INVERTER AF3060

ABBREVIATED START-UP PROCEDURE

If any difficulties are encountered during start-up and checkout, refer to Section 4 of instruction book for detailed start-up and checkout procedure.

WARNING

ELECTRIC SHOCK CAN CAUSE PERSONAL INJURY OR LOSS OF LIFE. WHETHER THE A-C SUPPLY IS GROUNDED OR NOT, HIGH VOLTAGES TO GROUND WILL BE PRESENT AT MANY POINTS THROUGHOUT THE DRIVE. CHARGED CAPACITORS REQUIRE ONE MINUTE DISCHARGE TIME.

1. Verify that the 3-phase a-c power input to the drive is of the proper value as listed on the equipment data nameplate (−5, +10%).

2. Verify that cables P5 metal connection tab is disconnected from the L2 Choke Assembly. Apply three phase a-c power to the Inverter; “POWER ON” indicator illuminates.

CAUTION

CHECK FOR PROPER AIR FLOW OF THREE PHASE BLOWER MOTOR (IF SUPPLIED). BLOWER ROTATION MUST BE COUNTER-CLOCKWISE LOOKING INTO BLOWER END. IF ROTATION IS INCORRECT, INTERCHANGE ANY TWO A-C SUPPLY LEADS TO BLOWER MOTOR.

3. Press the Inverter “START” pushbutton; “INVERTER ON” indicator illuminates (if supplied). “RESET” indicator (if supplied) should not be illuminated.

4. With the “Test” card in test socket “B” and the oscilloscope connected to “Read” apply a 10% to 20% speed reference command and verify that firing signals are present on 1B through 12B selector positions. Scope settings are: 5v/cm and 5 micro-sec/cm.

6. Switch off or disconnect three phase input power to Inverter unit; “POWER ON” indicator extinguishes. Check that capacitors have discharged.

7. Connect P5 cable assembly metal tab to L2 assembly P5 tab.

8. Set “Speed Control” potentiometer to zero.

9. Apply three phase a-c power to the Inverter Unit. Verify that the “POWER ON” indicator is illuminated.

10. Press the Inverter “START” pushbutton; “INVERTER ON” indicator illuminates (if supplied).

11. Increase the “Speed Control” potentiometer until motor base speed is reached.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>INDEX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I GENERAL</td>
<td></td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 Scope of Manual</td>
<td></td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Safety, Personnel and Equipment</td>
<td></td>
<td>1-1</td>
</tr>
<tr>
<td>1.3 Warranty and Shipping</td>
<td></td>
<td>1-1</td>
</tr>
<tr>
<td>II SYSTEMS EQUIPMENT DESCRIPTION</td>
<td></td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Equipment Purpose</td>
<td></td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Equipment Furnished — General</td>
<td></td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 Equipment Functional Description</td>
<td></td>
<td>2-1</td>
</tr>
<tr>
<td>III INSTALLATION</td>
<td></td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 General</td>
<td></td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Equipment Location</td>
<td></td>
<td>3-1</td>
</tr>
<tr>
<td>3.3 Tools Required</td>
<td></td>
<td>3-1</td>
</tr>
<tr>
<td>3.4 Mechanical Installation</td>
<td></td>
<td>3-1</td>
</tr>
<tr>
<td>3.5 Electrical Wiring and Interconnection</td>
<td></td>
<td>3-1</td>
</tr>
<tr>
<td>IV STARTUP AND CHECKOUT</td>
<td></td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 General</td>
<td></td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Test and Equipment Required</td>
<td></td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 Power-Off Continuity Test</td>
<td></td>
<td>4-1</td>
</tr>
<tr>
<td>4.4 No Load-Power Test</td>
<td></td>
<td>4-1</td>
</tr>
<tr>
<td>4.5 No Load System Adjustments</td>
<td></td>
<td>4-3</td>
</tr>
<tr>
<td>4.6 Systems Adjustments Under Load</td>
<td></td>
<td>4-3</td>
</tr>
<tr>
<td>V MAINTENANCE</td>
<td></td>
<td>5-1</td>
</tr>
<tr>
<td>5.1 Mechanical Inspection</td>
<td></td>
<td>5-1</td>
</tr>
<tr>
<td>5.2 Electrical Inspection</td>
<td></td>
<td>5-1</td>
</tr>
<tr>
<td>VI TROUBLESHOOTING</td>
<td></td>
<td>6-1</td>
</tr>
<tr>
<td>6.1 General</td>
<td></td>
<td>6-1</td>
</tr>
<tr>
<td>VII SPARE PARTS RECOMMENDATION</td>
<td></td>
<td>7-1</td>
</tr>
<tr>
<td>7.1 General</td>
<td></td>
<td>7-1</td>
</tr>
<tr>
<td>7.2 Recommended Spare Assemblies, Subassemblies and Printed Circuit Card/Boards</td>
<td></td>
<td>7-1</td>
</tr>
<tr>
<td>VIII DOCUMENTATION/DRAWINGS FURNISHED</td>
<td></td>
<td>8-1</td>
</tr>
<tr>
<td>8.1 General</td>
<td></td>
<td>8-1</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

FIGURE INDEX PAGE

2-1 Inverter Enclosure — Left hand door controls and indicators
 (Typical Modifications) 2-6
2-2 Operator Station — Basic 2-6
2-3 Inverter Interior — Typical location of assemblies and components 2-7
2-4 Driver Assembly 2-8
2-5 Inverter Simplified Block Diagram — Identified modifications options
 which may be supplied (if ordered) 2-12
2-6 Driver Forward Loop 2-13
2-7 Driver Feed Back Loops 2-14
2-8 Voltage Shapes at Different Operating Frequencies (per phase) 2-15
2-9 AF3060 Power Circuit (one phase) 2-16
5-1 Inverter Module 5-2

LIST OF TABLES

TABLE INDEX PAGE

2-1 Function of Controls, Indicators and Assemblies 2-2
6-1 Startup Troubleshooting 6-3
6-2 Driver Troubleshooting 6-5

APPENDIX

Driver Signal Displays on Oscilloscope 8-2
 to
8-15
SECTION I — GENERAL

1.1 SCOPE OF MANUAL

This instruction manual is structured around a basic system. It is a guide for the installation, checkout and operation of the equipment furnished with general troubleshooting procedures for the basic system. Any special purpose equipment, as requested on the requisition, will normally be covered in the schematic drawings included with this package. These instructions do not purport to cover all details or variations in the equipment nor to provide for every possible contingency to be met in connection with the installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purpose, the matter should be referred to the General Electric Company.

1.2 SAFETY, PERSONNEL, AND EQUIPMENT

The following paragraphs list some general safety reminders and safety recommendations to be followed when operating or installing this equipment.

Only authorized electrical and electronics personnel should install and maintain this equipment.

DEFINITION OF TERMS AND SIGN COLORS:

WARNING: Denotes operating procedures and practices that may result in personal injury or loss of life if not correctly followed.

Color: Black or white lettering on red field.

CAUTION: Denotes operating procedures and practices that, if not strictly observed, will result in damage to, or destruction of, the equipment.

Color: Black lettering on amber field.

NOTE: Denotes an operating procedure or condition that should be highlighted.

Color: Black lettering on white field.

WARNING: HIGH VOLTAGE

ELECTRIC SHOCK CAN CAUSE PERSONAL INJURY OR LOSS OF LIFE. WHETHER THE AC VOLTAGE SUPPLY IS GROUNDED OR NOT, HIGH VOLTAGES TO GROUND WILL BE PRESENT AT MANY POINTS WITHIN THE SCR DRIVE. EXTREME CARE MUST BE EXERCISED IN THE SELECTION AND USE OF TEST INSTRUMENTS. OPERATOR SHOULD NOT STAND ON GROUNDED SURFACES OR BE IN CONTACT WITH GROUND WHEN APPLYING TEST INSTRUMENTS TO TEST POINTS. CONVENTIONAL TEST INSTRUMENTS SHOULD NOT HAVE CHASSIS GROUNDED WHILE TESTS ARE BEING MADE. THUS, THE CHASSIS CAN BE AT A HIGH VOLTAGE WITH RESPECT TO GROUND DURING TESTING. EXTREME CARE SHOULD BE TAKEN WHILE ATTEMPTING TO ADJUST, TROUBLESHOOT, OR MAINTAIN ANY DRIVE SYSTEM DESCRIBED HEREIN.

When working on or near the equipment with power/voltage applied, it is recommended that all metal objects such as rings, watches, and tie clasps be removed. It is highly recommended that all personnel working on this equipment wear rubber soled shoes (insulated).

WARNING

WHEN WORKING AROUND ROTATING EQUIPMENT, DO NOT WEAR ANY LOOSE CLOTHING THAT COULD BECOME CAUGHT IN THE EQUIPMENT.

CAUTION

DO NOT REMOVE PRINTED CIRCUIT CARDS FROM THE EQUIPMENT WHILE POWER IS APPLIED OR OPERATING; THIS CAN DAMAGE THE EQUIPMENT.

NOTE

ALWAYS READ THE COMPLETE SUBSECTION (EXAMPLE, 3.2) PRIOR TO ANY TURN-ON OR TROUBLESHOOTING OF THE EQUIPMENT. FOLLOW THE PROCEDURE STEP BY STEP. READ AND HEED, ALL WARNING, CAUTION AND NOTE SIGNS POSTED ON THE EQUIPMENT.

1.3 WARRANTY AND SHIPPING

1.3.1 Warranty Statement

The Company warrants to the Purchaser that the equipment to be delivered hereunder will be free from defects in material or workmanship and will be of the kind and quality designated or specified in the contract. This warranty shall apply only to defects appearing within one year from the date of shipment by the Company.

Receipt of Shipment

All equipment is factory inspected before shipment and is shipped in good condition. Any damages or shortages evident when the equipment is received must be immediately reported to the commercial carrier who transported the equipment. If required, assistance may be received from the General Electric Company, Speed Variator Products Department, but when seeking assistance, please use the purchase order number, requisition number, and model number to help us in assisting you.
SECTION II
SYSTEMS EQUIPMENT DESCRIPTION

2.1 EQUIPMENT PURPOSE

The AF-3060 Inverter Drive is an adjustable frequency a-c drive system designed for industrial applications where the use of a-c motors is desirable or required. Single motor operation or multi-motor group operation from a single power unit is standard. Adjustment of motor(s) speed results from changing the motor voltage and frequency.

2.2 EQUIPMENT FURNISHED — GENERAL

The AF-3060 Inverter Drive System consists of three basic parts as follows:

2.2.1 Power Unit

A floor mounted NEMA 1 ventilated enclosure housing the power, regulating and logic circuitry plus other required control devices. Input voltage: 230/460VAC, 3 phase, 60 hertz. Output voltage: 0 to 230/460VAC, 3 phase, 2 to 90 hertz (60 Hz base) — other frequency ranges are available.

2.2.2 Operator’s Station

A NEMA 1 wall or machine mounted control station including the speed setting potentiometer or oscillator and “START-STOP/RESET” pushbuttons and any other command or monitor functions that were ordered for the operator’s station.

2.2.3 A-C Drive Motor(s)

Up to one hundred and fifty horsepower, in accordance with NEMA ranges, Type KAF (optimized design) induction, three phase, 230/460VAC, Dripproof or totally enclosed force cooled or explosion-proof enclosures with thermal protection for use in 10°C to 40°C ambient temperature range. Three base speed ranges are available with increased speed range capability. Motors are normally supplied with FL position mounted conduit box.

2.2.4 Special Purpose Equipment

See Elementary Diagram.

2.2.5 Receiving, Handling and Storage

Receiving

The equipment should be placed under adequate cover immediately upon receipt as packing case is not suitable for out-of-doors or unprotected storage.

Handling

Power units can be transported by lift trucks with the forks completely under the wooden shipping base. Crane lifting eyelets are supplied on the top of the unit for handling by a crane with a spreading bar used.

Storage

This equipment may be stored at ambient temperature of −20°C to 40°C for a period of up to one year. Air must be free of chemical and electrically conductive contaminants, and other conditions must be such that no moisture condensation occurs in or on the equipment.

In addition, with a control that has been in operation and will be shut down for either a short or extended period of time, it is recommended the environmental conditions be maintained the same as when in operation.

It is recommended that space heaters or equivalent devices be used to maintain the equipment in its normal operating environment (temperature).

2.3 EQUIPMENT FUNCTIONAL DESCRIPTION

This subsection provides a listing (in tabular form) of the controls, indicators and assemblies together with their functions and illustrations of the equipment. Also provided is a brief theory of operation at the system level.

2.3.1 Function of Controls, Indicators and Assemblies

Table 2-1, in conjunction with Figures 2-1 through 2-4, will give a listing of the controls, indicators and assemblies and their functions (the most often requested modification options are also included and are indicated by an asterisk*). The circled numbers/letters under “EQUIPMENT/ITEM” also appear on the illustrations, Figure 2-1 and 2-4.

2.3.2 Location of Controls, Indicators and Assemblies

Figures 2-1 through 2-4 will locate the majority of assemblies, controls and indicators.
<table>
<thead>
<tr>
<th>EQUIPMENT/ITEM</th>
<th>CONTROL/INDICATOR</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Door (Figure 2-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 *</td>
<td>Circuit Breaker “ON-OFF” Control Handle</td>
<td>Controls application of three phase, a-c power input to the drive system, plus indication of power shutdown trip.</td>
</tr>
<tr>
<td>2</td>
<td>“POWER ON” Indicator</td>
<td>Provides a visual indication that the input power is applied to the drive system.</td>
</tr>
<tr>
<td>3 *</td>
<td>“INVERTER ON” Indicator</td>
<td>Provides a visual indication that the “START” pushbutton has been pressed and the IS relay has energized and there are no “faults” in the system.</td>
</tr>
<tr>
<td>4 *</td>
<td>“START” Pushbutton (Normally on Operator Station) Fig. 2-2</td>
<td>Applies 115VAC to the Inverter Start (IS) relay coil.</td>
</tr>
<tr>
<td>5</td>
<td>“STOP/RESET” Pushbutton (Normally on Operator Station) Fig. 2-2</td>
<td>Interrupts 115VAC to the IS relay coil which causes the IS and auxiliary relays to de-energize which shuts the system down and extinguishes the “INVERTER ON” indicator.</td>
</tr>
<tr>
<td>6 * (Not shown)</td>
<td>“RESET” Indicator</td>
<td>Provides a visual indication that the system has shutdown due to the “fault monitor” protection circuitry. (The “INVERTER ON” indicator will extinguish.)</td>
</tr>
<tr>
<td>7 * (Not shown)</td>
<td>Ammeter</td>
<td>Displays T1 output current from Phase One Inverter Module to the motor(s).</td>
</tr>
<tr>
<td>8 * (Not shown)</td>
<td>Voltmeter</td>
<td>Displays a-c output voltage from Inverter Module to motor(s).</td>
</tr>
<tr>
<td>9</td>
<td>Speed Control potentiometer (Normally on Operator Station) Fig. 2-2</td>
<td>Provides a means of selecting the operating speed of the motor.</td>
</tr>
<tr>
<td>10 * (Not shown)</td>
<td>“FORWARD-REVERSE” selector switch (Normally on Operator Station) Fig. 2-2</td>
<td>Provides a means of reversing the direction of motor rotation.</td>
</tr>
<tr>
<td>11 * (Not shown)</td>
<td>“RUN-JOG” (Thread) selector switch (Normally on Operator Station) Fig. 2-2</td>
<td>Provides a means of selecting a preset speed point for momentary operation by holding the “START” pushbutton depressed when in the “JOG” position.</td>
</tr>
<tr>
<td>Inverter Interior (Figure 2-3)</td>
<td>See Figure 2-3 for location of Assemblies and Devices</td>
<td></td>
</tr>
<tr>
<td>Driver (Figure 2-4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>+20VDC Power Supply Card (no adjustments)</td>
<td>Supplies +20VDC and a −20VDC for cards and circuits operating power. Fused inputs F11 and 2.</td>
</tr>
<tr>
<td>13</td>
<td>+5VDC Power Supply Card (no adjustments)</td>
<td>Supplies +5VDC for digital logic circuitry in the Inverter. Fused input on card.</td>
</tr>
</tbody>
</table>

*Identifies modification options which may be supplied (if ordered).
<table>
<thead>
<tr>
<th>EQUIPMENT/ITEM</th>
<th>CONTROL/INDICATOR</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Isolator/−5VDC</td>
<td>Provides voltage feedback isolation. Provides −5VDC for −5V reference. Provides firing power (delayed) for pulse transformers. Provides an RX relay for Inverter on-off readout. Provides under and overvoltage trip signal.</td>
</tr>
<tr>
<td></td>
<td>Power Supply Card</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Monitor Card</td>
<td>Provides test points for test instruments and for indicating lights.</td>
</tr>
<tr>
<td>A</td>
<td>“Fault Monitor” Indicator (Trip)</td>
<td>Provides a visual indication that the Drive Protection Trip circuit has actuated due to a fundamental over-frequency or high-low d-c bus condition.</td>
</tr>
<tr>
<td>B</td>
<td>“Fault Monitor” Indicator (IOC)</td>
<td>Provides a visual indication that the Drive Protection IOC circuit has actuated due to an Instantaneous overcurrent condition.</td>
</tr>
<tr>
<td>C</td>
<td>“Monitor” Indicator (CL)</td>
<td>Provides a visual indication that the drive is operating in a current limiting condition.</td>
</tr>
<tr>
<td>D</td>
<td>“Monitor” Indicator (1FFA)</td>
<td>Provides a visual indication that the fundamental frequency is present from the three phase generator.</td>
</tr>
<tr>
<td>E</td>
<td>Test Connection #1 (FILTER)</td>
<td>Provides test instrument access to the Filter Module Current Feedback.</td>
</tr>
<tr>
<td>F</td>
<td>Test Connection #2 CCA</td>
<td>Provides test instrument access to Commutation Current Feedback from phase A Inverter Module.</td>
</tr>
<tr>
<td>G</td>
<td>Test Connection #3 CCB</td>
<td>Provides test instrument access to Commutation Current Feedback from phase B Inverter Module.</td>
</tr>
<tr>
<td>H</td>
<td>Test Connection #4 CCC</td>
<td>Provides test instrument access to Commutation Current Feedback from phase C Inverter Module.</td>
</tr>
<tr>
<td>I</td>
<td>Test Connection #5 1FFA</td>
<td>Provides test instrument access to the Fundamental Frequency, phase A, three phase generator output. (Same signal that drives light 1FFA).</td>
</tr>
<tr>
<td>J</td>
<td>Test Connection (COMM)</td>
<td>“Common” for preceding five test points.</td>
</tr>
<tr>
<td>16</td>
<td>“AC Regulator” Card</td>
<td>Provides the input reference conditioning with a proportional output for the selected base frequency in synchronization with a master oscillator output plus the three phase generator outputs.</td>
</tr>
<tr>
<td>A</td>
<td>Stability adjust potentiometer</td>
<td>Provides a means of varying the response of the reference input amplifier.</td>
</tr>
<tr>
<td>B</td>
<td>Volts/Hz adjust potentiometer</td>
<td>Provides a means of adjusting the Inverter output volts per hertz in a 15% band about rated.</td>
</tr>
<tr>
<td>C</td>
<td>Minimum Frequency adjust potentiometer</td>
<td>Provides a means of setting the master oscillator lower frequency operating point. (Below min. freq. only output voltage is reduced).</td>
</tr>
<tr>
<td>D</td>
<td>Current Limit adjust potentiometer</td>
<td>Provides a means of setting the current limiting circuit from 50% to 150% of drive rated current.</td>
</tr>
<tr>
<td>EQUIPMENT/ITEM</td>
<td>CONTROL/INDICATOR</td>
<td>FUNCTION</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>E</td>
<td>Voltage Boost adjust potentiometer</td>
<td>Provides a means of increasing the input voltage reference independent of frequency (if ordered).</td>
</tr>
<tr>
<td>17</td>
<td>Reverse Logic Card</td>
<td>Provides timed acceleration and deceleration for a voltage input reference, selective phase current sensing, motor compensation signals and a current limit signal. Also motor reversing (if supplied).</td>
</tr>
<tr>
<td>A</td>
<td>Slip Comp. adjust potentiometer</td>
<td>Provides a means of compensating for motor slip (if ordered).</td>
</tr>
<tr>
<td>B</td>
<td>I. R. Comp. adjust potentiometer</td>
<td>Provides a means of compensating for voltage loss due to motor load (if required).</td>
</tr>
<tr>
<td>C</td>
<td>Time-up adjust potentiometer</td>
<td>Provides a means of setting the acceleration time to 80/160 hz from 2 to 32 seconds with analog input only.</td>
</tr>
<tr>
<td>D</td>
<td>Time-down adjust potentiometer</td>
<td>Provides a means of setting the deceleration time from 2 to 32 seconds depending on load with analog input only.</td>
</tr>
<tr>
<td>18</td>
<td>Drive Modulator Card</td>
<td>Provides the driving signals to the three commutation cards and instantaneous current limit which reduces the current output.</td>
</tr>
<tr>
<td>19</td>
<td>Synchronizer Card</td>
<td>Provides pulse train to commutation cards for firing pulses; triangle and square waves for synchronization signals and current feedback signal amplification. Divide master oscillator frequency by 8 or 16 for the 3 phase generator.</td>
</tr>
<tr>
<td>20</td>
<td>Test “B” Receptacle</td>
<td>Provides a receptacle to receive the Test Function Card. (See Table 6-2 for Test B monitored signals).</td>
</tr>
<tr>
<td>21</td>
<td>Test “A” Receptacle with Test Function Card shown</td>
<td>Provides a receptacle to receive the Test Function Card. (See Table 6-2 for Test A monitored signals.)</td>
</tr>
<tr>
<td>2-4</td>
<td>Test Function Card</td>
<td>Provides external test equipment connection points for monitoring of Inverter signals and power supply voltages. All test connections except “COM” have a 15k ohms impedance to the signal being monitored.</td>
</tr>
<tr>
<td>A</td>
<td>+20VDC Test Connection</td>
<td>Provides monitoring access to +20V power supply.</td>
</tr>
<tr>
<td>B</td>
<td>Delayed Firing Power (DFP) Test Connection</td>
<td>Provides access to the delayed Firing power signal.</td>
</tr>
<tr>
<td>C</td>
<td>Select (SEL) Test Connection.</td>
<td>Provides the capability of a reconnectable test point that can be internally connected (to back of Driver Receptacles) to any point for monitoring. (Normally connected to its self at time of shipment).</td>
</tr>
<tr>
<td>D</td>
<td>-5V DC Test Connection</td>
<td>Provides monitoring access to -5V power supply.</td>
</tr>
<tr>
<td>EQUIPMENT/ITEM</td>
<td>CONTROL/INDICATOR</td>
<td>FUNCTION</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>E</td>
<td>+5VDC Test Connection</td>
<td>Provides monitoring access to +5V power supply.</td>
</tr>
<tr>
<td>F</td>
<td>-20VDC Test Connection</td>
<td>Provides monitoring access to -20V power supply.</td>
</tr>
<tr>
<td>G</td>
<td>Thumb Wheel Selector Switch</td>
<td>Provides a means of selecting pre-wired test points 1 through 19 (A or B test receptacles) to test a point “Read” and “Common”.</td>
</tr>
<tr>
<td>H</td>
<td>“Read” Test Connection</td>
<td>Provides access to signal selected (1-19) of Thumb Wheel Selector Switch.</td>
</tr>
<tr>
<td>I</td>
<td>“Common” Test Connection</td>
<td>Provides access to system “Common” for the above listed signal test connections.</td>
</tr>
<tr>
<td>22</td>
<td>Drive Protection Card</td>
<td>Provides driver logic to insure proper conditions exist before allowing firing pulses to be applied to the power conversion modules; under or over d.c. bus voltage trip signal; driver trip signal for fundamental frequency upper limit and firing and lockout signals for an instantaneous over-current (IOC) condition.</td>
</tr>
<tr>
<td>23 24 25</td>
<td>Commutation Cards for phases A, B and C</td>
<td>Provides for: proper firing coordination of main Inverter SCR’s; proper firing of the commutating SCR’s; execution of driver trip signals initiate starting and stopping of firing pulses to all SCR’s and power modules and generation of a “Recalibrate” signal to the Drive Protection card to increase the IOC level during commutation.</td>
</tr>
<tr>
<td>Not shown in Fig. 2-4, located on lower cover panel of Driver Assembly</td>
<td>Minimum Speed adjust potentiometer</td>
<td>Provides a means of setting minimum (lower limit) of motor(s) speed when an analog “speed control” voltage input is used.</td>
</tr>
<tr>
<td></td>
<td>Maximum Speed adjust potentiometer</td>
<td>Provides a means of setting maximum (upper limit) of motor(s) speed when an analog “speed control” voltage input is used.</td>
</tr>
</tbody>
</table>
FIGURE 2-1 INVERTER ENCLOSURE
Left Hand Door Controls and Indicators (Typical Modifications)

FIGURE 2-2
OPERATOR STATION — BASIC
FRONT VIEW OF CARD RACK - DRIVER

<table>
<thead>
<tr>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>I</td>
<td>J</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ 20 VDC
POWER SUPPLY -
DUAL OUTPUT

<table>
<thead>
<tr>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
</tr>
</tbody>
</table>

A.C. REGULATOR
REVERSE LOGIC
DRIVE MODULATOR
SYNCHRONIZER

TEST B
TEST A

DRIVE PROTECTION

COMMITATION

FIGURE 2-4 DRIVER ASSEMBLY
2.3.3 Theory of Operation

To best understand the theory of operation of the AF-3060 Inverter Drive System the simplified block diagram (Figure 2-5) should be referred to when reading this section.

The total system can be divided into five parts for a clearer understanding. The five parts are: (1) command and logic, (2) rectifier, (3) driver, (4) filter and power conversion modules, and (5) a-c motor(s). The following is a brief description of the functions of each of the five parts of the system.

Command and Control Logic and System Protection Circuitry.

This part of the system circuitry contains all the operator's controls and indicators with their associated relays and logic, input power devices, 115VAC control power, and system protective devices such as fuses, thermal switches and system fault logic indication.

The three phase, 230/460 volt a-c power enters the power unit through current limiting fuses (one per input phase) and is fed directly to the three phase full-wave rectifier bridge. The incoming a-c power is transient filtered by the a-c suppression assembly (TSM). Also tapped off a-c input from two phases is 115 volt control power from the control power transformer IT. 115 volt control power from the transformer is fused by FX1 and is used for all operators control devices and relays except for the speed reference signal. POWER ON indicator may be connected across two of the three phases on the power unit side of the three input fuses.

CAUTION

THE POWER ON INDICATOR IS NOT A TRUE INDICATION OF THE PRESENCE OR ABSENCE OF HIGH VOLTAGE IN THE UNIT. WHEN FUSE OR LAMP FAILURE OCCURS HIGH VOLTAGE CAN STILL BE PRESENT IN THE UNIT. VERIFY THAT EXTERNAL DISCONNECT SWITCH IS OFF PRIOR TO CHANGING FUSES OR CHECKING LAMP.

115 volt a-c control power is fed through the motor thermal switches, the LD contacts of the “charge control assembly,” the rectifier and inverter modules thermal switches (unless otherwise specified) where it is fed into the “Stop-Start” operation devices and their associated relays. For the exact circuit connection, consult the elementary diagram furnished. Typical control logic for an inverter system is as follows: When the Start button is actuated the inverter start relay (IS) is actuated and sealed in by IS contacts paralleling the “Start” button. Another set of IS contacts closes actuating the inverter start auxiliary relay. The inverter relay (RX) has contacts in the INVERTER ON indicator circuit (if supplied) and the RESET indicator (if supplied). A set of N.O. contacts may be in the speed reference input circuit to the driver which will open in case of a loss of 115VAC control power, which will remove the input speed reference command. Inverter ON and Reset indicator logic is as follows: If no fault exists in the system (RX relay), the Inverter ON indicator will illuminate when the START button is actuated, but if a fault exists in the system or a fault should occur in the system while operating, the INVERTER ON indicator will extinguish and RESET indicator will illuminate.

NOTE

WHEN THE RESET INDICATOR ILLUMINATES (IF SUPPLIED) OPEN THE DRIVER COVER AND CHECK THE FAULT MONITOR INDICATORS ON THE MONITOR CARD (WILL INDICATE TYPE OF TRIP) PRIOR TO RESETTING THE INVERTER SYSTEM BY PRESSING THE “STOP/RESET” PUSHBUTTON.

Rectifier Modules

The three phase, 230/460VAC power is fed directly from the three line fuses into the rectifier module. The rectifier module utilizes a three phase full-wave diode bridge which converts the a-c voltage to d-c voltage. The 310/620VDC output is fed directly to the three filter modules and three inverter modules. The rectifier module also has a fused cooling fan and a thermal protection device (THSWR) that opens on an over-temperature condition which causes the IS relay in the “Start” circuit to de-energize, “INVERTER ON” indicator to extinguish and the system shuts down. Thermal device is normally in “Control” circuit unless otherwise specified.

Driver Assembly

Reference Figure 2-6 for the following signal paths while reading this paragraph.

Either a voltage or frequency (speed) reference is applied to the Drive Assembly. A voltage reference goes through a linear timing function on the Reverse Logic card and then to a voltage controlled oscillator on the AC Regulator card. A frequency reference is fed directly to a discriminator on the AC Regulator card. The discriminator produces a voltage proportional to the reference for the voltage controlled oscillator (VCO).
A variable frequency pulse train from the oscillator is fed to the Synchronizer card where the frequency is divided by sixteen for GO1 Drivers or divided by eight for GO2 Drivers. This frequency is six times the fundamental frequency of the drive. This signal goes to a Three Phase square wave plus the inverse of each phase... (phases at this point are labeled X, Y, and Z). Phase X and its inverse is fed directly to the Drive Modulator card where it becomes Phase A. Phases Y and Z are fed to the Reverse Logic card. This card switches Phases Y and Z between Phases B and C. See table for phase relation.

<table>
<thead>
<tr>
<th>PHASE</th>
<th>FORWARD</th>
<th>REVERSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Y</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Z</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

The Reverse Logic card also produces the inverse of Phases B and C.

All three phases and their inverse are fed into a multiplexer on the Drive Modulator card. This card also receives a signal called “Modulator Voltage” (MV) from the AC Regulator card.

This modulator voltage along with a voltage feedback is fed into a switching regulator to create the chopping for the pulse width modulator. This chopping is fed into the multiplexer along with the Three Phases and their inverse. The output is a Three Phase square wave with the center portion of each half cycle pulse width modulated. The phase signals are fed into three Commutation cards which coordinates the firing signals to the four SCR’s per phase so that a power phase will be produced similar to the PWM signal out of the Modulator card.

Figure 2-7 shows the Driver feedback signals cross referenced to the following ballouts.

1. There is a frequency feedback from the Synchronizer card that is half the frequency of the oscillator on the AC Regulator card. This feedback goes to the discriminator and is only meaningful when a frequency reference is used. Using this feedback means that the incoming frequency reference must be sixty-eight times the fundamental frequency for GO1 Drivers and twenty-four times for the GO2 Drivers.

2. Voltage feedback comes from the d-c buss. This voltage is isolated, scaled down, and fed to the switching voltage regulator on the Modulator card. The Isolator card also produces a “TRIP” signal on “under” and “over” voltage conditions. This signal is fed to the Drive Protection card where the appropriate signals are sent to the Commutation cards to trip the drive.

3. Current feedback signals from each phase are fed to signal amplifiers on the Synchronizer card. These signals are in phase with their respective driver phase signals. (i.e. CSA is in phase with 1FFA.) These current signals are fed to the Reverse Logic card where the components of current in phase with their respective voltage signals are summed. This sum is fed into a spill-over circuit and the resultant current limit signal is fed back to the AC Regulator card where it will over-ride the reference to limit current. The current signals from the Synchronizer card are also fed to the Drive Modulator card. Here the current signals are compared with a preset upper level (+5.5V). These upper limits are then compared with their respective phase signals and the result over-rides the voltage regulator to immediately increase or decrease output voltage to limit current. This instantaneous current limit will normally not be activated. This limit serves only to protect the drive under shock loads or a motor “Breakdown” (Induction) or “Pull Out” (Synchronous) condition. Additionally, an instantaneous current limit signal is fed back to the current spill over circuit on the Reverse Logic card to help reduce frequency in a motor pull-out or breakdown condition.

4. There is also a current feedback from the drive Filter Modules. Capacitor current is detected since any fast rising fault will first show up as capacitor current. This current signal is fed to a level detector to detect instantaneous over-current. When this signal reaches a pre-set upper level, the Drive Protection card stops all normal firing and initiates a firing of all Inverter SCR’s. This allows all power conversion modules to commutate off by means of a secondary commutation circuit.

5. Commutation current is fed back to each Commutation card. This signal is referenced at −5 volts and is used to coordinate the firing of the main inverter SCR’s.
There are several coordinating signals in the driver that are explained here:

OMV This is a logic signal that goes to the “0” state when the drive is at minimum voltage. This signal is used to coordinate starting, stopping and reversing.

FV This is a voltage signal that is proportional to frequency (10V = 80hz for G01 and 10V = 160hz for G02). It is used in the triangle wave generator to keep it a constant height. It also halves the chopping frequency in two places.

TW The triangle wave is used to synchronize the chopping in the switching regulator to the fundamental frequency.

OFT The firing train oscillator is a series of low pulses and is used to insure the main SCR’s are fired.

O START RELAY This is a buffered logic input and must be put in the zero state to start the drive.

O RUN This signal goes to the zero state when the inverter is ready to run. It is used to lift the clamp on the reference.

OSC & OSI These signals are used to start commutation firing pulses and to stop inverter firing pulses.

DFP This is the firing power supply. It goes directly to the pulse amplifiers in the conversion modules.

O REV This is a buffered logic input with preconditioning that is used for reversing.

IOCR This is a current signal and is used to recalibrate the IOC level during commutation.

OTRX & OTRP The signals are used to trip the drive through the primary commutating circuit.

11OCL & 0IOCP These signals are used to initiate an IOC trip and lockout using the secondary commutating circuit.

Filter and Power Modules Assemblies

There are three filter modules and three power modules, one of each per phase. The d-c power from the rectifier module is filtered by the filter modules and is applied to anodes of the SCR's where it awaits the proper gate signals to allow conduction. The power conversion modules consist of pulse transformer cards, current feedback cards, main inverter SCR's (2 each), commutation diodes (2 each), commutation SCR's (2 each) per phase module. Upon receiving the proper firing commands from the commutation card in the driver, these SCR’s fire (conduct) in the proper sequence to supply three phase alternating power to the motor(s). This power is variable in voltage and frequency. Reference Figure 2.9.

AC Motor(s)

The motor(s), either induction or synchronous, react to the amount of conduction that the SCR’s have allowed. The output of the SCR’s to the motor, is variable in frequency and voltage and is controlled by the “Speed Control” input reference setting. Each motor input phase is spaced 120 degrees in time (per cycle) from the preceding phase; phase A to phase B 120° apart, B to C 120° apart. Reference Figure 2.8 for motor per phase wave shapes.
Figure 2-5 Inverter Simplified Block Diagram
NOTE: CALLOUT DESCRIPTION STARTS ON PAGE 2-10

DRIVER FEEDBACK LOOPS

FIGURE 2-7
FIGURE 2-8
VOLTAGE SHAPES AT DIFFERENT OPERATING FREQUENCIES.
(PHASE TO PHASE)
FIGURE 2-9 AF3060 POWER CIRCUIT (ONE PHASE)
SECTION III — INSTALLATION

3.1 GENERAL
All internal electrical connections between devices in the power unit have been made at the General Electric factory with the exception of P5 (see Caution tag).

3.2 EQUIPMENT LOCATION
Speed Variator power units equipped with filters are suitable for most factory areas where other industrial equipment is installed. Locations subject to steam vapors or excess moisture, oil vapor or chemical fumes should be avoided. The power unit has filters and a blower system. The filters should be changed or cleaned before they become clogged. Power units should be installed in a well-ventilated area in an ambient temperature range from 10°C to 40°C (104°F).

WARNING
EQUIPMENT SHOULD NEVER BE INSTALLED WHERE HAZARDOUS, INFLAMMABLE OR COMBUSTIBLE VAPORS OR DUSTS ARE PRESENT. SUFFICIENT CLEARANCE IN FRONT OF THE UNITS SHOULD BE ALLOWED FOR THE ACCESS OF MAINTENANCE OR REPAIR.

3.3 TOOLS REQUIRED
The normal electrical and mechanical tool boxes maintained in most factories are all that is required for the installation of this equipment.

3.4 MECHANICAL INSTALLATION
Normally there are three types of equipment that require mechanical installation: power unit, operator’s station and motor(s).

3.4.1 POWER UNIT
Cases may be bolted down using 3/8 diameter mounting bolts or studs. If studs are cast in floor, they should extend 3 1/2” minimum above floor. Conduit entry openings through base are fitted with removable sheet steel covers. Other conduit entry area available through top of case.

CAUTION
IF CONDUIT ENTRY OPENINGS ARE TO BE CUT IN TOP OF CASE, ADEQUATE PRECAUTIONS SHOULD BE TAKEN TO PREVENT METAL PARTICLES FROM ENTERING ELECTRICAL DEVICES AND COMPONENTS.

3.4.2 OPERATOR’S STATION
The operator’s station must be disassembled for mounting and wiring. First, remove the two screws securing the cover to the operator’s station enclosure and then remove the cover (with control devices mounted on the cover) from the enclosure.

When using either rigid or thin wall conduits, it is generally easier to attach the unit to the end of the conduit before locating and installing the mounting screws.

Mount the operator’s station on any firm, reasonably flat, vertical surface by means of mounting holes in both top back and bottom back of enclosure. The operator’s station is suitable for either wood screws or #10 machine screws.

3.4.3 AC MOTOR(S)
A separate instruction book is provided giving information on location, conduit entrance and mounting of the motor(s). The motor(s) should be mounted on the driven machine (or as appropriate for the installation) before proceeding with wiring, set up and adjustment.

3.5 ELECTRICAL WIRING AND INTERCONNECTION
All wiring shall be in accordance with the National Electrical Code and be consistent with all local codes. All internal electrical connections between components and the Speed Variator power units were made at the General Electric factory. When installing speed variators, all connections should be checked for tightness. Connections may become loose in shipping or storage. A diagram showing the connections between the power unit and the related components is furnished with each equipment. All terminals to which the external connections are to be made are numbered on the diagram. The equipment should be wired as per the interconnection diagram and verified by continuity tests. It is recommended that as each connection or wire is connected to the equipment it be checked off on the interconnection diagram.

WARNING
ALL MOTOR BASES AND EQUIPMENT ENCLOSURES HOUSINGS SHOULD BE CONNECTED TO THE FACTORY OR FACILITY EARTH GROUNDING SYSTEM.

3.5.1 MOTOR(S) CONNECTIONS
For proper motor(s) connection, connect at motor(s) end as indicated on the motor(s) connection diagram plate for proper voltage connection. Wire sizes should be selected in accordance with NEMA standards based on the motor(s) nameplate data. Be sure to connect motor thermal switch back to the power unit. Tape all motor connections.
3.5.2 POWER UNIT CONNECTIONS

Electrical codes generally require the use of a fused disconnecting switch or circuit breaker in the a-c power line ahead of the SCR drive and transformer (if used). The disconnecting switch and fuse (or circuit breaker) should be selected in accordance with the National Electrical Code and/or local code requirements based on the power input data on the power unit nameplate. If any additional relays are added to the system, R.C. suppression networks must be added across the relay coils.

3.5.3 OPERATOR'S STATION CONNECTIONS

Using the interconnection diagram make all the required wiring connections between devices and the operator's station and the connections to the power unit. Reassemble the operator's station. Carefully dress the interconnecting wire into the back of the station so that the device assembly may be installed. Keep the wires away from sharp edges and do not force the device assembly into place. Replace the station cover and secure with cover retaining screws.
SECTION IV
STARTUP AND CHECKOUT

4.1 GENERAL
This section is written in a step by step approach to start up an Inverter Drive System. If during the course of startup and checkout a step/indication cannot be performed, refer to Section VI, TROUBLESHOOTING, Table 6-1. This Troubleshooting Table is written to follow each startup step in sequence. In the event that the Troubleshooting Section must be used during startup, remember that the enclosure doors may have electrical interlocks. When you open one cabinet door, it may shut the system down.

WARNING
IF DOOR INTERLOCKS (IF SUPPLIED) ARE DEACTIVATED OR BYPASSED, EXTREME CAUTION MUST BE USED – BE SURE TO REMEMBER TO RETURN INTERLOCKS TO OPERATING CONDITION AFTER MEASUREMENT OR TROUBLESHOOTING.

4.2 TEST EQUIPMENT REQUIRED
The following listed test equipment should be available during startup and checkout. The first two items listed are recommended for normal operation and maintenance:
- Oscilloscope (scope) – Dual trace recommended
- Volt-Ohmmeter (VOM) 20k ohm per volt sensitivity minimum, 3 range: X1, X10, X100
- RPM Measuring Device (0 to 10,000 RPM) Tach
- Ammeter – 0 to 300 amps, adjustable range – clamp on type

4.3 POWER-OFF CONTINUITY TEST
Be sure that the main three phase ac power input to the system equipment is disconnected or switched off.

Verify that all newly installed wiring and interconnection. Continuity is defined as 1/2 ohm or less.

4.4 NO LOAD–POWER TEST
Be sure that three phase a-c power input to the inverter is of the proper value as noted on the equipment data nameplate.

Move the test card to test socket B.

Apply three phase a-c input power to the Inverter Unit.

Check that the “POWER ON” indicator is illuminated.

CAUTION
THREE PHASE BLOWER MOTOR. FOR PROPER AIR FLOW, BLOWER ROTATION MUST BE COUNTERCLOCKWISE LOOKING INTO BLOWER END. IF ROTATION IS INCORRECT, INTERCHANGE ANY TWO A-C SUPPLY LEADS TO BLOWER MOTOR.

Check that the “INVERTER ON” and “RESET” indicators are not illuminated (if supplied).

WARNING
OPERATOR SHOULD NOT STAND ON GROUNDED SURFACES OR BE IN CONTACT WITH GROUND WHEN APPLYING TEST INSTRUMENTS TO TEST POINTS. CONVENTIONAL TEST INSTRUMENTS SHOULD NOT HAVE CHASSIS GROUNDED WHILE TESTS ARE BEING MADE. THE CHASSIS CAN BE AT A HIGH VOLTAGE WITH RESPECT TO GROUND DURING TESTING. EXTREME CARE SHOULD BE TAKEN WHILE ATTEMPTING TO ADJUST, TROUBLESHOOT OR MAINTAIN THIS DRIVE SYSTEM.

4.4.1 Verify that cables P5 metal connection tab (tagged with amber CAUTION tag) is disconnected from L2 Choke Assembly and is at least one-half inch away from any other conductive material. Connect VOM (1200vdc range) between P1 (+) and P3 (−) on CCTB for monitoring capacitor discharge.

NOTE
DURING CHECKOUT, RECORD MEASUREMENTS AND SETTINGS FOR FUTURE REFERENCE.

4.4.2 Verify that the three phase a-c power input to the inverter is of the proper value as noted on the equipment data nameplate.

4.4.3 Place the “Speed Control” potentiometer to zero (fully counterclockwise). Verify that the “I.R. COMP” potentiometer is fully counterclockwise.

4.4.4 Move the Test card to test socket B.

4.4.5 Apply three phase a-c input power to the Inverter Unit.

4.4.6 Check that the “POWER ON” indicator is illuminated.

NOTE
DURING CHECKOUT, RECORD MEASUREMENTS AND SETTINGS FOR FUTURE REFERENCE.
4.4.8 With the oscilloscope check that the following listed voltages are as indicated, using the Test Card test points:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Test Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>+20VDC</td>
<td>+.2V</td>
</tr>
<tr>
<td>5VDC</td>
<td>+.1V</td>
</tr>
<tr>
<td>DFP +26VDC</td>
<td>approximately (unloaded)</td>
</tr>
<tr>
<td>+15V with 5V ripple (loaded).</td>
<td></td>
</tr>
<tr>
<td>+10VDC (approx.)</td>
<td>Voltage Feedback on “Read” with switch on position 18B.</td>
</tr>
<tr>
<td>No pulses or pulse trains on “Read” with test switch positions 1B through 12 B selected.</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

ONCE “START” IS OPERATED PULSES CANNOT BE STOPPED OUT OF COMMUTATION FIRINGS CFSP OR CFSN (WITH P5 DISCONNECTED).

4.4.9 Press the Inverter “START” pushbutton; “INVERTER ON” indicator illuminates (if supplied). “RFSET” indicator (if supplied) illuminates momentarily then stays out.

4.4.10 With the scope connected to “Read” and test switch on 1B slowly increase the “Speed Control” potentiometer until a +3.1VDC +.1 is reached. The +3.1VDC measured corresponds to a 25hz input for Group 1 Drivers and 50hz for Group 2 Drivers (60 and 120hz base frequency systems). Note and record the Speed Control setting.

4.4.11 With the scope still connected to “Read” test point on the test card, select the test switch positions listed in the table below and verify the scope display that is indicated by the two wave forms as shown in Figures 1 and 7 in the Appendix for 60hz base frequency. Use IFFA for scope synchronous signal.

NOTE

THE NOTED “CHOPS” INCREASE PER HALF CYCLE WITH A DECREASE OF THE SPEED CONTROL AND NO “CHOPS” APPEAR ABOVE BASE FREQUENCY.

Test Switch Position Versus Wave Form

<table>
<thead>
<tr>
<th>Test Switch Position</th>
<th>Wave Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B, 3B, 5B, 7B, 9B, 11B</td>
<td>Figure 1</td>
</tr>
<tr>
<td>2B, 4B, 6B, 8B, 10B, 12B</td>
<td>Figure 2</td>
</tr>
</tbody>
</table>

4.4.12 With the scope probe still connected to “Read” and test switch still on 12B slowly increase speed control until no “CHOPS” are present. While observing scope display, slowly decrease speed control and observe the increasing amount of “CHOPS” appearing in the wave form until zero on the speed control is reached (fully counterclockwise).

NOTE

THE NUMBER OF “CHOPS” AT JUST ABOVE ZERO SPEED COMMAND IS DEPENDENT UPON THE SYSTEM BASE FREQUENCY.

4.4.13 Remove a-c power then remove the three covers from the Inverter modules and re-apply power.

WARNING

SCOPE CHASSIS MUST BE UNGROUNDED. SCOPE CHASSIS TO GROUND IS AT A HIGH POTENTIAL. DO NOT HAVE DRIVER COMMON CONNECTED WITH IFB SYNCHRONOUS.

4.4.14 With the scope verify that the following listed pulse trains are present on the output tabs of each of the six pulse transformer cards (2 cards per phase module) at the tabs as indicated below.

NOTE

IF NO OUTPUT OR AN IMPROPER OUTPUT IS OBSERVED, TEST THE OUTPUTS OF THE PROPER COMMUTATION CARD FOR THAT PHASE USING THE TEST CARD.

PHASE A MODULE — The right hand pulse transformer card is for commutations SCR’s, the left is main inverter SCR’s of each phase module.

Tabs AC and AG to commutation SCR’s Reference Figure 3 in Appendix
Tabs AC and AG to main Inverter SCR’s Reference Figure 4 in Appendix
Tabs BG, BC Reference Figures 3 and 4 in Appendix

Phases B and C pulse transformer cards output should be the same as above.

4.4.15 Press “INVERTER STOP/RESET” pushbutton; “INVERTER ON” indicator extinguishes.

4.4.16 Switch off or disconnect three phase input power to Inverter Unit: “POWER ON” indicator extinguishes. Check VOM to verify capacitors have discharged.

4.4.17 Connect P5 cable assembly metal tab to L2 assembly P5 tab.

4.4.18 Set “Speed Control” potentiometer to zero.

4.4.19 Apply three phase a-c input power to the Inverter Unit. Verify that the “POWER ON” indicator is illuminated.

4.4.20 Press the Inverter “START” pushbutton; “INVERTER ON” indicator illuminates (if supplied). “RESET” indicator (if supplied) should not be illuminated.

4.4.21 With the scope verify that the Filter signal and signals CCA, CCB and CCC on the Monitor card test points are as indicated in Figures 6 and 7 of the Appendix.

4.4.22 Slowly increase the “Speed Control” potentiometer until motor base speed is reached, using a hand tachometer to verify motor rpm.
4.5 NO LOAD SYSTEM ADJUSTMENTS

The No Load System Adjustments will verify or peak up the factory set adjustments to optimize total end to end system performance in the field under no load conditions. Critical load adjustments will follow in the next subsection 4.6.

4.5.1 Apply a-c input power to the Inverter drive system. Inverter “POWER ON” indicator illuminates.

4.5.2 Verify that the “Speed Control” is fully counterclockwise. Press Inverter “START” pushbutton; Inverter “ON” indicator illuminates (if supplied).

4.5.3 Using a hand tachometer or a frequency indicator, slowly increase the speed control until the drive is operating at 90% of base frequency.

4.5.4 With a VOM measuring the output voltage to the motor, adjust the “Volts/hz” potentiometer on the a-c regulator card so that the rectified average voltage is 77% of the rated RMS motor voltage. (Read approximately 200VAC for 230V motor or 400VAC for 460V motor).

4.5.5 To adjust the system for smooth motor starting and reversing the “Min Freq” potentiometer on the a-c regulator card is provided. This adjustment will set the minimum operating frequency.

4.5.6 With clamp on ammeter attached to motor output terminals T1, T2 and T3 and the drive running at base speed, verify that readings are approximately equal.

4.6 SYSTEMS ADJUSTMENTS UNDER LOAD

The system load adjustments should be made with the motor at its normal “Hot Temperature” and the drive operating at 15% of base frequency under full working load.

NOTE
CURRENT LIMIT IS NORMALLY SET AT THE FACTORY, FOR 150% OF POWER UNIT DATA NAMEPLATE RATING FOR SINGLE MOTOR DRIVES.

4.6.1 Stability

The “Stability” potentiometer on the AC Regulator card adjusts the minimum timing and can affect the response and stability of the drive when operating in “current limit”. With the scope connected to “READ” and the test switch at 19B position adjust the Stability pot in such a direction (while in current limit-acceleration) that the scope picture is as indicated in Figure 16 of the Appendix.

Slowly adjust the pot in the opposite direction until the scope picture is as indicated in Figure 15. If “I.R. COMP” or “SLIP COMP” are wired in they can inter-act with the system stability.

4.6.2 Time Up — Time Down

In reference to the “Time Up” and “Time Down”, potentiometers on the reverse logic card, adjust the acceleration and deceleration rates respectively. The time for the drive to respond to a 10 V step change in reference may be varied between 2.0 SEC. and 32 SEC.

4.6.3 Voltage Boost

If a voltage boost function is provided the “Voltage Boost” potentiometer on the AC regulator card can be used to add a fixed voltage to the Inverter independent of frequency. An external voltage boost potentiometer may be provided.

4.6.4 I. R. Comp.

The “I. R. Comp.” potentiometer on the reverse logic card may be adjusted to compensate for voltage loss due to motor resistance. If not used, turn full CCW.

4.6.5 Slip Comp.

If slip compensation is provided the “SLIP COMP” potentiometer on the reverse logic card may be adjusted to compensate for slip in motor speed due to loading.
SECTION V — MAINTENANCE

WARNING
ELECTRIC SHOCK CAN CAUSE PERSONAL INJURY OR LOSS OF LIFE. WHEN POWER OFF MAINTENANCE IS BEING PERFORMED, VERIFY ALL POWER TO THE DRIVE SYSTEM IS SWITCHED OFF OR DISCONNECTED. RECOMMEND POWER SWITCHES BE RED TAGGED DURING POWER OFF MAINTENANCE.

5.1 MECHANICAL INSPECTION
The mechanical maintenance required for the drive system is divided into two basic units; power unit and motor. The power unit's only mechanical maintenance is checking and changing the air filters before they become clogged.

Motor maintenance is covered by the motor instruction book supplied with the motor and should be followed in all cases.

5.2 ELECTRICAL INSPECTION
Power off (every six months): Check all electrical connections for tightness. Look for signs of poor connections or overheating (arcing, discoloration). Manually check cooling fan/blower for easy rotation.
INVERTER MODULE - COVER REMOVED

1. COVER ASSEMBLY RETAINING SCREWS (TWO).
2. DIODE MODULE ASSEMBLY.
3. SCR MODULE ASSEMBLY(S).
4. CURRENT FEEDBACK CARD.
5. SCR CONNECTIONS, GATE LEAD (BG)—WHITE, CATHODE LEAD (BC)—RED.
6. PULSE TRANSFORMER CARDS.
7. PULSE TRANSFORMER CARD CONNECTORS.

Figure 5-1 Inverter Module (One Phase)
SECTION VI — TROUBLESHOOTING

6.1 GENERAL

The troubleshooting section has been divided into two basic tables and a paragraph on checking SCR's. Only trained and qualified electronics or electrical personnel should be allowed to troubleshoot this equipment, due to the dangers involved in having "POWER ON" measurements. It is recommended from a safety standpoint, that the equipment be turned off, the test equipment connections be made, and the power applied for the measurement, and the equipment then be turned off again, prior to disconnecting the test equipment.

Fast, efficient troubleshooting of the drive system is based on a thorough knowledge of the theory of operation. During troubleshooting, when a card or subassembly is found or suspected of being bad, it is recommended that prior to replacing the card/subassembly, the inputs be checked for proper values. This will exclude the chance of further damage to the replacement item, due to causes beyond the suspected item.

6.1.1 Troubleshooting — Startup

Table 6-1 provides a one-to-one correlation with the startup sequence. In the left-hand column under indication will be the action/indication that failed. In the right-hand column under Check/Adjust/Replace are listed the tasks or measurements to be performed. When a step or action is completed and the malfunction still occurs, proceed to the next step. If the step locates the problem area, troubleshoot, isolate and correct the malfunction.

6.1.2 Troubleshooting — Driver/Power Conversion Modules

Table 6-2 provides a step by step troubleshooting procedure for the driver/power conversion modules.

WARNING

OPERATOR SHOULD NOT STAND ON GROUNDED SURFACES OR BE IN CONTACT WITH GROUND WHEN APPLYING TEST INSTRUMENTS TO TEST POINTS. CONVENTIONAL TEST INSTRUMENTS SHOULD NOT HAVE CHASSIS GROUNDED WHILE TESTS ARE BEING MADE. THUS, THE CHASSIS CAN BE AT A HIGH VOLTAGE WITH RESPECT TO GROUND DURING TESTING. EXTREME CARE SHOULD BE TAKEN WHILE ATTEMPTING TO ADJUST TROUBLESHOOT OR MAINTAIN ANY DRIVE SYSTEM DESCRIBED HEREIN.

6.1.3 Checking SCR’s

Whenever an SCR is suspected of being at fault, use the following steps:

WARNING

ELECTRICAL SHOCK CAN CAUSE PERSONAL INJURY OR LOSS OF

<table>
<thead>
<tr>
<th>SCR Description</th>
<th>Forward Reading</th>
<th>Reverse Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good SCR</td>
<td>100K to Infinity</td>
<td>100K to Infinity</td>
</tr>
<tr>
<td>Shorted SCR</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td>Inoperative SCR</td>
<td>1 to 2 K</td>
<td>100K to Infinity</td>
</tr>
<tr>
<td>Open SCR</td>
<td>100K to Infinity</td>
<td>100K to Infinity</td>
</tr>
</tbody>
</table>
c. Since an open SCR will give about the same resistance reading as a good SCR, another method must be used to find this type of fault. It should be pointed out, however, that practically all cells fail by shorting and very few by opening. If an open SCR is suspected, or if it is desired to check the switching operation of an SCR, the following circuit should be used:

The multimeter is selected to read ohms on the 1K scale, and is connected to read the forward resistance of the SCR. When switch SW is closed, the forward resistance of a good SCR will change from a high value (100K to infinity) to a low value (1 to 10K). When the switch is opened, a good SCR will revert to its high forward resistance or blocking state if the holding current source (multimeter battery) is momentarily removed. A faulty SCR will not switch, remaining in either an open or a conducting state.

d. If any SCR's are suspected of being faulty from the above resistance checks, the SCR conversion module should be removed from the case. After the SCR cathode and gate leads have been disconnected, recheck the forward and reverse resistances before replacing the SCR heat sink assembly. This should be done before the SCR is definitely classified as damaged or faulty, since a fault in another SCR or another part of the circuitry can produce a faulty reading from a good SCR before it is disconnected from the circuit.
TABLE 6-1 STARTUP TROUBLESHOOTING

<table>
<thead>
<tr>
<th>INDICATION</th>
<th>CHECK/ADJUST/REPLACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>"POWER ON" indicator fails to illuminate. (4.4.6)</td>
<td>1. Check that the lamp is good
2. Check for three phase a-c input.
3. Check three input fuses for continuity (FUAI, 2 and 3).</td>
</tr>
<tr>
<td>No voltages or improper voltages (4.4.8) on test card.</td>
<td>1. Check for 115VAC control transformer output (X2 to FX1).
2. Check fuse on control transformer.
3. Check Driver Transformer Assembly (behind Driver rack) outputs:
 - TB-70 to 71 = 24VAC for DFP and +20VDC
 - TB-72 to 73 = 24VAC for -20VDC
 - TB-74 to 75 = 15VAC for +5VDC
4. If card a-c input is correct but d-c output is incorrect, replace card under test.</td>
</tr>
<tr>
<td>"INVERTER ON" and "RESET" indicators fail to illuminate (4.4.9) – if supplied, or Inverter relays fail to actuate.</td>
<td>1. Check that all thermal safety switches in the start circuit are closed. If thermal switch is found to be open, check for cause and correct.
2. Check for proper blower motor rotation.
3. Check the LD contacts in the Inverter stop-start circuit to make sure they are closed (LD coil on charge control assembly energized).
4. Check that the LVR contacts in the LD coil circuit are closed (LVR relay coil energized on charge control assembly).
5. Check that the IS relay is energized and operating properly, if not replace.
6. Check for proper operation of any auxiliary relays that may be in the start/stop circuit.
7. Check that the normally open (N.O.) contacts RX relay are closed (RX relay energized).
8. Check that "INVERTER ON" lamp is good.</td>
</tr>
<tr>
<td>No pulses out of pulse transformer card(s) (4.4.14)</td>
<td>1. Press "STOP/RESET", then "START" pushbuttons. If "RESET" indicator still remains illuminated check the following:
 a. Power supply (S) fuses
 b. Shorted SCR's
 c. Driver (Table 6-2)</td>
</tr>
<tr>
<td>High pulse approx. 15 volts (4.4.14)</td>
<td>1. Shorted SCR gate lead.
2. Open circuit between driver and pulse trans.
3. No firing power
4. Defective pulse transformer card.</td>
</tr>
<tr>
<td>No signal or wrong connection of filter. (4.4.21)</td>
<td>1. Shut Inverter off immediately and check for open or reversed circuit signal on the driver at TB.02 and common (COM) from the filter assemblies.
2. Check for proper firing signals to SCR's of corresponding phase.
3. Check for commutation feedback continuity.</td>
</tr>
<tr>
<td>CCA, CCB, CCC low signals, no signal or missing pulses. (4.4.21)</td>
<td>1. Check max. speed pot.
2. Check base freq. jumper
3. Check driver (volts/hertz)
4. Check line voltage</td>
</tr>
<tr>
<td>Motor cannot reach top speed. (4.4.22)</td>
<td>1. Check that the lamp is good
2. Check for three phase a-c input.
3. Check three input fuses for continuity (FUAI, 2 and 3).</td>
</tr>
</tbody>
</table>

6-3
TABLE 6-1 STARTUP TROUBLESHOOTING

<table>
<thead>
<tr>
<th>INDICATION</th>
<th>CHECK/ADJUST/REPLACE</th>
</tr>
</thead>
</table>
| Motor stops (4.4.22) | 1. Check thermal switches if wired in start/stop circuit.
2. Momentary or complete loss of 115VAC
3. Motor over load, breaker, or fuses (if supplied)
4. Starter overload
5. "IOC" or "TRIP" |
| Motor doesn't turn, just hums. (4.5.3) | 1. Check for all three phases
2. Check for binding load
3. Check current limit setting |
| Motor runs erratic or rough (4.5.3) | 1. With clamp-on ammeter check for balanced output to motor.
2. Check that all SCR's are firing. |
| Input fuse fails (4.5.3) | 1. Check for power shorts
2. Shorted capacitors
3. Shorted SCR or diode
4. Check current feedbacks for continuity and loose connections.
5. Check pulse transformers for continuity and loose connections. |
| Oil on bottom of case | Check capacitors |
| WARNING | CAPACITOR OIL MAY BE CAUSTIC; DO NOT COME IN CONTACT WITH SKIN. |
| Intermittent shut downs | 1. Check for suppression networks on relays
2. Check for other "noise" sources.
3. Check SCR and Diode snubber network.
4. Check for proper grounding of all subassemblies and all commutation and snubber capacitor cases. |
| "TRIP" indicator on monitor card illuminates | 1. Check DC buss voltage level
2. Check max. speed setting
3. Check freq. trip jumper
4. Check for over voltage on regenerating
5. Check slider connection and voltage on resistor on L2 ASM. |
| "IOC" indicator on monitor card illuminates | 1. Shorted output
2. Over heated SCR's
3. Blower fuses
4. Inverter operating outside of specification protective shut down
5. Shorted SCR or diode (continue checking for cause.)
6. Noise pick up – check RELAY snubbers and other noise sources
7. Instantaneous current limit not working or too high – Check synchronizer card, modulator card, current feedback.
8. Check SCR snubbers in Inverter modules. |
<table>
<thead>
<tr>
<th>INDICATION</th>
<th>CHECK/ADJUST/REPLACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test card</td>
<td>1A - .5 to +14 vdc</td>
</tr>
<tr>
<td>/receptacle</td>
<td>2A +.5 to -14 vdc</td>
</tr>
<tr>
<td></td>
<td>3A Output Oscillator (1FP) at 25hz (Fig. 17)</td>
</tr>
<tr>
<td></td>
<td>4A SQ wave 1/16th the freq. of 3A For GO1 drivers 1/8th the freq. of 3A For GO2 drivers (Fig. 19)</td>
</tr>
<tr>
<td></td>
<td>5A Freq. ref. (if used). 48 times fundamental (Fund.) freq. for GO1 24 times fund. freq. for GO2</td>
</tr>
<tr>
<td></td>
<td>6A Frequency divider (OFF/2) – same as 5A with phase shift (Fig. 18)</td>
</tr>
<tr>
<td></td>
<td>7A SQ wave at fund. freq. lagging 1FFA by 1/3 period (Fig. 20)</td>
</tr>
<tr>
<td></td>
<td>8A SQ wave at fund. freq. lagging 1FFA by 2/3 period (Fig. 20)</td>
</tr>
<tr>
<td></td>
<td>9A Driving sig. for Phase A (Fig's 21, 23a and 23b)</td>
</tr>
<tr>
<td></td>
<td>10A Driving sig. for Phase B (Fig's 22, 23a and 23b)</td>
</tr>
<tr>
<td></td>
<td>11A Driving sig. for Phase C (Fig's 21, 22, 23a and 23b)</td>
</tr>
<tr>
<td></td>
<td>12A Triangle wave (Fig. 24)</td>
</tr>
<tr>
<td></td>
<td>13A Firing Train-OFF, pulse width approx. 7 micro-sec and approx. 30 micro-sec between pulses (Fig. 25)</td>
</tr>
<tr>
<td></td>
<td>14A Start signal: +5 volts for stop ("1" state). 0 volts for start ("0" state).</td>
</tr>
<tr>
<td></td>
<td>15A Minimum voltage SIG – normally in "1" state when running. Must be in "0" state for starting or stopping.</td>
</tr>
<tr>
<td></td>
<td>16A Signals when Inverter can start for preconditioning. In “1” state when stop is called for; in “0” state when start is called for.</td>
</tr>
<tr>
<td></td>
<td>17A In “1” state with Inverter stopped; in “0” state with Inverter running.</td>
</tr>
<tr>
<td></td>
<td>18A In “0” state with Inverter stopped; in “1” state with Inverter running.</td>
</tr>
<tr>
<td></td>
<td>19A In “1” state forward, in “0” state reverse.</td>
</tr>
<tr>
<td>INDICATION</td>
<td>CHECK/ADJUST/REPLACE</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Test Socket B 1D through 12D</td>
<td>Firing signal (Fig's 1 and 2A, B and C and Fig. 6, 7 and 8).</td>
</tr>
<tr>
<td>13B</td>
<td>Normally zero — approx. +10V for regenerating current limit (CL); —10V for motoring CL. (Fig. 14)</td>
</tr>
<tr>
<td>14 through 16B</td>
<td>Current feedback, CSA, CSB and CSC (Fig's 9, 10, 11 and 12).</td>
</tr>
<tr>
<td>17B</td>
<td>(CLA) in phase component of current-positive for regenerating, negative for motoring. (Fig. 13).</td>
</tr>
<tr>
<td>18B</td>
<td>Voltage feedback — normally +10 to 11 volts D.C.</td>
</tr>
<tr>
<td>19B</td>
<td>Frequency voltage (FV), 0 to +14 vdc depending on “Speed Control” setting. (Fig’s 15 and 16).</td>
</tr>
<tr>
<td>Monitor card test connections</td>
<td></td>
</tr>
<tr>
<td>Filter</td>
<td>Reference Figures 5A and 5B</td>
</tr>
<tr>
<td>CCA, CCB and CCC</td>
<td>Reference Figures 6 and 7</td>
</tr>
<tr>
<td>1FFA</td>
<td>Reference Figures 1, 2A, 2B and 2C</td>
</tr>
</tbody>
</table>
SECTION VII

SPARE PARTS RECOMMENDATION

7.1 GENERAL
A realistic "on hand" spares stock coupled with the Speed Variator low cost card exchange plan will lead to faster resolution of downtime of the equipment in case of malfunction. On hand spare parts avoids extended downtime after the problem has been located. Time is not lost waiting for parts that must be ordered and shipped from the factory. The benefits of easily removable (plug-in) printed circuit boards is lost if it only takes a few minutes to discover the defective assembly but hours to order and procure a replacement. Therefore, from the standpoint of keeping the equipment/machine operating with a minimum of down time, readily available on hand spares are a must. For further information on the Speed Variator Products Department Card Exchange Plan, contact your local General Electric Company Installation and Service Engineering District Office or Speed Variator Products Department of General Electric Company in Erie, Pennsylvania.

7.2 RECOMMENDED SPARE ASSEMBLIES, SUBASSEMBLIES AND PRINTED CIRCUIT CARD/BOARDS

NOTE
WHEN ORDERING SPARE PARTS, BE SURE TO GIVE COMPLETE PART NUMBER, AND ASSEMBLY NAME TO INSURE FAST AND EFFICIENT SERVICE.

The following is a list of recommended spare parts for an AF3060 Inverter

<table>
<thead>
<tr>
<th>Assembly/Subassembly</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR Inverter submodule</td>
<td>1</td>
</tr>
<tr>
<td>SCR Commutation submodule</td>
<td>1</td>
</tr>
<tr>
<td>Diode submodule</td>
<td>1</td>
</tr>
<tr>
<td>Pulse transformer card</td>
<td>1</td>
</tr>
<tr>
<td>Current feedback card</td>
<td>1</td>
</tr>
<tr>
<td>+20VDC power supply card</td>
<td>1</td>
</tr>
<tr>
<td>+5VDC power supply card</td>
<td>1</td>
</tr>
<tr>
<td>Isolator/Power supply card</td>
<td>1</td>
</tr>
<tr>
<td>AC regulator card</td>
<td>1</td>
</tr>
<tr>
<td>Reverse logic card</td>
<td>1</td>
</tr>
<tr>
<td>Drive modulator card</td>
<td>1</td>
</tr>
<tr>
<td>Synchronizer card</td>
<td>1</td>
</tr>
<tr>
<td>Drive protection card</td>
<td>1</td>
</tr>
<tr>
<td>Commutation card</td>
<td>1</td>
</tr>
<tr>
<td>Fuses (each type)</td>
<td>2</td>
</tr>
</tbody>
</table>
SECTION VIII

DOCUMENTATION/DRAWINGS FURNISHED

8.1 GENERAL

The following types of documentation/drawings are normally supplied with your variable speed drive to aid in the installation and operation of your system.

8.1.1 Documentation
 a. AF-3060
 b. Special Control Devices Instructions/Bulletins (if applicable)

8.1.2 Drawings/Prints
 a. Elementary Diagrams-System and Assemblies
 b. Connection Diagrams-System and Assemblies
 c. Interconnection Diagrams-System and Assemblies

APPENDIX

This section contains the oscilloscope (scope) pictures of critical Inverter wave shapes and signals for use in conjunction with Sections IV and VI of the Instruction Manual. The scope displays are dependent upon the calibration, probe attenuation factor and settings of the scope being used.
TEST CARD - COMMUTATION FIRING SIGNAL (CFSP, CFSN) TP - 1B, PHASE A, POSITIVE SCR. SIMILAR PULSES CAN BE SEEN ON TEST POINTS 3B, 5B, 7B, 9B AND 11B WITH APPROPRIATE PHASE SHIFTS. DC LINK DISCONNECTED.

NOTE: A SINGLE FIRING PULSE FOLLOWS EVERY TRAIN OF FIRING PULSES FOR THE CORRESPONDING MAIN INVERTER SCR.

FIGURE 1

TEST CARD - MAIN FIRING SIGNAL (IFSP) TP - 2B, PHASE A, POSITIVE SCR. DC LINK DISCONNECTED.

FIGURE 2A
TEST CARD - MAIN INVERTER FIRING SIGNAL (IFSP)
TP - 4B, PHASE A NEGATIVE SCR. DC LINK DISCONNECTED.
NOTE: IT IS 180° OUT OF PHASE WITH TEST POINT 2B.

FIGURE 2B

OPERATING FREQ. 25HZ
SCOPE SETTING:
5M SEC/CM
5 VOLTS/CM
USE IFFA AS EXTERNAL SYNC. SIGNAL.

TEST CARD - MAIN INVERTER FIRING SIGNAL (IFSP)
TP - 6B, PHASE B POSITIVE SCR. DC LINK DISCONNECTED.
NOTE: IT LAGS PHASE A POSITIVE SCR BY 120°.
TEST POINTS 8B, 10B AND 12B HAVE SIMILAR FIRING TRAINS WITH APPROPRIATE PHASE SHIFTS.

FIGURE 2C

OPERATING FREQ. 25HZ
SCOPE SETTING:
5M SEC/CM
5 VOLTS/CM
USE IFFA AS EXTERNAL SYNC. SIGNAL.
OUTPUT OF PULSE TRANSFORMER COMM SIGNAL (CFSP) HEIGHT OF PULSE MAY VARY DEPENDING ON GATE CHARACTERISTICS. DC LINK DISCONNECTED.

FIGURE 3

OUTPUT OF PULSE TRANSFORMER CARD (IFSP) HEIGHT OF PULSE MAY VARY DEPENDING ON GATE CHARACTERISTICS. INITIAL PULSE FOLLOWED BY PULSE TRAIN. DC LINK DISCONNECTED.

FIGURE 4

OPERATING FREQ. 25HZ
SCOPE SETTING:
10 MICRO-SEC/CM
5 VOLTS/CM
USE INTERNAL SYNC. SIGNAL (SCOPE).

OPERATING FREQ. 26HZ
SCOPE SETTING:
10 MICRO-SEC/CM
5 VOLTS/CM
USE INTERNAL SYNC. SIGNAL (SCOPE).
FIGURE 5a

MONITOR CARD – FILTER SIGNAL – NO LOAD

OPERATING FREQ. 25HZ

SCOPE SETTING:
2M SEC/CM
2 VOLTS/CM

USE 1FFA AS EXTERNAL SYNC. SIGNAL

FIGURE 5b

MONITOR CARD – FILTER SIGNAL – FULL LOAD

OPERATING FREQ. 25HZ

SCOPE SETTING:
2M SEC/CM
2 VOLTS/CM

USE 1FFA AS EXTERNAL SYNC. SIGNAL
MONITOR CARD – 1 SINGLE CCA, CCB AND CCC SIGNAL. INVERTER RUNNING NO LOAD. THESE FOUR TRACES SHOW THE COMMUTATION STORY. CFSP – A COMMUTATION SCR IS FIRED. CCA – COMMUTATION CURRENT SWINGS THROUGH A HALF SINE WAVE COUNTERING THE INVERTER CURRENT AND TURNING OFF AN INVERTER SCR.

FIGURE 6 & 7

TEST CARD – INVERTER FIRING SIGNAL
INITIAL PULSE (IFSN) – TP28. IF_SN – THE OPPOSITE SCR IS FIRED AS THE COMMUTATION CURRENT FEEDBACK SIGNAL CROSSES 0 VOLTS.
FILTER – THE COMMUTATION CIRCUIT TAKES ON LOST ENERGY CAUSING A SURGE OF CURRENT IN THE FILTER.

FIGURE 8
MONITOR CARD - 1FFA SIGNAL (TOP DISPLAY)
TEST CARD - CSA SIGNAL TP14B (BOTTOM DISPLAY)

MOTOR RUNNING - NO LOAD. NOTE PEAK LAGS 1FFA BY ABOUT 90 FROM POSITIVE CENTER.

OPERATING FREQ. 25HZ
SCOPE SETTING:
1OP: 5M SEC/CM
5 VOLTS/CM
BOTT: 5M SEC/CM
2 VOLTS/CM

USE 1FFA AS EXTERNAL SYNC. SIGNAL.

FIGURE 9

MONITOR CARD - 1FFA SIGNAL (TOP DISPLAY)
TEST CARD - CSA SIGNAL TP14B (BOTTOM DISPLAY)

100% LOAD. NOTE PEAK CURRENT IS MORE TOWARD CENTER OF 1FFA SIGNAL.

OPERATING FREQ. 25HZ
SCOPE SETTING:
TOP: 5M SEC/CM
5 VOLTS/CM
BOTT: 5M SEC/CM
2 VOLTS/CM

USE 1FFA AS EXTERNAL SYNC. SIGNAL.

FIGURE 10
MONITOR CARD – 1FFA SIGNAL (TOP DISPLAY)
TEST CARD – CSB SIGNAL TP15B (BOTTOM DISPLAY)
100% LOAD. NOTE: SHIFTED 120 TO RIGHT OF CSA.

OPERATING FREQ. 25HZ
SCOPE SETTING:
TOP: 5M SEC/CM
5 VOLTS/CM
BOTT: 5M SEC/CM
2 VOLTS/CM
USE 1FFA AS EXTERNAL SYNCH. SIGNAL.

FIGURE 11

MONITOR CARD – 1FFA SIGNAL (TOP DISPLAY)
TEST CARD – CSC SIGNAL TP16B (BOTTOM DISPLAY)
100% LOAD. NOTE: SHIFTED 120 TO RIGHT OF CSB.

OPERATING FREQ. 25HZ
SCOPE SETTING:
TOP: 5M SEC/CM
5 VOLTS/CM
BOTT: 5M SEC/CM
2 VOLTS/CM
USE 1FFA AS EXTERNAL SYNCH. SIGNAL.

FIGURE 12
FIGURE 13

MONITOR CARD – 1FFA SIGNAL (TOP DISPLAY)
TEST CARD – CLA AT 100% LOAD, TP17B. (BOTTOM DISPLAY)

OPERATING FREQ. 25HZ
SCOPE SETTING:
5M SEC/CM
5 VOLTS/CM
5M SEC/CM
2 VOLT/CM
USE 1FFA AS EXTERNAL SYNC. SIGNAL.

FIGURE 14

TEST CARD – CURRENT LIMIT SIGNAL, TP13B, OPERATING IN CURRENT LIMIT. NEGATIVE PULSES REDUCE REFERENCE. POSITIVE PULSES (NOT SHOWN) INCREASE REFERENCE IF REGENERATING IN CURRENT LIMIT.

OPERATING FREQ. 25HZ
SCOPE SETTING:
5M SEC/CM
5 VOLTS/CM
USE 1FFA AS EXTERNAL SYNC. SIGNAL.
TEST CARD – CURRENT LIMIT STABLE TP19B.

FIGURE 15

OPERATING FREQ. (IN CURRENT LIMIT)

SCOPE SETTING:
10M SEC/CM
.2 VOLT/CM

USE 1FFA AS EXTERNAL SYNC. SIGNAL.

TEST CARD – CURRENT LIMIT UNSTABLE TP19B.

FIGURE 16

OPERATING FREQ. (IN CURRENT LIMIT)

SCOPE SETTING:
10M SEC/CM
.2 VOLT/CM

USE 1FFA AS EXTERNAL SYNC. SIGNAL.
TEST CARD - OUTPUT OSCILLATOR (1FP) TP3A.

FIGURE 17

OPERATING FREQ. 25HZ

SCOPE SETTING:
0.1M SEC/CM
5 VOLT/CM

USE INTERNAL SYNC. SIGNAL (SCOPE).

TEST CARD - FREQUENCY DIVIDER (QFP/2) TP6A.

NOTE THAT IT IS HALF THE FREQUENCY OF 1FP.

FIGURE 18

OPERATING FREQ. 25HZ

SCOPE SETTING:
0.1M SEC/CM
5 VOLT/CM

USE INTERNAL SYNC. SIGNAL (SCOPE).
TEST CARD – FREQUENCY DIVIDER

(OFF6) FOR A 60HZ BASE FREQUENCY DRIVE, THIS SIGNAL IS ALSO OFP/16 TP4A. NOTE THAT IT IS 6 TIMES THE FUNDAMENTAL FREQUENCY.

FIGURE 19

TEST CARD – FUNDAMENTAL FREQUENCY PHASE Y.

(1FFY) TP7A (PHASE B – FORWARD)

(PHASE C – REVERSE)

NOTE THAT IT IS SHIFTED 120 DEGREES TO THE RIGHT OF 1FFA. 1FFZ NOT SHOWN WOULD BE SHIFTED 120 DEGREES TO THE LEFT (TP8A).

FIGURE 20
TEST CARD - OPMA @ FUNDAMENTAL FREQUENCY OF 25Hz. NOTE: 8 CHOPS PER CENTER 60. THE ZERO IN FRONT OF THE PMA DESIGNATION INDICATES THAT IT IS 180 OUT OF PHASE WITH THE 1FFA, TP9A.

FIGURE 21

OPERATING FREQ. 25Hz
SCOPE SETTING:
5M SEC/CM
5 VOLT/CM
USE 1FFA AS EXTERNAL SYNC. SIGNAL.

TEST CARD - OPMB @ FUNDAMENTAL FREQUENCY OF 25Hz. NOTE THAT OPMB LAGS OPMA BY 120. THE OPMC SIGNAL (NOT SHOWN) WOULD LAG BY ANOTHER 120. IN THE REVERSE MODE, THE RELATION OF OPMB AND OPMC WOULD BE SWITCHED, TP10A.

FIGURE 22

OPERATING FREQ. 25Hz
SCOPE SETTING:
5M SEC/CM
5 VOLT/CM
USE 1FFA AS EXTERNAL SYNC. SIGNAL.
TEST CARD – OPMA @ FUNDAMENTAL FREQUENCY OF 40HZ. NOTE: 4 CHOPS PER CENTER 60 , TP9A.

FIGURE 23a

TEST CARD – OPMA @ FUNDAMENTAL FREQUENCY OF 60HZ. NOTE: 2 CHOPS PER CENTER 60 , TP9A.

FIGURE 23b
FIGURE 24

TEST CARD – TRIANGLE WAVE FOR ONE HALF CYCLE (180°) OF FUNDAMENTAL FREQUENCY TP12A.

OPERATING FREQ. 25HZ
SCOPE SETTING:
2M SEC/CM
5 VOLT/CM
USE 1FFA AS EXTERNAL SYNC. SIGNAL.

FIGURE 25

TEST CARD – FIRING OSCILLATOR (OFT) TP13A

OPERATING FREQ. 25HZ
SCOPE SETTING:
10 MICRO-SEC/CM
5 VOLT/CM
USE INTERNAL SYNC. SIGNAL (SCOPE).