

STATIC OUTPUT AND TRIPPING UNIT TYPE SLAT51L

GEK-49853

<u>CONTENTS</u> PA	AGE
DESCRIPTION	3
APPLICATION	3
SETTINGS	3
RATINGS	3
BURDENS	4
FUNCTIONS	4
SCR TRIP CIRCUIT	4
RI RECLOSE INITIATE CIRCUIT	. 4
BFI BREAKER FAILURE INITIATE CIRCUIT-RR34	4
RR-37	4
RR-31 TO R33, RR38 TO R44	4
CONTACT CONVERTER-CC31	4
TL31 DC SUPERVISION TIMER	5
TARGETS	5
LOGIC CIRCUITS	5
CALCULATION OF SETTINGS	5
CONSTRUCTION	5
RECEIVING, HANDLING AND STORAGE	6
TEST INSTRUCTIONS	6
CAUTION	6
GENERAL	6
OPERATIONAL CHECKS	6
	10
	10
	10
	10
	11
	11
	11
CDADE DADEC	11

GEK-49853

STATIC OUTPUT AND TRIPPING UNIT TYPE SLAT51L

DESCRIPTION

The Type SLAT51L relay is a static output and tripping unit. This relay is not intended to be used by itself, but rather as part of a complement of equipment that forms a protective relaying scheme. For a complete description of the overall scheme in which its relay is employed, refer to the overall logic diagram and its associated logic description that is supplied with each terminal of equipment.

The Type SLAT51L relay is packaged in a four-rack unit (one rack unit equals 1 3/4 inches) enclosed metal case suitable for mounting on a 19-inch rack. The outline and mounting dimensions are shown in Fig. 1. The internal connections for the SLAT51L relay are shown in Fig. 2. The component and card locations are shown in Fig. 3.

APPLICATION

The Type SLAT51L relay was originally designed to operate in conjunction with Type SLYP, Type SLCN, Type SLA, and Type SSA relays in a directional comparison scheme for series compensated lines, uncompensated lines or lines adjacent to series compensated lines. Two SCR outputs are provided for tripping the associated breakers. A number of output contacts are also available; please refer to the overall logic diagram and logic description supplied with each scheme to determine which outputs have been supplied, and their specific uses in the scheme.

SETTINGS

The setting of the TL32 timer when the RR31 contacts are used for keying a direct transfer trip channel should be sufficiently long to override the high noise levels generated when tripping the local breakers but sufficiently short so as to not interfere with high speed reclosing at the remote terminal. A typical setting would be 100 to 125 milliseconds.

RATINGS

The Type SLAT51L relay is designed for use in an environment where the air temperature outside the relay case is between -20°C and $+65^{\circ}\text{C}$.

The Type SLAT51L relay requires a ± 15 volt DC power source which can be obtained from a Type SSA power supply.

The SCR tripping circuits are rated for 48/125 or 250 volt DC. Each has a 1.0 ampere series target. The tripping circuits are designed to carry 30 amperes for one second.

The contacts of the telephone-type relays that are used for TR37 and RI will make and carry three amperes continuously and will interrupt up to 0.5 ampere (inductive) at 125 volts DC or 0.25 ampere (inductive) at 250 volts DC.

The contacts of the reed relay RR34, which is used for the BFI function, are rated for 100 volt amperes. They will make and carry three amperes continuously.

These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the General Electric Company.

To the extent required the products described herein meet applicable ANSI, IEEE and NEMA standards; but no such assurance is given with respect to local codes and ordinances because they vary greatly.

The contacts of the following reed relays, RR31, 32, 33, 38, 39, 40, 41, 42, 43 and 44 are rated for 10 volt amperes. They will carry 0.5 ampere (resistive) continuously.

The contact converter in this relay has a link for selecting the proper voltage for the coil circuit of the contact converter. The available voltage taps are for 48, 125 or 250 VDC.

Refer to the unit nameplate for the trip circuit rating of a particular relay.

BURDENS

The SLAT51L relay presents a maximum burden to the Type SSA power supply of:

100 milliamperes from the +15 volt DC supply 350 milliamperes from the -15 volt DC supply

In addition, each target lamp draws 80 milliamperes from the -15 VDC supply.

FUNCTIONS

SCR TRIP CIRCUIT

Electrically separate, isolated SCR trip circuits are provided to trip two breakers. Each circuit is capable of carrying 30 amperes for one second.

The internal connections for the SCR trip and isolator subassemblies are shown in Fig. 4. The isolator card, by means of a DC-to-DC converter, provides a signal path but maintains metallic isolation. This feature makes it possible to isolate the relay power supply from the trip circuit power supply.

RI RECLOSE INITIATE CIRCUIT

Two electrically separate normally open contacts are provided. These contacts close within 17 milliseconds from the time the associated coil is energized by the logic. The contacts open within 170 milliseconds from the time the coil is deenergized. The RI function uses a telephone-type relay with contact ratings stated under RATINGS.

BFI BREAKER FAILURE INITIATE CIRCUIT - RR34

Two electrically separate normally open contacts are provided. These contacts close within two milliseconds from the time the associated coil is energized by the logic. These contacts open within two milliseconds from the time the coil is deenergized. The BFI function uses a reed relay with contact ratings stated under RATINGS.

RR37

Three electrically separate contacts are provided, two normally open and one normally closed. These contacts operate within 17 milliseconds from the time the associated coil is energized by the logic. They reset within 17 milliseconds from the time the coil is deenergized. This function uses a telephone type relay with contact ratings stated under RATINGS.

RR31, RR32, RR33, RR38, RR39, RR40, RR41, RR42, RR43, RR44

Two normally open contacts are provided. These contacts close within 0.5 milliseconds from the time the associated coil is energized by the logic circuitry. It also opens within 0.5 milliseconds from the time the coil is deenergized. The exact function of these outputs is determined by the SLA logic unit optional wiring. Refer to the logic description as to their usage.

CONTACT CONVERTER CC31

When the external contact associated with CC31 is closed, all outputs of the relay including the trip outputs are blocked.

TL31 DC SUPERVISION TIMER

TL31 is a non-adjustable timer (25/0) that provides DC supervision of relay logic circuits. When DC is removed, TL31 will prevent any trip outputs until 25 milliseconds after DC has been reestablished. NOT 31 provides a fast reset signal to all timers with reset times longer than 25 milliseconds that could produce a spurious trip output upon removal of DC.

TARGETS

Two electromechanical target coils are included, one in series with each SCR. These targets operate on one ampere of trip current when the associated SCR passes current. The trip circuit resistance in the relay is 0.40 ohm.

Nine target lamps are included in the SLAT51L. These are designated as indicated on the internal connection diagram of Fig. 2. All but L9 are supervised by the trip bus.

LOGIC CIRCUITS

The functions of the Type SLAT51L relay involve basic logic (AND, OR, and NOT) where the presence or absence of signals, rather than their magnitude, controls the operation. Signals are measured with respect to a reference bus accessible at TP1. In general a signal below one volt DC represents an OFF or LOGIC ZERO condition, an ON or LOGIC ONE state is represented by a signal of approximately ± 15 volts DC.

The symbols used on the internal connection diagram (Fig. 2) are explained by the legend shown in Fig. 5.

CALCULATION OF SETTINGS

There is one timer function in the SLAT51L which requires field adjustment.

The P/25-200 timer insures an adequate duration of the transfer trip signal for dependable tripping at the remote terminal. A setting of six cycles is suggested. This allows a total duration of approximately eight cycles, if two-cycle breakers are used. However, if the channel is also used for direct transfer trip protection of shunt reactors and the line is equipped with reclosing, the lockout of the remote terminal should be delayed until the line protection transfer trip has reset. In this case, the reset delay on P25/200 should be set to coordinate with the timer which delays lockout of the remote terminal on shunt reactor faults.

CONSTRUCTION

The SLAT51L relay is packaged in an enclosed metal case with hinged front cover and removable top cover. The outline and mounting dimensions of the case and the physical location of the components are shown in Figs 1 and 3 respectively.

The SLAT51L relay contains printed circuit cards identified by a code number such as: A110, T114, L102 where A designates an auxiliary function, T designates a time-delay function, and L designates a logical function. The printed circuit cards plug in from the front of the unit. The sockets are marked with letter designations or "addresses" (D, E, F, etc.) which appear on the guide strips in front of each socket, on the component location drawing, on the unit internal connection diagram, and on the printed circuit card. The test points (TP1, TP2, etc.) shown on the internal connection diagram are connected to instrument jacks on a test card in position T or AT with TP1 at the top of the AT card. TP1 and TP11 are tied to reference; TP10 and TP20 are tied to +15 volt DC through a 1.5K resistor. This resistor limits the current when TP10 or TP20 is used to supply a logic signal to a card.

The link shown on the internal connection diagram is used to select certain logic options as explained in the logic description. The link is located on the A109 printed circuit card.

The SLAT51L relay receives its inputs from the associated Type SLA relay. These units are interconnected by ten conductor shielded cables. The sockets for these cables are located on the rear panel of the unit. The SLAT51L output functions are connected to twelve-point terminal strips, which are also located on the rear of the unit.

A window is provided in the hinged cover of the relay to allow target lamps and the mechanical targets to be seen. Push buttons are also provided to reset the targets and lamps without opening the cover.

RECEIVING, HANDLING AND STORAGE

These relays will normally be supplied as a part of a static relay equipment, mounted in a rack or cabinet with other static relays and test equipment. Immediately upon receipt of a static relay equipment, it should be unpacked and examined for any damage sustained in transit. If injury or damage resulting from rough handling is evident, file a damage claim at once with the transportation company and promptly notify the nearest General Electric Sales Office.

Reasonable care should be exercised in unpacking the equipment. If the equipment is not to be installed immediately, it should be stored indoors in a location that is free from moisture, dust, metallic chips, and severe atmospheric contaminants.

Just prior to final installation the shipping support bolt should be removed from each side of all relay units, to facilitate possible future unit removal for maintenance. These shipping support bolts are approximately eight inches back from the relay front panel. Static relay equipment, when supplied in swing rack cabinets, should be securely anchored to the floor or to the shipping pallet to prevent the equipment from tipping over when the swing rack is opened.

TEST INSTRUCTIONS

If the SLAT51L relay that is to be tested is installed in an equipment which has already been connected to the power system, disconnect the outputs of the system.

CAUTION

THE LOGIC SYSTEM SIDE OF THE DC POWER SUPPLY USED WITH MOD III STATIC RELAY EQUIPMENT IS ISOLATED FROM GROUND. IT IS A DESIGN CHARACTERISTIC OF MOST ELECTRONIC INSTRUMENTS THAT ONE OF THE SIGNAL INPUT TERMINALS IS CONNECTED TO THE INSTRUMENT CHASSIS. IF THE INSTRUMENT USED TO TEST THE RELAY EQUIPMENT IS ISOLATED FROM GROUND, ITS CHASSIS MAY HAVE AN ELECTRICAL POTENTIAL WITH RESPECT TO GROUND. THE USE OF A TEST INSTRUMENT WITH A GROUNDED CHASSIS WILL NOT AFFECT THE TESTING OF THE EQUIPMENT. A SECOND GROUND CONNECTION TO THE EQUIPMENT, SUCH AS A TEST LEAD INADVERTENTLY DROPPING AGAINST THE RELAY CASE, MAY CAUSE DAMAGE TO THE LOGIC CIRCUITRY. NO EXTERNAL TEST EQUIPMENT SHOULD BE LEFT CONNECTED TO THE STATIC RELAYS WHEN THEY ARE IN PROTECTIVE SERVICE, SINCE TEST EQUIPMENT GROUNDING REDUCES THE EFFECTIVENESS OF THE ISOLATION PROVIDED.

GENERAL

The SLAT51L relay is supplied from the factory either mounted in a static relay equipment or as a separate unit associated with measuring relays, a Type SSA power supply, and some form of channel equipment. All relay units for a given terminal of static relaying equipment are tested together at the factory, and each unit will have the same summary number stamped on its nameplate.

Timers should be set for the operating on reset times indicated on the associated overall logic diagram. Where a time range is indicated on the overall logic diagram, the timer should be set for the value recommended for that function in the descriptive write-up accompanying the overall logic diagram. Where a setting depends upon conditions encountered on a specific application, this is so stated and the factors influencing the choice of setting are described. The procedure for checking and setting the timers is described in a later section.

OPERATIONAL CHECKS

Operation of the SLAT51L unit can be checked by observing the signals at the twenty test points (TP1 to TP20) in the SLAT51G by observing the operation of the associated channel equipment, or by observing the output functions. The test points are located on two test cards in positions T and AT, and are numbered 1 to 20 from top to bottom. TP1 is the reference bus for the logic circuit, TP10 is at \pm 15 VDC. The

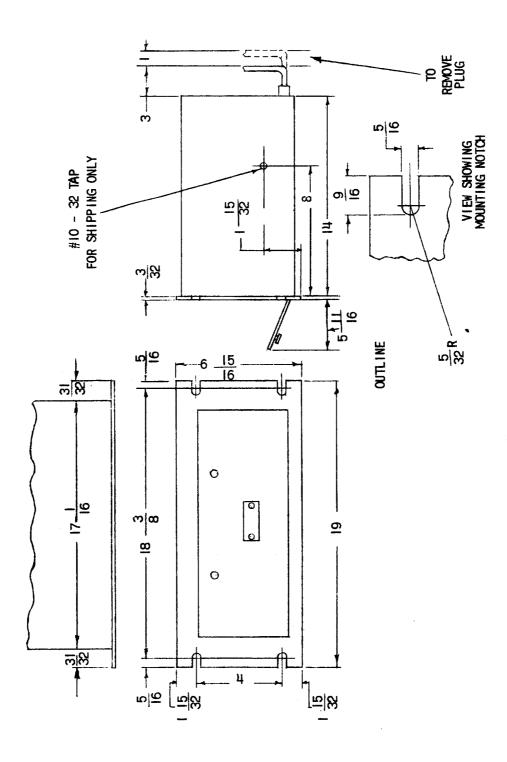


Fig. 1 (0227A2037-0) Outline and Mounting Dimensions for the Type SLAT51L Relay

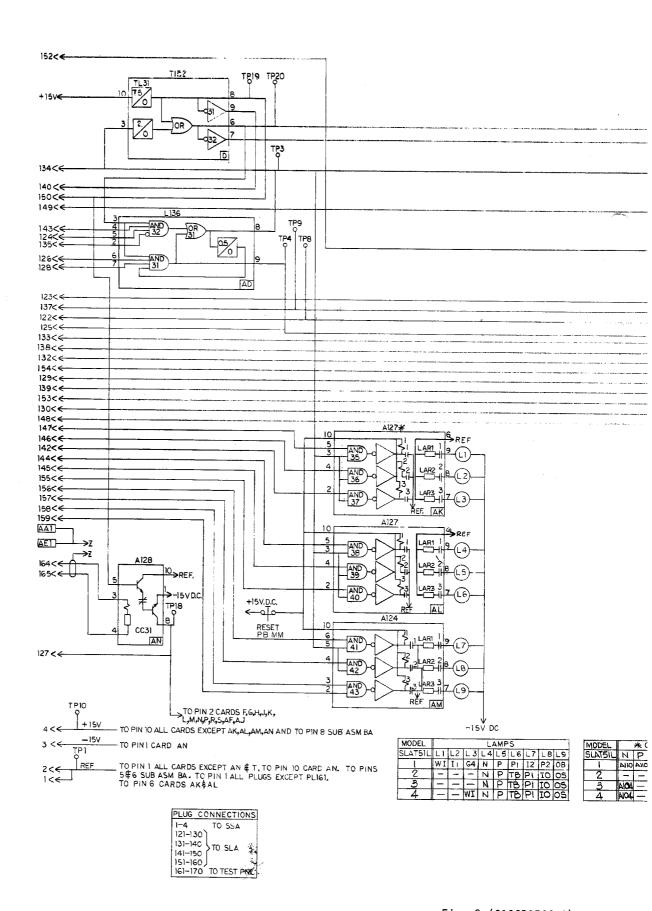
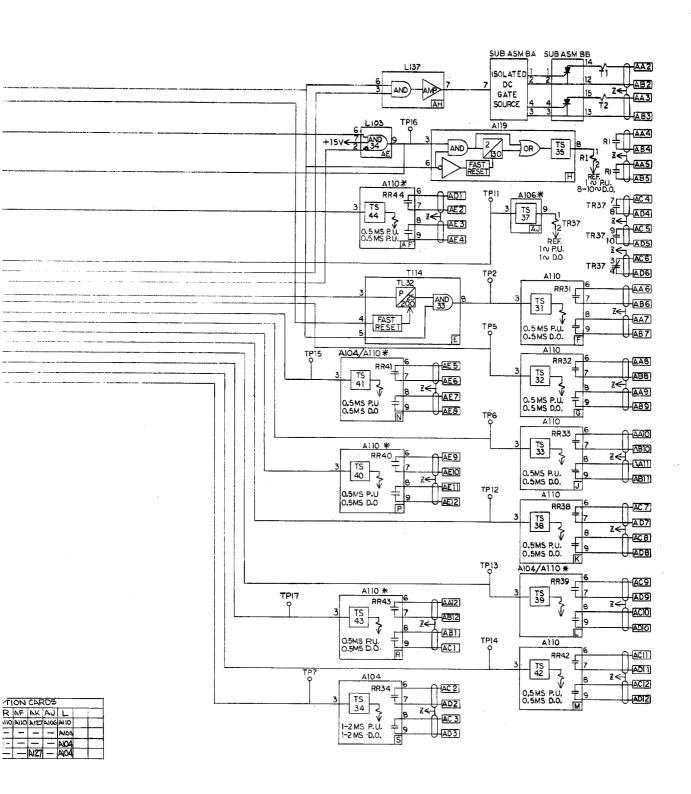



Fig. 2 (0136D3566-4) Internal Co

remaining points are located at various strategic points throughout the logic as shown on the internal connection diagram (Fig. 2). Test point voltages can be monitored with a portable high impedance voltmeter, the voltmeter on the test panel of the associated equipment, or an oscilloscope.

TEST CARD ADAPTER

The test card adapter provides a convenient means of gaining access to any pin of a particular card. Detailed information on the use of the test adapter card is included in the card instruction book GEK-34158.

TIMER ADJUSTMENTS AND TESTS

When the time-delay cards are to be adjusted or checked, an oscilloscope that can display two traces simultaneously and that has a calibrated horizontal sweep should be used.

In order to test the timer cards it is necessary to remove the card which supplied the input to the timer (see Table I) and to place the timer card in a card adapter. The card adapter allows access to the input and output of the timer if they are not brought out on test points. The timer test circuit is shown on Fig. 6. Opening the normally closed contact causes the output to step up to +15 VDC after the pickup delay of the timer. To increase the pickup time, turn the upper potentiometer on the timer card clockwise; to decrease the time turn counterclockwise. Closing the contact causes the timer output to drop out after the reset time-delay setting of the card. If the timer card is provided with a variable reset delay, it can be adjusted by the lower potentiometer on the timer card (clockwise increases reset time).

TABLE I

TIME UNDER TEST	POSITION	REMOVE E CARD IN POSITION
TL31	D	-
TL32	E	AD
A119	Н	AE

^{**}Turn DC supply switch on and off.

TRIP CIRCUIT TESTS

The SCR trip circuits and series mechanical targets may be checked by connecting an auxiliary lock-out relay, such as the Type HEA relay, in series with the SCR circuit. A typical circuit is shown in Fig. 7. The HEA relay should have the same DC rating as the SCR trip circuit of the SLAT51L. If an auxiliary lock-out relay is not available, it can be replaced by a resistive load which limits the trip circuit current to three amperes. In most equipments, the SCR can be gated by operating a test push button in the associated units.

Prior to final installation, a check of the overall trip circuit should be made with the SCR outputs connected to trip the circuit breakers.

OVERALL EQUIPMENT TESTS

After the SLAT51L relay and the associated static relay units have been individually calibrated and tested for the desired settings, a series of overall operating circuit checks is advisable.

The elementary overall logic, and logic description for the specific job will be useful for determining the overall operation of the scheme.

Overall equipment tests can be performed by applying AC current and voltages to the measuring units as specified in the instruction book for the measuring units and checking that proper outputs are obtained when the measuring units operate.

GEK-49853

MAINTENANCE

PERIODIC TESTS

It should be sufficient to check the outputs produced at test points in the SLAT51L where periodic calibration tests are made on the associated measuring units, for example, the phase and ground relays in line relaying scheme. No separate periodic tests on the SLAT51L itself should be required.

TROUBLE SHOOTING

In any trouble shooting of equipment, it should first be established which unit is functioning incorrectly. The overall logic diagram supplied with the equipment shows the combined logic of the complete equipment and the various test points in each unit. By signal tracing, using the overall logic diagram and the various test points, it should be possible to quickly isolate the trouble.

A test adapter card is supplied with each static relay equipment to supplement the prewired test points on the test cards. Use of the adapter card is described in the card instruction book GEK-34158.

A dual-trace oscilloscope is a valuable aid to detailed trouble shooting, since it can be used to determine phase shift, operate and reset times as well as input and output levels. A portable dual-trace oscilloscope with a calibrated sweep and trigger facility is recommended.

SPARE PARTS

To minimize possible outage time, it is recommended that a complete maintenance program should include the stocking of at least one spare card of each type. It is possible to replace damaged or defective components on the printed circuit cards, but great care should be taken in soldering so as not to damage or bridge-over the printed circuit buses, or overheat the semi-conductor components. The repaired area should be recovered with a suitable high-dielectric plastic coating to prevent possible breakdowns across the printed buses due to moisture and dust. The wiring diagrams for the cards in the SLAT51L relay are included in the card book GEK-34158.

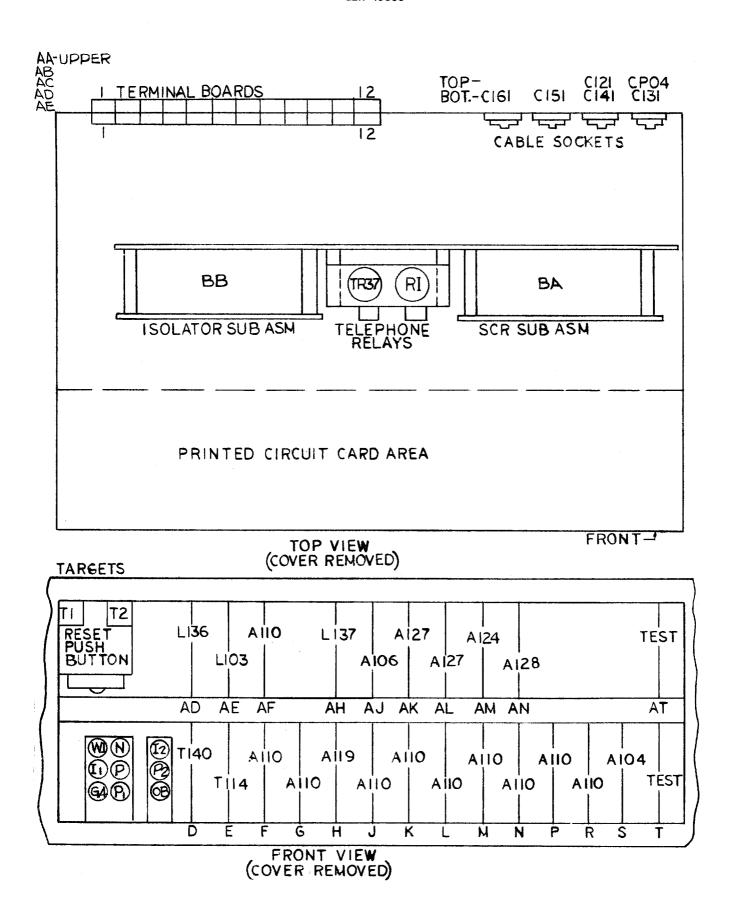


Fig. 3 (0257A9692-0) Component and Card Locations for the Type SLAT51L Relay

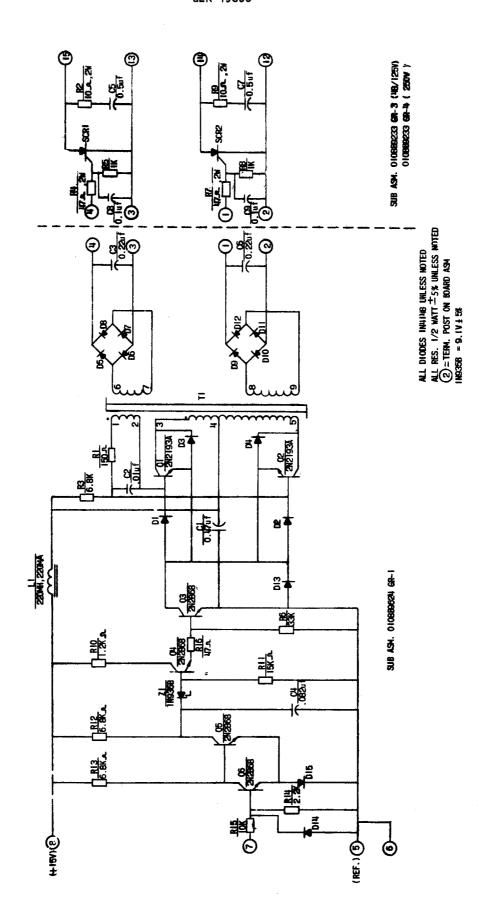


Fig. 4 (0108B9610-0) Internal Connections for the SCR Trip and Isolation Subassemblies

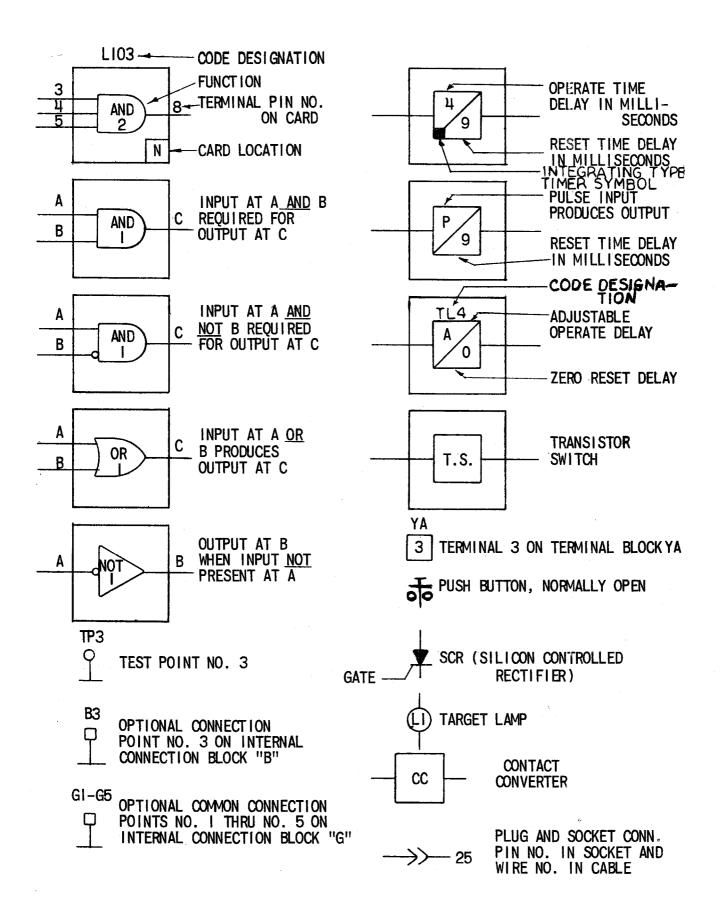
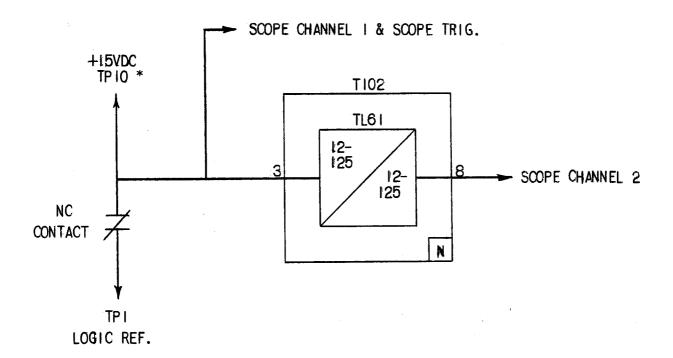
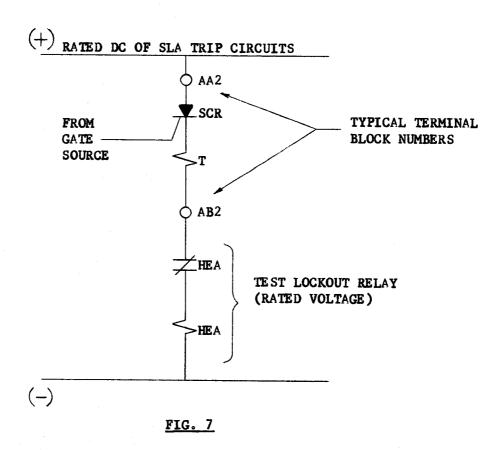




Fig. 5 (0227A2047-1) Internal Connection Diagram Legend

* THE 15VDC SIGNAL AT PIN 10 HAS A CURRENT LIMITING RESISTOR MOUNTED ON THE TEST CARD.

Fig. 6 (0246A7987-0) Logic Timer Test Circuit

TYPICAL SCR TEST CIRCUIT FOR TYPE SLA RELAYS

Fig. 7 (0208A2365-0) Typical SCR Trip Circuit Test Connections