteristic BRKR Breaker 1.0			HTTP	Hyper Text Transfer Protocol
BPKT Breakpoint of a characteristic BRKR Breaker	DLKC	- Diock		
BRKR Breaker	DDNT	Drockning	1110	. i iybiid
CAP Capacitor C.C. Coupling Capacitor C.C. Coupling Capacitor C.C. Coupling Capacitor Voltage Transformer I.2. Negative Sequence current I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2. Negative Sequence Current Compensation I.2.	DEINI	Dreakpoint of a characteristic	1	Instantaneous
CAP. Capacitor CC. Coupling Capacitor Voltage Transformer CCVT Coupling Capacitor Voltage Transformer CCVT Coupling Capacitor Voltage Transformer CFG. Configure / Configurable CFG. Filename extension for oscillography files CFG. Configure filename extension for oscillography files CFG. Configuration CFG. Configurati	BKKK	. Breaker		
CCVT Coupling Capacitor Voltage Transformer CFG. Coupling Capacitor Voltage Transformer CFG. Configure / Configurable CFG. Filename extension for oscillography files CHK. Check CHKI. Channel CLS. Close CHKI. Channel CLS. Close CLS.	OAD	0	!_v	. Zero Sequence current
CCVT Conjuging Capacitor Voltage Transformer CFG. Configurable CFG. Filename extension for oscillography files CFG. Filename extension for oscillography files CFG. Filename extension for oscillography files CFG. Check CHNL Channel CLS. Close CLSD. Closed CLSD. Closed CLSD. Closed CLSD. Command Command CMPRSN. Comparison CMRSN. Comparison CMRSN. Comparison COM. Contact Output COM. Communication COM. Communication COM. Communication COM. Communication COM. Comparison COM. Communication Communication COM. Communication Communicat	CAP	. Capacitor	<u></u> 1	. Positive Sequence current
CCVT Conjuging Capacitor Voltage Transformer CFG. Configurable CFG. Filename extension for oscillography files CFG. Filename extension for oscillography files CFG. Filename extension for oscillography files CFG. Check CHNL Channel CLS. Close CLSD. Closed CLSD. Closed CLSD. Closed CLSD. Command Command CMPRSN. Comparison CMRSN. Comparison CMRSN. Comparison COM. Contact Output COM. Communication COM. Communication COM. Communication COM. Communication COM. Comparison COM. Communication Communication COM. Communication Communicat	CC	. Coupling Capacitor	<u> _</u> 2	. Negative Sequence current
CFG. Configure / Configurable CFG. Filename extension for oscillography files CFG. Filename extension for oscillography files CFR. Check CHNL. Channel CLS. Close CLS. Close CMD. Command CMRSN. Comparison CMRSN. Comparison CMRSN. Comparison CMRSN. Communication CMRSN. Communication COMM. Communication COMM. Communication COMM. Communication COMM. Communication COMM. Comparison COMN. Comparison COMN. Communication COMN. Communication COMN. Communication COMN. Comparison COMN. Comparison COMN. Communication COMN. Communication COMN. Comparison COMN. Comparison COMN. Comparison COMN. Comparison COMN. Comparison COMN. Comparison COMN. Communication COMN. Comparison	CCVT	. Coupling Capacitor Voltage Transformer	IA	. Phase A current
CFG Filename extension for oscillography files CHK. Check CHNL Channel CLS. Close CLSD Close CLSD Closed CMPD. Command CMPRSN. Comparison CMPRSN. Comparison COMP. Contact Output COMPO. Communication	CFG	. Configure / Configurable		
CHK. Check CHNL Channel CLS Close CLSD Close CMRSN Comparison CO Contact Output COMM Communication COMP Compensated, Comparison COMM Communication COMP Compensated, Comparison COMP Compensation COMP Compensated, Comparison Compensated, Comparison Compensated, Compensated, Compensated, Compensated, Compensated, C	.CFG	Filename extension for oscillography files	IB	. Phase B current
CHNL			IBC	Phase B minus C current
CLSD. Closed CMND. Command CMND. Command CMND. Command CMPRSN. Comparison CO. Contact Output COM. Communication COM. Communication COM. Communication COM. Communication COM. Communication COM. Communication COM. Communication COM. Communication COM. Communication COM. Communication COM. Communication COM. Communication COM. Communication COM. Communication COMPSN. Conjection COMN. Connection COMN. Connection COMN. Connection COMN. Connection CONT. Continuous, Contact INC. SEQ. Incomplete Sequence INIT. Initiate CO-ORD. Coordination INC. SEQ. Incomplete Sequence INIT. Initiate INIT. Initiate INIT. Initiate CO-ORD. Coordination INC. SEQ. Incomplete Sequence INIT. Initiate INIT. Initiate INIT. Initiate CO-ORD. Coordination INC. SEQ. Incomplete Sequence INIT. Initiate INIT. Initiate INIT. Initiate INIT. Initiate CO-ORD. Coordination INC. SEQ. Incomplete Sequence INIT. Initiate INIT.				
CLSD Closed CMND Command CMPRSN. Comparison CMRPSN. Comparison CO Contact Output COM Communication COMM. Communication COMM. Communication COMM. Communication COMM. Communication COMM. Compensated, Comparison COMM. Compensated, Comparison CONN. Connection CONN. Connection CONN. Connection CONN. Connection CONN. Connection CONT. Continuous, Contact CONT. Continuous, Contact COVIT. Continuous, Contact COVIT. Continuous, Contact COVIT. Continuous, Contact COVIT. Continuous, Contact COVIT. Continuous, Contact COVIT. Contral Processing Unit CPU. Central Processing Unit CPU. Central Processing Unit CRC. Cyclic Redundancy Code CRT. CRNT Current CSA. Canadian Standards Association CPU. Central Processing Unit CSA. Canadian Standards Association CVT. Current Transformer CVT. Current Transformer CVT. Cupacitive Voltage Transformer CVT. Capacitive Voltage Transformer CVT. Capacitive Voltage Transformer DIA Digital to Analog CC (cc) Direct Current DD. Disturbance Detector DD. Disturbance Detector DD. Disturbance Detector DD. Disturbance Detector DD. Disturbance Detector DFLT. Default DIR. Direct Current DIP. Differential DIR. Directional DISCREP Discrepancy DISCREP Discr				
CMND. Command CMPRSN. Comparison CO Contact Output COM Communication CO Contact Output COM Communication COM Communication COM Communication COM Communication COMPRSN. Comparison COMPRSN. Compensated. Comparison COMPRSN. Compensated. Comparison COMP Compensated. Comparison COMP Compensated. Comparison COMP Control Recomparison CONT. Continuous. Contact CONT. Continuous. Contact CONT. Continuous. Contact CONT. Continuous. Contact COPPL. Coordination CORD. Coordination CORD. Coordination CRC. Cyclic Redundancy Code CRT. CRNT. Current CRC. Cyclic Redundancy Code CRT. CRNT. Current CSA. Canadian Standards Association CT. Current Transformer CYT. Current CSA. Canadian Standards Association CT. Current Transformer CYT. Capacitive Voltage Transformer CYT. Capacitive Voltage Transformer CYT. Capacitive Voltage Transformer CYT. Capacitive Voltage Transformer CYT. Capacitive Voltage Transformer CYT. Capacitive Voltage Transformer CYT. Capacitive Voltage CRC. Cyclic Redundancy Code CRC. Cyclic Redundancy Code CRT. CRNT. Cyclic Redundancy Code CRT. CRNT. Current CSA. Canadian Standards Association CRT. CRNT. Current CSA. Canadian Standards Association CRT. CRNT. Current CSA. Canadian Standards Association CRT. CRNT. Current CSA. Canadian Standards Association CRT. CRNT. Current CSA. Canadian Standards Association CRT. CRNT. Current CSA. Canadian Standards Association CRT. CRNT. Current CSA. Canadian Standards Association CRT. CRNT. Current CSA. Canadian Standards Association CRT. CRNT. Current CSA. Canadian Standards Association CRT. CRNT. Current CSA. Canadian Standards Association CRT. Crnt. Capacitive Voltage Transformer CRT. Current CSA. Canadian Standards Association CRT. Crnt. Current CSA. Canadian Standards Association CRT. Crnt. Current CSA. Canadian Standards Association CRT. Crnt. Current CSA. Canadian Standards Association CRT. Crnt. Current CSA. Canadian Standards Association CRT. Crnt. Current CSA. Canadian Standards Association CRT. Crnt. Current CSA. Canadian Standards Association CRT. Crnt. Current CSA. Can				
CMPRSN Comparison CO Contact Output COM Communication COM Communication COMM Communication COMM Communication COMP Compensated, Comparison COMP Compensated, Comparison COMP Compensated, Comparison COMP Control Control Control Control Communication CONT Control C				
CO Contact Output COMM Communication COMM Communications COMM Communications COMP Compensated, Comparison CONT Contest Output CONT. Continuous, Contact CONT. Continuous, Contact CO-ORD Coordination CRT CRT Current CRC Cyclic Redundancy Code CRT, CRT Current CSA. Canadian Standards Association CT. Current Transformer CT. Capacitive Voltage Transformer CT. Capacitive Voltage Transformer CT. Capacitive Voltage Transformer CT. Digital To Analog CC (ac) Direct Current CSA. KiloAmpere CURT CRD Light Emitting Diode Current Disturbance Detector DD Disturbance			IEC	International Electrotechnical Commission
COMM Communication COMP Compensated, Comparison CONN Connection CONN Connection CONN Contect CONN Contect CONN Continuous, Contact CONN Continuous, Contact CONN Continuous, Contact CONN Continuous, Contact CONN Contrait Contrait INIT Initiate CO-ORD Coordination CPU Central Processing Unit CRC Cyclic Redundancy Code CRC Cyclic Redundancy Code CRT, CRNT Current CSA Canacian Standards Association CRC Current Transformer CSA Canacian Standards Association CRC Current Transformer CVT Capacitive Voltage Transformer IRIG Inter-Range Instrumentation Group INST Instantaneous Overcurrent IRIG Inter-Range Instrumentation Group INST Instantaneous Overcurrent IRIG Inter-Range Instrumentation Group INST Instantaneous Overcurrent IRIG Inter-Range Instrumentation Group INST Instantaneous Overcurrent IRIG Inter-Range Instrumentation Group INST Instantaneous Undervoltage INST Instantaneous Undervoltage INST Instantaneous Overcurrent IRIG Inter-Range Instrumentation Group INST Default INST Instantaneous Undervoltage INST Instantaneous Overcurrent IRIG Inter-Range Instrumentation Group INST Digital Input INST Instantaneous Undervoltage INST Distance INST Instantaneous Undervoltage INST Distance INST Instantaneous Undervoltage INST Distance INST Instantaneous Undervoltage INST Instantaneous Undervoltage INST Distance INST Instantaneous Undervoltage INST Distance INST Instantaneous Undervoltage INST Inst				
COMM Communications COMP Compensated, Comparison CONN Connection CONN Connection CONT Continuous, Contact CO-ORD Coordination CPU Central Processing Unit CRT CRNT Current CSA Canadian Standards Association CYT Capacitive Voltage Transformer CYT Capacitive Voltage Transformer CYC District Voltage Transformer CYC District District Current DIA Digital to Analog Cf dc) Direct Current DD Disturbance Detector CFLT Default DGNST District		. Contact Output		
COMP Compensated, Comparison CONN Connection NC SEQ Incomplete Sequence CONT Continuous, Contact CO-GRD Coordination CPU Central Processing Unit CRC Cyclic Redurdancy Code CRT, CRNT Current CSA Canadian Standards Association CT Current Transformer CT Current Transformer CVT Capacitive Voltage Transformer CVT Capacitive Voltage Transformer CVG Digital to Analog CV City Digital to Analog CV Digital to Analog CV Digital to Analog CV Digital to Analog DIA Digital to Analog DIA Digital to Analog DIA Digital for Analog Dia Digital for Analog Dia Digital for Analog Dia Digital for Analog Dia Digit			[G	. Ground (not residual) current
CONN. Confiection CONT Continuous, Contact CO-ORD. Coordination CPU Central Processing Unit CRC Cyclic Redundancy Code CRT, CRNT Current CSA Canadian Standards Association CVT Capacitive Voltage Transformer CVT Capacitive Voltage Transformer CVT Capacitive Voltage Transformer DIA Digital to Analog DC (dc) Direct Current DD Disturbance Detector DFLT Default DG Dijetal Input DIFF Differential DIFF Differential DISCREP Discrepancy DISCREP Discrepancy DISCREP Distance DISCREP Disturbed Network Protocol DND Disturbance DND Disturbuted Network Protocol DND Disturbuted Network Protocol DND Disturbuted Network Protocol DND Disturbuted Network Protocol DND Disturbuted Network Protocol DNP Distributed Network Protocol DNP Direct Under-reaching Transfer Trip DNP Direct Under-reaching Transfer Trip DNA Machine TT Direct Transfer Trip DNA Machine TT Direct Transfer Trip DNA Machine TNA Mach				
CONT Continuous, Contact CO-ORD Coordination CPU Central Processing Unit CPU Central Processing Unit CRC Cyclic Redundancy Code CRT, CRNT Current CSA Canadian Standards Association CT Current Transformer CVT Capacitive Voltage				
CO-ORD Coordination CPU Central Processing Unit CPU Central Processing Unit CRC Cyclic Redundancy Code CRT, CRNT Current CSA Canadian Standards Association CY Current Transformer CT Current Transformer CT Current Transformer CYT Capacitive Voltage Transformer D/A Digital to Analog CC Direct Current D/A Digital to Analog DC (dc) Direct Current DFLT Default DFLT Default DI DI Disturbance Detector DFLT Diagnostics DI DI Digital Input DIFF Differential DIR Discrepancy DISCREP Discrepancy DIST Distrance DPD Demand DPD Demand DPD Demand DPD Demand DPD Demand DPD Distributed Network Protocol DPO Dropout DPO Dropout DPO Dropout DSP Digital Signal Processor dt. Rate of Change DTT Direct Under-reaching Transfer Trip DUTT Direct Under-reaching Transfer Trip DUTT Direct Under-reaching Transfer Trip DUTT Direct Under-reaching Transfer Trip DUTT Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External DVA Instantaneous Overcurrent DVD MNA Megalvolt-Ampere (total 3-phase) FDL Fault Detector low-set DVA Instantaneous Overcurrent DVA Inst	CONN	. Connection	INC SEQ	. Incomplete Sequence
CO-ORD Coordination CPU Central Processing Unit CPU Central Processing Unit CRC Cyclic Redundancy Code CRT, CRNT Current CSA Canadian Standards Association CY Current Transformer CT Current Transformer CT Current Transformer CYT Capacitive Voltage Transformer D/A Digital to Analog CC Direct Current D/A Digital to Analog DC (dc) Direct Current DFLT Default DFLT Default DI DI Disturbance Detector DFLT Diagnostics DI DI Digital Input DIFF Differential DIR Discrepancy DISCREP Discrepancy DIST Distrance DPD Demand DPD Demand DPD Demand DPD Demand DPD Demand DPD Distributed Network Protocol DPO Dropout DPO Dropout DPO Dropout DSP Digital Signal Processor dt. Rate of Change DTT Direct Under-reaching Transfer Trip DUTT Direct Under-reaching Transfer Trip DUTT Direct Under-reaching Transfer Trip DUTT Direct Under-reaching Transfer Trip DUTT Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External DVA Instantaneous Overcurrent DVD MNA Megalvolt-Ampere (total 3-phase) FDL Fault Detector low-set DVA Instantaneous Overcurrent DVA Inst	CONT	. Continuous, Contact	INIT	. Initiate
CPU Central Processing Unit CRC Cyclic Redundancy Code CRC Cyclic Redundancy Code CRT, CRNT Current CSA Canadian Standards Association CT Current Transformer CVT Capacitive Voltage Transformer CVT Capacitive Voltage Transformer Digital to Analog CC Direct Current DD Disturbance Detector DD Disturbance Detector DI Digital Input DIFF Differential DIFF Discrepancy DISCREP Discrepancy DISCREP Discrepancy DISCREP Discrepancy DIST Distance DPD Distributed Network Protocol DND Demand DND Demand DND Demand DND Demand DND Demand DND Demand DND Demand DNP Distributed Network Protocol DPO Dropout DSP Digital Signal Processor dt. Rate of Change DTT Direct Transfer Trip DUTT. Direct Transfer Trip DUTT. Direct Transfer Trip DUTT. Direct Transfer Trip DUTT. Direct Current DNA Manual / Manually MAX Maximum MIC Model Implementation Conformance MIC Model Machina Mac			INST	. Instantaneous
CRC Cyclic Redundancy Code CRT, CRNT Current CSA Canadian Standards Association CT Current Transformer CT Current Transformer CT Current Transformer CT Capacitive Voltage Transformer D/A Digital to Analog CC Direct Current CSA Canadian Standards Association CVT Capacitive Voltage Transformer D/A Digital to Analog CC (dc) Direct Current CSA Canadian Standards Organization D/A Digital to Analog CC (dc) Direct Current CSA Capacitive Voltage CC Current CC Capacitive Voltage CC Current CC Capacitive Voltage CC Current CC Capacitive Voltage CC Current CC Capacitive Voltage CC Current CC Capacitive Voltage CC Current CC Capacitive Voltage CC Current CC Capacitive Voltage CC Current CC Capacitive Voltage CC Current CC Capacitive Voltage CC Current CC Capacitive Voltage CC Current CC Capacitive Voltage CC Current Compensation CC Current Current Compensation CC Current Compensation CC Current Current Current Current CC Current Current Current Current CC Current Current Current Current CC Current Current Current Current CC Current	CPU	Central Processing Unit		
CRT, CRNT Current CSA Canadian Standards Association CT Current Transformer CT Current Transformer CVT Capacitive Voltage Transformer D/A Digital to Analog C/B Direct Current DO Disturbance Detector DFLT Default DFLT Differential DIFF Differential DISCREP Discrepancy DISCREP Discrepancy DIST Distance DDD Distance DDD Distance DDD Disturbunde Attended Processor DISCREP Discrepancy DIST Distance DDD Distance DPO Dropout DRA Locked-Rotor Current DNA Machine DRA Magnitude DDTT Direct Transfer Trip DIFF DIPFC Transfer Trip DIPFC DIPFC Transfer Trip DIPFC DIPFC Transfer Trip DIPFC DIPFC Transfer Trip DIPFC DIPFC Transfer Trip DIPFC DIPFC Transfer Trip DIPFC DIPFC Under-reaching Transfer Trip DIPFC DIPFC Under-reaching Transfer Trip DIPFC DIPFC Transfer DiPFC DIPFC Under-reaching Transfer Trip DIPFC DIPFC Under-reaching Transfer Trip DIPFC DIPFC Under-reaching Transfer Trip DIPFC DIPFC Under-reaching Transfer Trip DIPFC DIPFC Under-reaching Transfer Trip DIPFC DIPFC Under-reaching Transfer Trip DIPFC DIPFC Under-reaching Transfer Trip DIPFC DIPFC Under-reaching Transfer Trip DIPFC DIPFC Under-reaching Transfer Trip DIPFC Under-reaching Transfer Trip DIPFC Under-reaching Transfer Trip DIPFC Under-reaching Transfer Trip DIPFC Under-reaching Transfer Trip DIPFC Under-reaching Transfer Trip DIPFC Under-reaching Transfer Trip DIPFC Under-reaching Transfer Trip DIPFC Under-reaching Transfer Trip DIPFC Under-reaching Und	CRC	Cyclic Redundancy Code		
CSA. Canadian Standards Association CT. Current Transformer CVT. Capacitive Voltage Transformer D/A. Digital to Analog C (dc). Direct Current DD. Disturbance Detector DFLT. Default DIII Digital Input DII Digital Input DII Digital Input DII Digital Input DII Digital Input DII Digital Input DII Digital Input DII Digit	CRT CRNT	Current		
CT. Current Transformer CVT. Capacitive Voltage Transformer CVT. Capacitive Voltage Transformer D/A. Digital to Analog DC (dc) Direct Current DD. Disturbance Detector DFLT. Default DGNST. Diagnostics DI. Digital Input DIFF Differential DISCREP Discrepancy DISCREP Discrepancy DMD Demand DD Demand DD Demand DD Disturbance Detector DFLT Differential LED Light Emitting Diode LIF BLD Left Blinder DISCREP Discrepancy DISCREP Discrepancy DMD Demand DPD Distributed Network Protocol DRD Distributed Network Protocol DRD Distributed Network Protocol DRD Distributed Network Protocol DPO Dropout DSP Digital Signal Processor M Machine dt. Rate of Change DTT Direct Transfer Trip DUTT Direct Under-reaching Transfer Trip MAM. Manual / Manually MAX. Maximum ENCRMNT Encroachment EPRI Electric Power Research Institute EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External MISCREP MAS MegaVolt-Ampere (total 3-phase) FDH Fault Detector FDH MAA MegaVolt-Ampere (phase A) FDL Fault Detector Infect MAG MegaVolt-Ampere (total 3-phase B) FLA Full Load Current MVA MegaVolt-Ampere (phase A) FLA BMEQAVolt-Ampere (phase A) FLA MAG MAG MegaVolt-Ampere (phase A) FLA MAG MAG MegaVolt-Ampere (phase A) FLA MAG MAG MAG MAG MAG MAG MegaVolt-Ampere (phase A) FLA MAG MAG MAG MAG MAG MegaVolt-Ampere (phase A) FLA MAG MAG MAG MAG MAG MAG MegaVolt-Ampere (phase A) FLA MAG MAG MAG MAG MAG MAG MAG MAG MAG MA	CSA	Canadian Standards Association		
CVT Capacitive Voltage Transformer ISO International Standards Organization IUV Instantaneous Undervoltage D/A Digital to Analog DC (dc) Direct Current K0 Zero Sequence Current Compensation K4 kiloAmpere DD Disturbance Detector KA kiloAmpere DFLT Default KV kiloVolt DGNST. Diagnostics DI. Digital Input LED Light Emitting Diode DIFF Differential LEO Line End Open DIR Directional LFT BLD Left Blinder DISCREP Discrepancy LOOP Loopback DIST Distance LPU Line Pickup DMD Demand LRA Locked-Rotor Current DNP Distributed Network Protocol LTC Load Tap-Changer DPO Dropout DSP Digital Signal Processor M M Machine dt Rate of Change MAG Magnitude DUTT Direct Under-reaching Transfer Trip MAN Manual / Manually ENCRMNT Encroachment MC Machine Interface EVT Filename extension for event recorder files EXT Extension, External MMS Manufacturing Message Specification MT Minimum Response Time MSG Message MIA Maximum Response Time MSG Message MIA Maximum Response Time MIA Maximum Response Time MIA Maximum Response Time MIA Maximum Response Time MIA Maximum Response Time MIA Maximum Response Time MIA Maximum Response Time MIA Maximum Torque Angle FID Fault Detector FDH Fault Detector loyh-set MIA MegaVolt-Ampere (total 3-phase) MYA MegaVolt-Ampere (phase A) FLA Full Load Current MYA MegaVolt-Ampere (phase B)	CT	Current Transformer	IDIC	Inter Pange Instrumentation Group
D/A Digital to Analog DC (dc) Direct Current DD Direct Current DD Disturbance Detector FLT Default DGNST Diagnostics DIFF Differential DIFF Differential DISCREP Discrepancy DIST Demand DIST Demand DIST Distance DIST Distance DIST Distance DIST Distance DIST Distance DIST Distance DIST Distance DIST Distance DIST Distance DIPU Line Pickup DIDD Demand DRD Demand DRD Demand DRD Distributed Network Protocol DRD Distributed Search Institute DSP Digital Signal Processor dt Rate of Change DTT Direct Under-reaching Transfer Trip MAG Magnitude DUTT Direct Under-reaching Transfer Trip MAN Manual / Manual / Manually MAX Maximum ENCRMNT Encroachment EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External MSG Message FAIL Failure MSG Message FAIL Failure MTA Maximum Torque Angle MSG MegaVolt-Ampere (total 3-phase) FDL Fault Detector low-set MVA MegaVolt-Ampere (phase A) FLA MegaVolt-Ampere (phase B)			100	Inter-Native instrumentation Group
D/A Digital to Analog DC (dc) Direct Current DD Disturbance Detector DFLT Default DGNST Diagnostics DI Differential DIR Directional DISCREP Discrepancy DMD Demand DMP Distributed Network Protocol DPO Dropout DPO Dropout DPO Dropout DPO Distributed Network Protocol DPO Dropout DPO Dropout DPO Direct Transfer Trip DUTT Direct Transfer Trip DWAN Magnitude DUTT Direct Transfer Trip DWAN Manual / Manually ENCRMNT Encroachment EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External MSG Message FD Fault Detector FDH Fault Detector ligh-set FDL Fault Detector low-set FDL Fault Detector low-set FDL Fault Detector (base NVA MegaVolt-Ampere (phase B) Fusikivo Vision Miniman Minuse Regover (phase B) Fusikivo Vision MA MegaVolt-Ampere (phase B) Fusikivo Vision Manual (Manual) FUNDA MAN MegaVolt-Ampere (phase B) Fusikivo Vision Manual (Manual) FUNDA MAN MegaVolt-Ampere (phase B) Fusikivo Vision Manual (Manual) FUNDA MAN MegaVolt-Ampere (phase B)	CV1	. Capacitive voltage Transformer	150	. International Standards Organization
DC (dc) Direct Current DD Disturbance Detector DFLT Default DGNST Diagnostics DI Digital Input DIFF Differential DISCREP Discrepancy DIST Distance DISCREP Distance DISCREP Distance DIST DISTIBUTED NEW DISTIBUTED DISTIBUTED NEW DISTIBUTED NEW DISTIBUTED DISTIBUTED NEW DISTIBUTED DISTIBUTED NEW DISTIBUTED DISTIBUTED DISTIBUTED DISTIBUTED DOIS DISTIBUTED DISTIBUTED DISTIBUTED DISTIBUTED DISTIBUTED DISTIB	D/A	Divital to Analog	10 V	. Instantaneous Undervoltage
DD. Disturbance Detector DFLT Default DGNST Diagnostics DI Digital Input DIFF Differential DIR Directional DIST Distance DIST Distributed Network Protocol DRA LCOKed-Rotor Current DNP Distributed Network Protocol DRA LCOKed-Rotor Current DRA LCOKed-Rotor Current DRA LOCKed-Rotor Current DRA Machine MM Machine MM Machine MM Machine MM Machine MM Machine MM Manual / Manually MAX Maximum MIL Manual / Manually MAX Maximum MIC Model Implementation Conformance EVT Filename extension for event recorder files EVT Filename extension for event recorder files EXT Extension, External MMS Manufacturing Message Specification MRT Minimum Response Time F. Field MSG Message FAIL Faillure FD Fault Detector FDH Fault Detector high-set FD Fault Detector high-set FDL Fault Detector low-set MVA MegaVolt-Ampere (total 3-phase) FDL Fault Load Current MVA MegaVolt-Ampere (phase A) FLA MegaVolt-Ampere (phase B)	D/A	. Digital to Analog	1.0	7 0 0 10 "
DELT Default DGNST Diagnostics DI Digital Input DIFF Differential DIFF Differential DIFF Differential DISCREP Discrepancy DIST Distance DMD Demand DND Demand DNP Distributed Network Protocol DSP Digital Signal Processor dt Rate of Change DTT Direct Transfer Trip DITT Direct Under-reaching Transfer Trip MAN Manual / Manually DUTT Direct Under-reaching Transfer Trip ENCRMNT Encroachment EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External ME MegaVolt-Ampere (total 3-phase) FD Fault Detector igh-set FD Fault Detector low-set FDL Fault Detector (phase A) Full Load Current KV kiloVolt LED Light Emitting Diode LEO Light Bind College LEO	DC (dc)	. Direct Current	K0	. Zero Sequence Current Compensation
DGNST. Diagnostics DI. Digital Input DIFF Differential DIR Directional DIR Directional DIST Discrepancy DIST Distance DIST Distance DIPU Line Pickup DMD Demand DIPU Line Pickup DMD Distributed Network Protocol DPO Dropout DPO Dropout DSP Digital Signal Processor dt Rate of Change DTT Direct Transfer Trip DITT Direct Under-reaching Transfer Trip MAN Manual / Manually MAX Maximum ENCRMNT Encroachment EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External MIST Minimum Response Time F. Field MSG MegaVolt-Ampere (total 3-phase) FDL Fault Detector high-set FDL Fault Detector low-set MVA MegaVolt-Ampere (phase A) FLA LECC Line End Open LEO Leo Hill Blinder LEO Line End Open LEO Lophack LEO Line End Open LEO Lophack LEO Line End Open LEO Lophack LEO Line End Open LEO Lophack LEO Line End Open LEO Lophack LEO Line End Cophack LEO Line End Open LEO Lophack LEO Line End Cophack LEO Line End Cophack LEO Line End Cophack LEO Line End Cophack LEO Lophack LEO Line End Cophack LEO Lophack			kA	. kiloAmpere
DI Digital Input Differential LED Light Emitting Diode DIFF Differential LEO Line End Open DIR Directional LFT BLD Left Blinder DISCREP Discrepancy LOOP Loopback DIST Distance LPU Line Pickup DMD Demand LRA Locked-Rotor Current DNP Distributed Network Protocol LTC Load Tap-Changer DPO Dropout DSP Digital Signal Processor M Machine dt Rate of Change MAG Magnitude DUTT Direct Transfer Trip MAG Magnitude DUTT Direct Under-reaching Transfer Trip MAN Manual / Manually ENCRMNT Encroachment MIC Model Implementation Conformance EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External MIN Minimum, Minutes EXT Minimum Response Time F Field MSG Message FAIL Failure MTA Maximum Torque Angle FD Fault Detector FDH Fault Detector high-set MVA MegaVolt-Ampere (total 3-phase) FDL Fault Detector low-set MVA MegaVolt-Ampere (phase A) FLA Full Load Current MVA MegaVolt-Ampere (phase B)	DFLT	. Default	kV	. kiloVolt
DI Digital Input Differential LED Light Emitting Diode DIFF Differential LEO Line End Open DIR Directional LFT BLD Left Blinder DISCREP Discrepancy LOOP Loopback DIST Distance LPU Line Pickup DMD Demand LRA Locked-Rotor Current DNP Distributed Network Protocol LTC Load Tap-Changer DPO Dropout DSP Digital Signal Processor M Machine dt Rate of Change MAG Magnitude DUTT Direct Transfer Trip MAG Magnitude DUTT Direct Under-reaching Transfer Trip MAN Manual / Manually ENCRMNT Encroachment MIC Model Implementation Conformance EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External MIN Minimum, Minutes EXT Minimum Response Time F Field MSG Message FAIL Failure MTA Maximum Torque Angle FD Fault Detector FDH Fault Detector high-set MVA MegaVolt-Ampere (total 3-phase) FDL Fault Detector low-set MVA MegaVolt-Ampere (phase A) FLA Full Load Current MVA MegaVolt-Ampere (phase B)	DGNST	. Diagnostics		
DIFF Differential LEO Line End Open DIR Directional LFT BLD Left Blinder DISCREP Discrepancy LOOP Loopback DIST Distance LPU Line Pickup DMD Demand LRA Locked-Rotor Current DNP Distributed Network Protocol Dro Dropout DSP Digital Signal Processor dt Rate of Change MA MilliAmpere DTT Direct Transfer Trip MAM Manual / Manually DUTT Direct Under-reaching Transfer Trip MAN Maximum ENCRMNT Encroachment Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External MMS Manufacturing Message Specification MRT Minimum Response Time F Field MSG Message FAIL Failure MTA Maximum Torque Angle FD Fault Detector high-set MVA MegaVolt-Ampere (total 3-phase) FUA Faill Detector low-set MVA MegaVolt-Ampere (phase A) FLA Full Load Current MVAE Locked-Rotor Current LEC Load Tap-Changer LOOP Loopback LFT BLD Left Blinder LOOP Loopback LET BLD Left Blinder HON Line Filt Detector Current LOOP Loopback LPU Line Filt Detector Current LOOP Loopback LPU Left Blinder HAA Locked-Rotor Current M Machine Pickup MA Machine MA MailliAmpere MAN Manual / Manually MAX Manual / Manually MAX Manual / Manually MAX Manual / Manually MAX Maximum MIC Model Implementation Conformance MIN Minimum, Minutes MIN Minimum Response Time MMS Manufacturing Message Specification MRT Minimum Response Time MTA Maximum Torque Angle MTA Maximum Torque Angle MTA Maximum Torque Angle MTA MegaVolt-Ampere (total 3-phase) MVA MegaVolt-Ampere (phase A) MVA MegaVolt-Ampere (phase A) MVA MegaVolt-Ampere (phase B)	DI	. Digital Input	LED	. Light Emitting Diode
DIR Directional Discrepancy Discrepancy LOOP Loopback DIST Distance LPU Line Pickup LPU Line Pickup LPU Line Pickup DMD Demand Demand LRA Locked-Rotor Current LPU Load Tap-Changer DPO Dropout DPO Dropout DPO Digital Signal Processor M. Machine MAC Magnitude Maximum MAC Maximum MAX Maximum MAX Maximum MIC Model Implementation Conformance PRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External MSG Message FAIL Failure MTA Maximum Torque Angle FD Fault Detector high-set MAX Maximum Torque Angle FD Fault Detector high-set MMA MegaVolt-Ampere (total 3-phase) FLA Full Load Current MVA MegaVolt-Ampere (phase A) MCA MegaVolt-Ampere (phase A) MCA MegaVolt-Ampere (phase B)	DIFF	. Differential	LEO	. Line End Open
DISCREP Discrepancy Distrance LOOP Loopback DND Demand LRA Locked-Rotor Current DNP Distributed Network Protocol DPO Dropout DSP Digital Signal Processor dt Rate of Change MAG Magnitude DTT Direct Transfer Trip MAG Magnitude DUTT Direct Under-reaching Transfer Trip MAN Maximum ENCRMNT Encroachment Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External MRS Manufacturing Message Specification F Field MSG Message FAIL Failure MTA Motor FDH Fault Detector high-set FDL Fault Detector low-set MVA MegaVolt-Ampere (total 3-phase) FLA Full Load Current MVAB MCA MegaVolt-Ampere (phase B) LOOP Loopback LPU Line Pickup Line Pickup Line Pickup Line Pickup Line Pickup Line Pickup Line Pickup Line Pickup Line Pickup Line Pickup Line Pickup Loacked-Rotor Current HAA Locked-Rotor Current MM Machine MAR MilliAmpere MAR Mayimum MAX Maximum MIC Model Implementation Conformance MIN Minimum Response Time MRT Minimum Response Time MTA Maximum Torque Angle MTA MegaVolt-Ampere (total 3-phase) MVA MegaVolt-Ampere (phase A) MVA MegaVolt-Ampere (phase B)				
DIST	DISCREP	Discrepancy		
DMD Demand Distributed Network Protocol Dropout Dropout Digital Signal Processor M Machine Magnitude Magnitude Magnitude Max Maximum Mill Manually Max Maximum Mill Manually Max Maximum Mill Minimum, Minutes EVT Filename extension for event recorder files EXT Extension, External Mill Minimum Response Time Field Fallt Detector Fault Detector Max Maximum Torque Angle Max Maximum Torque Angle Max Maximum Torque Angle Max Maximum Regavolt-Ampere (total 3-phase) MVA Magavolt-Ampere (phase A) MVA_B Megavolt-Ampere (phase B)				
DNP. Distributed Network Protocol DPO Dropout DSP Digital Signal Processor dt Rate of Change DTT Direct Transfer Trip DITT Direct Under-reaching Transfer Trip MAG Magnitude DUTT MAN Manually MAX Maximum ENCRMNT Encroachment EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External F Field FAIL Failure FD Fault Detector FDH Fault Detector FDH Fault Detector low-set FLA Full Load Current LTC Load Tap-Changer M. Machine Machine MAC Magnitude MAN Manually MAX Maximum MIC Model Implementation Conformance MIN Minimum, Minutes MIN Man Machine Interface MMS Manufacturing Message Specification MRT Minimum Response Time MTA Maximum Torque Angle MTA Maximum Torque Angle MTA MegaVolt-Ampere (total 3-phase) MVA MegaVolt-Ampere (phase A) MVA MegaVolt-Ampere (phase B)				
DPO Dropout DSP Digital Signal Processor dt Rate of Change DTT Direct Transfer Trip DUTT Direct Under-reaching Transfer Trip ENCRMNT Encroachment EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External F Field FAIL Failure FD Fault Detector FD Fault Detector FDH Fault Detector high-set FDL Fault Detector low-set FLA Full Load Current M M Machine MAG Magnitude MAN Manually MAX Maximum MIC Model Implementation Conformance MIN Minimum, Minutes MIN Minimum, Minutes MMI Man Machine Interface MMS Manufacturing Message Specification MRT Minimum Response Time MTA Maximum Torque Angle MTA Maximum Torque Angle MTR Motor MTR MegaVolt-Ampere (total 3-phase) MVA MegaVolt-Ampere (phase A) MVA_B MegaVolt-Ampere (phase B)				
DSP			L10	. Load Tap-Changer
DTT Direct Transfer Trip DUTT Direct Under-reaching Transfer Trip MAS Manual / Manually MAX Maximum MIC Model Implementation Conformance MIN Minimum, Minutes EVT Filename extension for event recorder files EXT Extension, External MIN Man Machine Interface MMS Manufacturing Message Specification MRT Minimum Response Time MSG Message FAIL Failure MTA Maximum Torque Angle MTA Maximum Torque Angle MTA MegaVolt-Ampere (total 3-phase) FDL Fault Detector low-set MVA MegaVolt-Ampere (phase A) MVA_B MegaVolt-Ampere (phase B)	DPO	. Diopoul		Manager and the second
DTT Direct Transfer Trip DUTT Direct Under-reaching Transfer Trip MAS Manual / Manually MAX Maximum MIC Model Implementation Conformance MIN Minimum, Minutes EVT Filename extension for event recorder files EXT Extension, External MIN Man Machine Interface MMS Manufacturing Message Specification MRT Minimum Response Time MSG Message FAIL Failure MTA Maximum Torque Angle MTA Maximum Torque Angle MTA MegaVolt-Ampere (total 3-phase) FDL Fault Detector low-set MVA MegaVolt-Ampere (phase A) MVA_B MegaVolt-Ampere (phase B)	DSP	. Digital Signal Processor		
DUTT Direct Under-reaching Transfer Trip ENCRMNT Encroachment EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External F Field FAIL Failure FD Fault Detector FDH Fault Detector high-set FDL Fault Detector low-set FLA Full Load Current MAN Manual / Manually MAX Maximum MIC Model Implementation Conformance MIN Minimum, Minutes MMI Man Machine Interface MMS Manufacturing Message Specification MRT Minimum Response Time MTA Maximum Torque Angle MTA Maximum Torque Angle MTA MegaVolt-Ampere (total 3-phase) MVA MegaVolt-Ampere (phase A) MVA_B MegaVolt-Ampere (phase B)	at	. Rate of Change_		
ENCRMNT Encroachment EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External F Field Fall Failure FD Fault Detector FDH Fault Detector high-set FDL Fault Detector low-set FLA Full Load Current MAX Maximum MIC Model Implementation Conformance MIN Minimum, Minutes MMI Man Machine Interface MMS Manufacturing Message Specification MRT Minimum Response Time MSG Message MTA Maximum Torque Angle MTA Motor MTR Motor MVA MegaVolt-Ampere (total 3-phase) MVA MegaVolt-Ampere (phase A) MVA_B MegaVolt-Ampere (phase B)	DII	. Direct Transfer Trip		
ENCRMNT Encroachment EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External Field Field MSG Message FAIL Failure MTA Maximum Torque Angle FD Fault Detector MTA Motor FDH Fault Detector low-set MVA MegaVolt-Ampere (total 3-phase) FLA Full Load Current MIC Model Implementation Conformance MIC Model Implementation Conformance MIN Minimum, Minutes MMI Man Machine Interface MMS MAN Man Machine Interface MMS Man Machine MMS Man Machine MMS Man Machine MMS Man Machine MMS	DUTT	. Direct Under-reaching Transfer Trip		
EPRI Electric Power Research Institute EVT Filename extension for event recorder files EXT Extension, External Filename extension, External Filename extension, External MMS Man Machine Interface MMS Manufacturing Message Specification MRT Minimum Response Time MSG Message FAIL Failure FILENAME Fault Detector FILENAME FAULT Detector high-set FILENAME FAULT Detector low-set MVA MegaVolt-Ampere (phase A) MVA_B MegaVolt-Ampere (phase B)				
EVT Filename extension for event recorder files EXT Extension, External F. Field FAIL Failure FD Fault Detector FDH Fault Detector high-set FDL Fault Detector low-set FLA Full Load Current MMI Man Machine Interface MMS Manufacturing Message Specification MRT Minimum Response Time MSG Message MTA Maximum Torque Angle MTR Motor MTR Motor MVA MegaVolt-Ampere (total 3-phase) MVA MegaVolt-Ampere (phase A) MVA MegaVolt-Ampere (phase B)	ENCRMNT	. Encroachment		
EVT Filename extension for event recorder files EXT Extension, External F. Field FAIL Failure FD Fault Detector FDH Fault Detector high-set FDL Fault Detector low-set FLA Full Load Current MMI Man Machine Interface MMS Manufacturing Message Specification MRT Minimum Response Time MSG Message MTA Maximum Torque Angle MTR Motor MTR Motor MVA MegaVolt-Ampere (total 3-phase) MVA MegaVolt-Ampere (phase A) MVA MegaVolt-Ampere (phase B)	EPRI	. Electric Power Research Institute	MIN	. Minimum, Minutes
EXT Extension, External MMS Manufacturing Message Specification MRT Minimum Response Time MSG Message FAIL Failure MTA Maximum Torque Angle MTR Motor FDH Fault Detector high-set FDL Fault Detector low-set MVA MegaVolt-Ampere (total 3-phase) FLA Full Load Current MVA _B MegaVolt-Ampere (phase B)				
F Field MSG Message FAIL Failure MTA Maximum Torque Angle MTA Motor FDH Fault Detector MTR MegaVolt-Ampere (total 3-phase) FDL Fault Detector low-set MVA MegaVolt-Ampere (phase A) FLA Full Load Current MVA_B MegaVolt-Ampere (phase B)				
FField MSGMessage FAIL Failure MTAMaximum Torque Angle FDFault Detector MTRMotor FDHFault Detector high-set MVAMegaVolt-Ampere (total 3-phase) FDL Fault Detector low-set MVA MegaVolt-Ampere (phase A) FLAFull Load Current MVA_BMegaVolt-Ampere (phase B)				
FAIL Failure MTA Maximum Torque Angle FD Fault Detector MTR Motor FDH Fault Detector high-set MVA MegaVolt-Ampere (total 3-phase) FDL Fault Detector low-set MVA MegaVolt-Ampere (phase A) FLA Full Load Current MVA_B MegaVolt-Ampere (phase B)	F	Field		
FD			MTA	Maximum Torque Angle
FDH Fault Detector high-set MVA MegaVolt-Ampere (total 3-phase) FDL Fault Detector low-set MVA_A MegaVolt-Ampere (phase A) FLA Full Load Current MVA_B MegaVolt-Ampere (phase B)				
FDL				
FLA Full Load Current MVA_B MegaVolt-Ampere (phase B)	I.DU	. I auit Detector Ingri-Set	IVI V A	. Ivicyavoit-Ampere (total 3-phase)
			IVIVA_A	. iviegavoit-Ampere (phase A)
FO Hiper Optic MVA_C MegaVolt-Ampere (phase C)				
	FU	. Fiber Optic	IVIVA_C	. iviegavoit-Ampere (phase C)

APPENDIX E E.2 ABBREVIATIONS

MVAR	MegaVar (total 3-phase)	SAT	CT Saturation
	MegaVar (phase A)	SBO	Select Before Operate
MVAR_B	MegaVar (phase B)	SCADA	Supervisory Control and Data Acquisition
MVAR C	MegaVar (phase C)	SEC	
MV/ADU	Megavar (phase 0) MegaVar-Hour	0E0	Select / Selector / Selection
N/N//	Maga/Nott (total 2 phage)		
IVI V V	MegaWatt (total 3-phase) MegaWatt (phase A)	SENS	
IVIVV_A	Megawatt (phase A)	SEQ	Sequence
MW_B	MegaWatt (phase B)	SIR	Source Impedance Ratio
MW_C	MegaWatt (phase C)	SNTP	Simple Network Time Protocol
MWH	MegaWatt-Hour	SRC	Source
	ŭ	SSB	Single Side Band
N	Neutral	SSFI	Session Selector
	Not Applicable	STATS	
NEG		CLIDN	Supervision
NLG	Negative	SUFIV	Supervision
NMPLT		SUPV	Supervise / Supervision
NOM		SV	Supervision, Service
NSAP	Network Service Access Protocol	SYNC	Synchrocheck Synchrocheck
NTR	Neutral	SYNCHCHK.	Synchrocheck
0	Over	T	Time, transformer
	Overcurrent	TC	Thermal Capacity
O/P, Op	Output	TCP	Transmission Control Protocol
OP	Onerate	TCH	Thermal Capacity Used
ODED	Operate	TD MILIT	Time Diel Multiplier
OPER	Operate	TEMP.	Time Dial Multiplier
OPERATG	Operating	TEIVIP	Temperature
0/5	Operating System		Trivial File Transfer Protocol
OSI	Open Systems Interconnect		Total Harmonic Distortion
OSB	Out-of-Step Blocking	TMR	
OUT	Output		Time Overcurrent
	Overvoltage	TOV	Time Overvoltage
OVEREREO	Overfrequency	TRANS	Transient
		TDANCE	Transfer
OVLD	Overload	TRANSF	
_		1SEL	Transport Selector
P		TUC	Time Undercurrent
PC	Phase Comparison, Personal Computer	TUV	Time Undervoltage
PCNT	Percent	TX (Tx)	Transmit, Transmitter
PF	Power Factor (total 3-phase)	(,	,
DE 1	Power Factor (phase A)	U	Undor
FF_A	Power Factor (phase A)		
PF_B	Power Factor (phase B)	06	Undercurrent
PF_C	Power Factor (phase C)	UCA	Utility Communications Architecture
PFLL	Phase and Frequency Lock Loop	UDP	User Datagram ProtocolUnderwriters Laboratories
PHS	Phase	UL	Underwriters Laboratories
PICS	Protocol Implementation & Conformance	UNBAL	Unbalance
	Statement		Universal Relay
PKP	Pickup	LIRC	Universal Recloser Control
DI C	Power Line Carrier	LIDE	Filename extension for settings files
POS		UV	Undervoltage
	Permissive Over-reaching Transfer Trip		
PRESS	Pressure		Volts per Hertz
PRI	Primary	V_0	Zero Sequence voltage
PROT	Protection	V ⁻ 1	Positive Sequence voltage
	Presentation Selector	V ⁻ 2	Negative Sequence voltage
pu		\/ <u>Δ</u>	Phase A voltage
	Pickup Current Block	VAR	Phase A to B voltage
DUCUDEN	Pickup Current Trip		Phase A to Ground voltage
PUSHBTN	Fusibullon	VARH	Var-hour voltage
PUII	Permissive Under-reaching Transfer Trip	AR	Phase B voltage
	Pulse Width Modulated		Phase B to A voltage
PWR	Power	VBG	Phase B to Ground voltage
		VC	Phase C voltage
QUAD	Quadrilateral	VCA	Phase C to A voltage
			Phase C to Ground voltage
D	Rate, Reverse		Variable Frequency
	Reach Characteristic Angle	VIBR	v ibi aliUli
REF		V I	Voltage Transformer
REM		VIFF	Voltage Transformer Fuse Failure
REV		VILOS	Voltage Transformer Loss Of Signal
RI	Reclose Initiate		
RIP	Reclose In Progress	WDG	Winding
	Right Blinder	WH	
	Remote Open Detector		With Option
RST	Reset		With Respect To
		VVIXI	vviiii Nespect 10
RSTR		V	Pagatanas
KID	Resistance Temperature Detector	X	
	Remote Terminal Unit	XDUCER	
RX (Rx)	Receive, Receiver	XFMR	Transformer
s	second	Z	Impedance, Zone
S			L ====================================
J	55576		

E.3.1 GE MULTILIN WARRANTY

GE MULTILIN RELAY WARRANTY

General Electric Multilin Inc. (GE Multilin) warrants each relay it manufactures to be free from defects in material and workmanship under normal use and service for a period of 24 months from date of shipment from factory.

In the event of a failure covered by warranty, GE Multilin will undertake to repair or replace the relay providing the warrantor determined that it is defective and it is returned with all transportation charges prepaid to an authorized service centre or the factory. Repairs or replacement under warranty will be made without charge.

Warranty shall not apply to any relay which has been subject to misuse, negligence, accident, incorrect installation or use not in accordance with instructions nor any unit that has been altered outside a GE Multilin authorized factory outlet.

GE Multilin is not liable for special, indirect or consequential damages or for loss of profit or for expenses sustained as a result of a relay malfunction, incorrect application or adjustment.

For complete text of Warranty (including limitations and disclaimers), refer to GE Multilin Standard Conditions of Sale.

Numerics		С	
10BASE-F		C37.94 COMMUNICATIONS	3-30. 3-31
communications options	3-18	CE APPROVALS	,
description		CHANGES TO F35 MANUAL	
interface		CHANGES TO MANUAL	E-1, E-2, E-3
redundant option		CHANNEL COMMUNICATION	
settings	5-13	CHANNELS	
specifications		banks	5-39, 5-40
8-BIT COMPARATOR		CIRCUIT MONITORING APPLICAT	TONS5-95
actual values	6-16	CLEANING	2-12
application example	5-109	CLEAR RECORDS	5-11, 7-2
FlexLogic™ operands	5-49	CLEAR RELAY RECORDS	
Modbus registers	B-25, B-26	Modbus registers	B-36
settings	5-106	settings	5-11
specifications	2-7	CLOCK	
8-BIT SWITCH		setting date and time	
FlexLogic™ operands	5-49	settings	5-20
Modbus registers	B-26	COMMANDS MENU	7-1
settings	5-112	COMMUNICATIONS	
specifications	2-7	10BASE-F	3-18, 3-19, 5-13
		channel	
		connecting to the UR	
A		CRC-16 error checking	B-2
A		dnp	
ABBREVIATIONS	F-4	G.703	
AC CURRENT INPUTS		half duplex	B-1
AC VOLTAGE INPUTS		HTTP	
ACTIVATING THE RELAY	,	IEC 60870-5-104 protocol	5-18
ACTIVE SETTING GROUP		IEC 61850	
ACTUAL VALUES		inter-relay communications	
maintenance	6-18	Modbus	
metering	6-8	Modbus registers	
product information	6-19	network	
status		overview	
ALARM LEDs	5-26	RS232	
ALTITUDE	2-11	RS485	
ANSI DEVICE NUMBERS	2-2	settings	
APPARENT POWER	2-8, 6-13	specifications	
APPLICATION EXAMPLES		UCA/MMS	· · · · · · · · · · · · · · · · · · ·
breaker trip circuit integrity	5-97	web server	5-17
contact inputs	5-115	COMPARATOR	ND.
sensitive directional power	5-81	see entry for 8-BIT COMPARATO	rk De Da
APPROVALS	2-12	CONDUCTED RFI	
ARCHITECTURE		CONTACT INFORMATION	
AUXILIARY VOLTAGE CHANNEL	3-9	CONTACT INFORMATION	1-1
AUXILIARY VOLTAGE METERING	6-12	actual values	6.3
		dry connections	
		FlexLogic™ operands	
В		Modbus registers	
		module assignments	
BANKS	5-6. 5-39. 5-40	settings	
BATTERY FAIL	, ,	specifications	
BINARY INPUT POINTS		thresholds	
BINARY OUTPUT POINTS		wet connections	
BLOCK DIAGRAM		wiring	
BLOCK SETTING		CONTACT OUTPUTS	
BREAKER ARCING CURRENT		actual values	6-4
actual values	6-18	FlexLogic™ operands	
BREAKER CONTROL		Modbus registers	
dual breaker logic	5-46	module assignments	
FlexLogic™ operands		settings	
Modbus registers		wiring	
settings	5-44	CONTROL ELEMENTS	

BREAKER-AND-A-HALF SCHEME5-6

BRIGHTNESS......5-9

CONTROL POWER

description.......3-8

specifications	2-10	DIGITAL ELEMENTS	
CONTROL PUSHBUTTONS		application example	
FlexLogic™ operands	5-49	FlexLogic™ operands	
Modbus registers	B-36	logic	5-95
settings	5-27	Modbus registers	B-29
specifications	2-6	settings	5-95
COUNTERS		DIGITAL INPUTS	
actual values	6-5	see entry for CONTACT INPUTS	;
settings	5-98	DIGITAL OUTPUTS	
CRC ALARM	5-36	see entry for CONTACT OUTPU	TS
CRC-16 ALGORITHM	B-2	DIGITIZER	
CRITICAL FAILURE RELAY		actual values	6-16
CSA APPROVAL	2-12	FlexLogic™ operands	
CT BANKS		Modbus registers	
settings	5-39	settings	
CT INPUTS		specifications	
CT WIRING	' '	DIMENSIONS	
CURRENT BANK		DIRECT DEVICES	J-1
CURRENT DEMAND		actual values	6.7
CURRENT METERING		Modbus registers	
actual values	6 11	settings	
			5-123
Modbus registers		DIRECT I/O	AIDEOT OUTDUTO
specifications	2-8	see also DIRECT INPUTS and D	
CURVES		application example	
definite time		configuration examples	
inverse time undervoltage	5-75	settings	. 5-24, 5-32, 5-36, 5-37, 5-123
		DIRECT INPUTS	
		actual values	
D		application example	
D		clearing counters	
DATA FORMATS, MODBUS	B-42	Modbus registers	B-10, B-15, B-36, B-39
DATA LOGGER		settings	5-123
clearing	5 11 7 2	specifications	2-9
Modbus		DIRECT OUTPUTS	
Modbus registers		application example	5-124, 5-125
•		clearing counters	
settings		Modbus registers	B-10, B-36, B-37, B-39
specifications		settings	5-124
via COMTRADE		DIRECTIONAL POWER	
DATE		see entry for SENSITIVE DIREC	TIONAL POWER
DCMA INPUTS		DISPLAY	
Modbus registers		DISTURBANCE DETECTOR	
settings		FlexLogic™ operands	5-51
specifications	2-8	internal	
DCMA OUTPUTS		DNA-1 BIT PAIR	
description		DNP COMMUNICATIONS	
Modbus registers		binary counters	D 15
settings	5-128	binary input points	
specifications	2-10		
DEFINITE TIME CURVE	5-75	binary output points	
DEMAND		control relay output blocks	
Modbus registers	B-12, B-13, B-20	device profile document	
DEMAND METERING		frozen counters	
actual values	6-13	implementation table	
settings	5-23	Modbus registers	
specifications		settings	
DEMAND RECORDS		user map	
clearing	5-11 7-2	DUPLEX, HALF	B-1
DESIGN		DYNAMIC SWITCH	
DEVICE ID		see entry for 8-BIT SWITCH	
DEVICE PROFILE DOCUMENT			
DIELECTRIC STRENGTH			
DIGITAL COUNTERS	2-12, 5-7	_	
	6 5	E	
actual values		FIGHT DIT COMPADATOR	
FlexLogic™ operands		EIGHT-BIT COMPARATOR	0.40
logic		actual values	
Modbus registers		application example	
settings	5-98	FlexLogic™ operands	5-49

Modbus registers	B-25	direction	5-62
settings	5-106	FlexLogic™ operands	5-50
specifications	2-7	hysteresis	5-62
EIGHT-BIT SWITCH		Modbus registers	
FlexLogic™ operands	5-49	pickup	5-62
Modbus registers	B-26	scheme logic	
settings	5-112	settings	5-60, 5-61, 5-63
specifications		specifications	
ELECTROSTATIC DISCHARGE	2-12	FLEXLOGIC™	
ELEMENTS	5-4	editing with enerVista UR Setup	4-^
ENERGY METERING		equation editor	5-59
actual values	6-13	evaluation	
Modbus registers	B-12	example	5-47, 5-55
specifications	2-8	example equation	
ENERGY METERING, CLEARING	5-11, 7-2	gate characteristics	
ENERVISTA UR SETUP		Modbus registers	B-2 ²
creating a site list	4-1	operands	5-48, 5-49
event recorder		operators	
firmware upgrades	4-2	rules	5-54
installation	1-5	specifications	
introduction	4-1	timers	5-59
oscillography	4-2	worksheet	5-56
overview		FLEXLOGIC™ EQUATION EDITOR	5-59
requirements		FLEXLOGIC™ TIMERS	
EQUATIONS		Modbus registers	B-2 ²
definite time curve	5-75	settings	
ETHERNET		FORCE CONTACT INPUTS	
actual values	6-6. 6-16	FORCE CONTACT OUTPUTS	
configuration		FORCE TRIGGER	6-17
Modbus registers		FORM-A RELAY	
settings		high impedance circuits	3-11
specifications		outputs	
EVENT CAUSE INDICATORS		specifications	
EVENT RECORDER		FORM-C RELAY	
actual values	6-17	outputs	3-10. 3-15
clearing		specifications	
Modbus		FREQUENCY METERING	
Modbus registers		actual values	6-14
specifications		Modbus registers	
via enerVista software		settings	
EVENTS SETTING		specifications	
EXCEPTION RESPONSES		FREQUENCY RATE OF CHANGE	
		Modbus registers	B-10. B-30
		settings	
_		FREQUENCY TRACKING	
F		FREQUENCY, NOMINAL	
F405	4.40	FUNCTION SETTING	
F485		FUSE	
FACERIATE DANIELS		FUSE FAILURE	
FACEPLATE PANELS		see VT FUSE FAILURE	
FAST FORM-C RELAY			
FAST TRANSIENT TESTING			
FAX NUMBERS			
FEATURES		G	
FIRMWARE REVISION		0.700	
FIRMWARE UPGRADES		G.703	
FLASH MESSAGES	5-9	GROUND CURRENT METERING	
FLEX STATE PARAMETERS	^ =	GROUPED ELEMENTS	
actual values		GSSE5-16, 5-120, 5-121	, 5-122, 5-123, 6-5, B-16
Modbus registers			
settings			
specifications		Н	
FLEXANALOG PARAMETER LIST	A-1	••	
FLEXCURVES™		HALF-DUPLEX	B-1
specifications	2-6	HTTP PROTOCOL	
FLEXELEMENTS™		HUMIDITY	
actual values	6-15		

I	
IEC 60870-5-104 PROTOCOL	
interoperability document	C-1
Modbus registers	B-16
settings	5-18
IEC 61850	5 400
device ID	
DNA2 assignments Modbus registers	
remote device settings	
remote inputs	
settings	
UserSt-1 bit pair	
IED	
IED SETUP	1-5
IEEE C37.94 COMMUNICATIONS	
IMPORTANT CONCEPTS	
IN SERVICE INDICATOR	1-12, 7-3
INPUTS	
AC current	,
AC voltage	*
contact inputs	
dcmA inputsdirect inputs	
IRIG-B	
remote inputs	
RTD inputs	
virtual	
INSPECTION CHECKLIST	1-1
INSTALLATION	
communications	
contact inputs/outputs	
CT inputs	
RS485	
settings VT inputs	
INSTANTANEOUS OVERCURRENT	
see PHASE, GROUND, and NEUTRAL	IOC entries
INSULATION RESISTANCE	
INTELLIGENT ELECTRONIC DEVICE	
INTER-RELAY COMMUNICATIONS	2-11
INTRODUCTION	
INVERSE TIME UNDERVOLTAGE	5-75
IOC	
see PHASE, GROUND, and NEUTRAL	
IP ADDRESSIRIG-B	5-13
connection	3 20
settings	
specifications	
ISO-9000 REGISTRATION	
K	
KEYPAD	1-11. 4-8
	, -
L	
LAMPTEST	
LASER MODULE	3-23
LATCHING OUTPUTS	

application example	
settings	
specifications	
LED INDICATORS	4-5, 4-6, 4-7, 5-26
LED TEST	
FlexLogic™ operand	
settings	
specifications	
LINK POWER BUDGET	
LOGIC GATES	
LOST PASSWORD	5-8
M	
MAINTENANCE COMMANDS	7-2
MANUFACTURING DATE	
MEMORY MAP DATA FORMATS	
MENU HEIRARCHY	
MENU NAVIGATION	
METERING	
conventions	6-8 6-9
current	
demand	
frequency	
power	
voltage	
METERING CONVENTIONS	
MODBUS	
data logger	B-6 B-7
event recorder	
exception responses	
execute operation	
flex state parameters	
function code 03/04h	
function code 05h	
function code 06h	B-4
function code 10h	
introduction	
memory map data formats	
obtaining files	
oscillography	
passwords	
read/write settings/actual values	
settings	
store multiple settings	
store single setting	
supported function codes	
user map	
MODEL INFORMATION	6-19
MODIFICATION FILE NUMBER	
MODULES	
communications	3-18
contact inputs/outputs	
СТ	
CT/VT	
direct inputs/outputs	,
insertion	
order codes	
ordering	
power supply	
transducer I/O	
VT	
withdrawal	
MOUNTING	3-1

		Modbus	B-7
N		Modbus registers	
		overview	1-12
NAMEPLATE	1-1	security	5-8
NON-VOLATILE LATCHES		settings	5-8
FlexLogic™ operands	5-50	PC SOFTWARE	
Modbus registers	B-29	see entry for ENERVISTA UR SETUP	
settings	5-64	PERMISSIVE FUNCTIONS	5-75
specifications		PER-UNIT QUANTITY	
·		PHASE ANGLE METERING	6-9
		PHASE CURRENT METERING	6-11
		PHASE INSTANTANEOUS OVERCURRENT	
0		see entry for PHASE IOC	
ONE OUGTO	4	PHASE IOC	
ONE SHOTS	5-54	FlexLogic™ operands	5-50
OPEN POLE DETECTOR	5 50	logic	
FlexLogic™ operands		Modbus registers	
logic		specifications	
Modbus registers		PHASE OVERVOLTAGE	
settings		FlexLogic™ operands	5-51
specifications	2-6	logic	
OPERATING TEMPERATURE		Modbus registers	
OPERATING TIMES		settings	
ORDER CODES		specifications	
ORDER CODES, UPDATING		PHASE ROTATION	
ORDERING		PHASE UNDERVOLTAGE	
OSCILLATORY TRANSIENT TESTING	2-12	FlexLogic™ operands	5-51
OSCILLOGRAPHY		logic	
actual values		Modbus registers	
clearing		settings	
Modbus		specifications	
Modbus registers		PHONE NUMBERS	
settings	5-20	POWER METERING	
specifications	2-7	Modbus registers	R ₋ 11
via COMTRADE	B-6	specifications	
via enerVista software	4-2	values	
OST	•	POWER SUPPLY	0-12
OUT-OF-STEP TRIPPING	2-6, 5-67	description	2.7
OUTPUTS		low range	
contact outputs	3-11, 3-13, 5-117	specifications	
control power	2-10	POWER SWING BLOCKING	
critical failure relay	2-9	POWER SWING DETECT	2-0, 3-07
Fast Form-C relay	2-9	FlexLogic™ operands	5 51
Form-A relay			
Form-C relay	2-9, 3-10, 3-15	logic	
IRIG-B	2-10	Modbus registers	
latching outputs	2-9, 5-117	settings	
remote outputs	5-122, 5-123	specifications	2-6
virtual outputs		POWER SYSTEM	D 40
OVERFREQUENCY		Modbus registers	В-19
FlexLogic™ operands	5-50	PREFERENCES	
logic		Modbus registers	
settings		PRODUCT INFORMATION	,
specifications		PRODUCT SETUP	
OVERFRQUENCY		PRODUCTION TESTS	
Modbus registers	B-22	PROTECTION ELEMENTS	
OVERVOLTAGE		PU QUANTITY	5-4
phase	2-5, 5-77	PUSHBUTTONS, USER-PROGRAMMABLE see USER-PROGRAMMBLE PUSHBUTTONS	
P		 R	
PANEL CUTOUT	2.4		
		REACTIVE POWER	2-8, 6-12
PARITY		REAL POWER	2-8, 6-12
PASSWORD SECURITY	5-8	REAL TIME CLOCK	
PASSWORDS		Modbus registers	B-17
changing	4-12	cottings	5 20

lost password 4-12, 5-8

REAR TERMINAL ASSIGNMENTS	3-5	error messages	7-4
REDUNDANT 10BASE-F		FlexLogic™ operands	
RELAY ACTIVATION		Modbus registers	
RELAY ARCHITECTURE		SENSITIVE DIRECTIONAL POWER	
RELAY MAINTENANCE		actual values	6-14
RELAY NAME	5-38	FlexLogic™ operands	5-50
RELAY NOT PROGRAMMED	1-12	logic	5-82
REMOTE DEVICES		Modbus registers	B-10, B-2
actual values	6-4	settings	5-80, 5-82
device ID	5-120	specifications	2-
FlexLogic™ operands		SENSTIVE DIRECTIONAL POWER	
Modbus registers	B-9, B-13, B-39	characteristic	5-8
settings	5-120	SERIAL NUMBER	6-19
statistics	6-5	SERIAL PORTS	
REMOTE INPUTS		Modbus registers	B-10
actual values	6-3	settings	5-1
FlexLogic™ operands		SETTING GROUPS 5-51,	, ,
Modbus registers	B-9, B-13, B-39	SETTINGS, CHANGING	4-1
settings	5-121	SIGNAL SOURCES	
specifications	2-8	description	5-
REMOTE OUTPUTS		metering	
DNA-1 bit pair	5-122	settings	
Modbus registers		SIGNAL TYPES	
UserSt-1 bit pair		SINGLE LINE DIAGRAM	
REPLACEMENT MODULES		SITE LIST, CREATING	4-
RESETTING	,	SNTP PROTOCOL	
REVISION HISTORY	E-1	Modbus registers	
RFI SUSCEPTIBILITY		settings	5-19
RFI, CONDUCTED		SOFTWARE	
RMS CURRENT		installation	1-
RMS VOLTAGE		see entry for ENERVISTA UR SETUP	
ROLLING DEMAND	5-24	SOFTWARE ARCHITECTURE	1-4
RS232		SOFTWARE, PC	
configuration		see entry for enerVista UR Setup	
specifications		SOURCE FREQUENCY	
wiring	3-17	SOURCE TRANSFER SCHEMES	5-7
RS422		SOURCES	
configuration		description	
timing		example use of	
two-channel application		metering	
with fiber interface	3-29	Modbus registers	
RS485	0.40	settings	
communications		SPECIFICATIONS	
description		ST TYPE CONNECTORS	
specifications	2-10	STANDARD ABBREVIATIONS	
RTD INPUTS	0.40	STATUS INDICATORS	
actual values		SURGE IMMUNITY	
Modbus registers		SYMMETRICAL COMPONENTS METERING	6-9
settings		SYNCHROCHECK	0.4
specifications	∠-8	actual values FlexLogic™ operands	
-		logic	
S		Modbus registers	
		settings	
SALES OFFICE	1-1	specifications	
SCAN OPERATION	1-4	SYSTEM FREQUENCY	
SELECTOR SWITCH		SYSTEM SETUP	5-3
actual values	6-5, 6-16		
application example			
FlexLogic™ operands	5-51	T	
logic	5-88		
Modbus registers	B-28	TARGET MESSAGES	7-3
settings	5-84, 5-103	TARGET SETTING	
specifications	2-7	TARGETS MENU	
timing	5-86, 5-87	TCP PORT NUMBER	
SELF-TESTS		TEMPERATURE, OPERATING	
description	7-3	TERMINALS	3-

TESTING		Modbus registers	B-20
force contact inputs	5-132	settings	
force contact outputs	5-133	specifications	2-0
lamp test		USER-PROGRAMMABLE SELF TESTS	
self-test error messages	7-3	Modbus registers	B-18
THERMAL DEMAND CHARACTERISTIC	5-23	settings	5-2 ⁻
TIME	7-2	USERST-1 BIT PAIR	5-12
TIMERS	5-59		
TRACKING FREQUENCY	6-15, B-25		
TRANSDUCER I/O		V	
actual values	6-16	V	
settings	5-127, 5-128	VAR-HOURS	2 8 6 1
specifications	2-8	VIBRATION TESTING	,
wiring	3-16	VIRTUAL INPUTS	
TRIP LEDs	5-26	actual values	6
TROUBLE INDICATOR	1-12, 7-3		
TYPE TESTS	2-12	commands	
TYPICAL WIRING DIAGRAM		FlexLogic™ operands	
		logic	
		Modbus registers	
		settings	5-11
U		VIRTUAL OUTPUTS	
		actual values	
UL APPROVAL	2-12	FlexLogic™ operands	
UNAUTHORIZED ACCESS		Modbus registers	
commands	5-11	settings	5-119
resetting	7-2	VOLTAGE BANKS	5-40
UNDERFREQUENCY		VOLTAGE DEVIATIONS	2-12
FlexLogic™ operands	5-52	VOLTAGE ELEMENTS	5-7
logic	5-89	VOLTAGE METERING	
Modbus registers	B-25	Modbus registers	B-1
settings	5-89	specifications	2-
specifications		values	6-1
UNDERVOLTAGE		VT FUSE FAILURE	
phase	2-5, 5-76	logic	5-100
UNDERVOLTAGE CHARACTERISTICS		Modbus registers	
UNIT NOT PROGRAMMED	5-37	settings	
UNPACKING THE RELAY		VT INPUTS	
UNRETURNED MESSAGES ALARM		VT WIRING	, ,
UPDATING ORDER CODE		VTFF	•
URPC		FlexLogic™ operands	5-5
see entry for ENERVISTA UR SETUP		see VT FUSE FAILURE	
USER-DEFINABLE DISPLAYS		333 11 1 332 17 1123 112	
example	5-32		
invoking and scrolling			
Modbus registers		W	
settings			
		WARRANTY	
specifications	2-0	WATT-HOURS	
USER-PROGRAMMABLE LEDs	A 7	WEB SERVER PROTOCOL	5-1
custom labeling		WEBSITE	1-
defaults		WIRING DIAGRAM	3-
description			
Modbus registers			
settings		7	
specifications	2-6	Z	
USER-PROGRAMMABLE PUSHBUTTONS		ZERO SEQUENCE CORE BALANCE	2.4
FlexLogic™ operands	5-53	ZENU SEQUENCE CUKE BALANCE	3-