

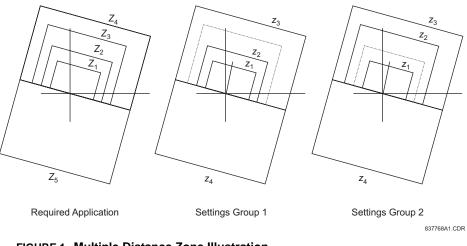
GE Multilin Technical Notes

## Multiple Backup Distance Zones in the D60 using Settings Group Control

**GE Publication No.: GET-8464A** 

Copyright © 2003 GE Multilin

| APPLICATION    | The GE Multilin D60 Line Distance Relay provides four (4) independent zones for phase-<br>to-phase protection and four (4) independent zones for phase-to-ground protection.<br>These zones are independently programmable and always operative.<br>For some applications, it is desirable to have an additional zone for backup distance pro-<br>tection, resulting in up to five zones for a Stepped Distance backup protection scheme.                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IMPLEMENTATION | With the D60 Line Distance Relay, the user can design and implement custom Flex-<br>Logic <sup>™</sup> circuitry to control any element of the D60 system. Utilizing this capability along<br>with the multiple settings groups feature, it is possible to implement a fifth (or sixth, sev-<br>enth, etc.) zone of distance protection.                                                                                                                                                                                                              |
|                | This implementation described in this paper progressively modifies the reach setting of one of the zones. The process is controlled by the largest distance zone, which used as a "Starting Element". This scheme has been used successfully for many years by US and European manufacturers in "switched relays."                                                                                                                                                                                                                                    |
|                | There are two main types of switched relays. The first includes only one measuring ele-<br>ment and switches the AC inputs to this element depending the fault type. The other type<br>of switched relays include several measuring elements, but not enough to implement all<br>the distance zones independently. In this case, relays switch the reach setting of one of<br>the zones (changing to a longer reach) after the time delay set for that zone; that is, after<br>waiting a sufficient time to assure the fault was not inside the zone. |
|                | Switched relays use one internal element to "start" the switching process after the detec-<br>tion of a power system fault. The starting element is generally an overcurrent detector or<br>an underimpedance starter.                                                                                                                                                                                                                                                                                                                                |
|                | This Application Note explains how to implement a switching scheme in the D60 relay using an <i>underimpedance starter</i> .                                                                                                                                                                                                                                                                                                                                                                                                                          |


## **APPLICATION SETTINGS**

Assume that the following five zone settings are desired:  $Z_1$ ,  $Z_2$ ,  $Z_3$ ,  $Z_4$ , and  $Z_5$ , each with their respective time delay requirements  $T_1$ ,  $T_2$ ,  $T_3$ ,  $T_4$ , and  $T_5$ . The application requires  $Z_5$  to be a backward looking zone. Assume also that:

$$Z_1 < Z_2 < Z_3 < Z_4$$
 and  $T_1 < T_2 < T_3 < T_4$  (EQ 1)

In this Application Note, capital letters represent the application requirements for zone reach and zone timers, and lowercase letters represent the available settings in the relay:  $z_1$ ,  $z_2$ ,  $z_3$ , and  $z_4$ , with the respective  $t_1$ ,  $t_2$ ,  $t_3$  and  $t_4$  timers.

Graphically, the situation and the proposed solution can be depicted as follows:





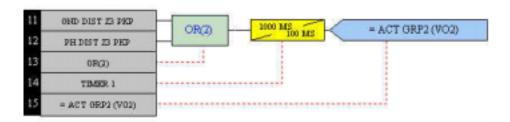
**CONTROL OF REACHES** The process of controlling reaches requires using the largest forward looking zone as the starting element to control the active settings group.

The reaches and time delays for each distance element are as follows:

| Element        | Group 1               | Group 2         |
|----------------|-----------------------|-----------------|
| z <sub>1</sub> | <i>Z</i> <sub>1</sub> | Z <sub>1</sub>  |
| z <sub>2</sub> | Z <sub>2</sub>        | $Z_3$           |
| z <sub>3</sub> | $Z_4$                 | $Z_4$           |
| z <sub>4</sub> | $Z_5$                 | $Z_5$           |
| t <sub>1</sub> | <i>T</i> <sub>1</sub> | 0               |
| t <sub>2</sub> | <i>T</i> <sub>2</sub> | 0               |
| t <sub>3</sub> | <i>T</i> <sub>4</sub> | $T_4 - T_3$     |
| <i>t</i> 5     | <i>T</i> <sub>5</sub> | $T_{5} - T_{3}$ |

When a fault occurs inside any of the forward looking zones, the  $z_3$  element picks up as the starting element, and starts counting down the  $Z_3$  timer ( $T_3$ ).

| OPERATION |  |
|-----------|--|


The application operates as follows:

- If the impedance moves from outside the zones into Z<sub>1</sub> (line fault), z<sub>3</sub> picks up and the relay trips very fast, in T<sub>1</sub> seconds, without switching groups (z<sub>2</sub> and z<sub>3</sub> also pick up).
- If the impedance moves from outside the zones into Z<sub>2</sub>, z<sub>2</sub> picks up and the relay trips in T<sub>2</sub> seconds, without switching groups (z<sub>3</sub> also picks up, but the relay trips before switching groups, since T<sub>2</sub> < T<sub>3</sub>).
- If the impedance moves from outside the zones into  $Z_3$ ,  $z_3$  picks up and after the  $T_3$  time delay, the relay switches to Settings Group 2 and trips immediately after Group 2 is placed in service, since the fault is inside the new  $z_2$  reach and  $t_2$  is set to zero. The relay tripping time is  $T_3$  seconds, as required.
- If the impedance moves from outside the zones into  $Z_4$ ,  $z_3$  picks up and after the  $Z_3$  time delay ( $T_3$  seconds), the relay switches to Settings Group 2. When the new group is in service, the distance elements are re-initiated and timers begin counting again. For this reason,  $t_3$  is set as  $T_4 T_3$ , as  $T_3$  seconds have already passed and only  $T_4 T_3$  seconds should be counted before tripping. The relay finally trips in  $T_3 + (T_4 T_3) = T_4$  seconds, as required.
- If the impedance moves from outside the zones into Z<sub>5</sub> (reversed zone), z<sub>4</sub> picks up and trips in T<sub>5</sub> seconds, as required, without switching groups.

Settings group changes only take place for faults in  $Z_3$  or  $Z_4$ , which usually have tripping times greater than 1000 ms. The time involved in switching between settings groups is 4 ms – this can be considered instantaneous compared to the  $T_3$  and  $T_4$  time delays.

Only distance elements are re-initiated when settings groups are changed. All other protection elements (Overcurrent, Out-of-Step tripping, etc.) are not re-initiated, so pickup settings, reaches, and timers must be kept identical in Groups 1 and 2.

The FlexLogic<sup>™</sup> involved in this Settings Groups control scheme is shown below:



The logic activates Settings Group 2  $T_3$  seconds after the  $z_3$  element picking up. In this example,  $T_3$  is set to 1000 ms.

Settings Group 1 returns to service 100 ms after the  $z_3$  element drops out. This occurs when the fault is cleared from the power system, either by the D60 or some other relay in the system.

## FLEXLOGIC<sup>™</sup> CONFIGURATION