FIELD TESTING OF GENERAL ELECTRIC TYPE
OVERCURRENT TRIP DEVICES
These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the General Electric Company.
FIELD TESTING OF GENERAL ELECTRIC TYPE OVERCURRENT TRIP DEVICE

GENERAL

Increased interest in breaker maintenance is evident by the increase in field inquiries concerning maintenance procedures. Since the majority of these inquiries concern checking the operation of overcurrent trip devices, the following factory advice is offered as an aid to those involved in that activity.

Before attempting any checks or adjustments, the assigned tester should consult the maintenance manual to familiarize himself with the operating details of the specific breaker involved and the specific overcurrent trip device. He should be certain the power voltage has been removed. Prior to checking the overcurrent trip device, the breaker contacts, mechanism and trip latch should be checked to assure their proper functioning so that the breaker can carry the required current and that the trip shaft is free of high friction loads. The trip latch should be checked for proper trip latch engagement.

Overcurrent Trip Device Checks:

An adequate check to prove the overcurrent trip device functions properly consists of a mechanical check followed by an overcurrent operation.

Mechanical Check:

A careful mechanical check should be made of any magnetic overcurrent trip device to assure a successful tripping operation just before the armature reaches the fully closed air gap condition. This can be done by manually pushing the armature toward the closed air gap position, and determining how much further the armature moves after the breaker has tripped. This check to assure "positive trip" is within the tolerance specified in the breaker maintenance manual is important and can affect the apparent degree of time delay during a subsequent overcurrent timing test. If there is insufficient "positive trip" the armature may "bottom" on the magnet pole face without sufficiently displacing the trip latch. Slightly excessive "positive trip" may cause fast tripping while extremely excessive "positive trip" will allow the trip device armature to be loaded by the latch when the air gap is excessive. When the air gap is excessive, tripping force is at a low level compared to the force at short air gaps and the device may tend to stall or "ride the latch".

The armature of the EC-2, EC-2A, EC-1A and EC-1B of the AK breakers and the oil film (sticky disk) and Grade "B" time of AL-2 type breakers can be manipulated directly while observing the tripping. On the EC-1 device the trip arm is not fastened to the armature. To accurately determine the degree of positive trip on the EC-1, it is necessary to "probe" the armature through the holes provided in the case. A drill rod or short length of stiff wire will serve as a probe. Maintenance manuals for the specific breaker shows the procedure in detail.

While checking positive trip, the armature should be held in the tripped position sufficiently long to assure the time delay escapement is operative as follows:

a. As the armature is pushed to the closed air gap position, devices with instantaneous trip features will allow the instantaneous trip spring to stretch and allow temporary separation of the armature from the time delay dashpot. Maintaining the armature in the closed air gap condition will cause the instantaneous spring to pull the dashpot through its timing stroke. Devices with long delay characteristics will require considerable time to "time out." Failure of the dashpot
to move at all warrants further investigation to see if a bind exists in the dashpot or connecting linkage. Similarly, lack of any time delay (when the device is so equipped) or a very fast "time out" will generally indicate lack of oil and again further investigation is warranted.

b. When releasing the armature after the device has "timed out" check the armature to be sure it returns to the fully open gap position and rests on the armature open air gap stop. An armature hanging half-way closed indicates a possible bind in the armature pivot or dashpot or possibly the pick-up setting has been reduced so far below the minimum setting that the calibration spring no longer provides resetting torque. Binds in the armature pivot of devices employing oil displacement type dashpots are generally detected by the armature failing to fully reset following a partial "timing out" operation (such as may occur from a motor starting operation). On the next overload the partially closed air gap causes premature tripping. (Generally considered a fail safe condition.)

c. Visually check for missing hardware, clamping devices, evidence of leaking oil, broken cases, cracked breaker trip paddles. On oil film (sticky disc) devices and Grade B timers, the condition of the oil should be observed and changed if necessary. See maintenance manual for acceptable cleaning methods and type of oil.

Overcurrent Check:

If desired, an overcurrent test can be made to assure the breaker will trip on overcurrent. The purpose of overcurrent testing of trip devices in the field should be to determine if the breaker will perform as required for that circuit to which it is applied. Since the trip device exhibits its lowest trip force levels when encountering low levels of overcurrent, an indication of adequate trip device performance can generally be assured by making an overcurrent check at approximately 150 to 300 percent of coil rating as shown in Table I. On dual magnetic trip devices, the armature and pivot pin is common to both the long time delay feature and the instantaneous trip. If the force generated across the air gap is sufficient to attract the armature for slight overcurrents in the long time region, tripping on short circuit by the same armature is assured. As the armature times toward the closed air gap position, the force across the air gap increases high enough to stretch the instantaneous spring and exercise the instantaneous trip parts. Similarly, the short time armature on selective trip devices is on the same pivot as the long time armature and the iron structure is comparable. Therefore, checking the long time delay feature affords reasonable assurance of all features successfully performing their trip functions. The long time delay pick-up should be set at 100% current.

Overcurrent Test Equipment:

In addition to being capable of producing current levels approximately 300% of trip coil rating, the current must be reasonably sinusoidal. Since overcurrent trip devices are designed to saturate slightly above continuous rating to avoid destructive forces at short circuit levels of overcurrent, the devices represent a non-linear impedance at current levels recommended for time delay testing. If the trip device represents the predominant impedance in the test circuit, a non-sinusoidal current wave shape results. To maintain a reasonably sinusoidal wave shape of current, air core reactance should be inserted in the series circuit. The air core reactance must represent the predominant reactive (and linear) impedance to minimize the effect of the trip device impedance. Insertion of this additional impedance in turn requires an increase in test voltage. The minimum external impedance requirement varies for each coil size. The smaller the rating of the trip coil, the higher becomes its impedance, the more external impedance is required, hence the higher the required source voltage. Rather than specify the external impedance required for each coil rating, it is more convenient to indicate the open circuit voltage required for various coil ratings. The
external impedance can then be inserted as required to control the test current. Figure 1 shows these open circuit voltage requirements for various coils. This voltage can be quickly checked after the current has been set by measuring the voltage with the breaker open and the test set "on" at the level required to produce 300% continuous current.

Test Procedure:

1. With a test set meeting the minimum requirements outlined above and connected securely to the upper and lower studs of one pole of the breaker, set the long time pick-up setting on the trip device to 100%. The relative position of the adjustable time setting of EC-2 type devices should be noted. It is important that time adjusting screw is not forced to the limit of its travel; otherwise binding of the time delay linkage may result.

2. Close the breaker and adjust the current to the degree of over-current listed in Table I for the particular O. C. trip device.

3. Shut off the test set to allow the device to re-set.

4. Re-apply the power and record the trip time in the appropriate test log book.

If repeat tests are attempted, it will be necessary to allow a sufficient cooling time between tests so as not to exceed the thermal capacity of the circuit breaker.

The magnets of some overcurrent trip devices are oriented in such a direction that the flux across the air gap of the device of one pole affects the pick-up of the devices on adjacent poles. Generally, these breakers have correction factors applied to their single phase calibration currents to assure adequate performance when applied on 3 phase circuits. These correction factors should be similarly applied when field checking. Notes on Table I indicate the correction factors to be applied. Test data should be compared with acceptable or specified limits so that discrepancies can be verified immediately.

On completion of the overcurrent trip device test, it is important to carefully reassemble any accessories that were removed to facilitate the overcurrent trip device test or adjustments. Any adjustments to those accessories should be made as directed by the maintenance manual. Careless reassembly of accessories may result in subsequent serious damage to the breakers and the circuits they protect.

Test Results:

The trip time measured for the trip device at the recommended overcurrent condition should be compared with the factory trip curve for new devices. In view of the wide variation in the parameters responsible for the apparent degree of time delay from a trip device, tripping times will often exceed the band width shown on the characteristic curves. These variations can be caused by variations in the current wave produced by test equipment, wide deviations in ambient temperature or high oil temperature caused by repetitive testing. Field adjustments, if necessary, should be confined within the adjustable range designed into the device for field adjustments. Replacement parts (other than cases or clamping hardware) are not generally available for overcurrent devices. When replacement devices are required, complete nameplate information extracted from the overcurrent trip device and the involved breaker should accompany the order.
TABLE I

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>Type Overcurrent Trip Device</th>
<th>Test Current in Percent of L.T.D. Pick-up *</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL-2</td>
<td>Oil film (sticky disc) Grade B</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>EC-1</td>
<td>150</td>
</tr>
<tr>
<td>AK-15/25/50</td>
<td>EC-2, EC-2A (inst. 4X)</td>
<td>150</td>
</tr>
<tr>
<td>AK-15/25/50</td>
<td>EC-2, EC-2A (inst. 6X or higher)</td>
<td>300</td>
</tr>
<tr>
<td>AK-1-75-100</td>
<td>EC-1</td>
<td>150 **</td>
</tr>
<tr>
<td>AK-2-75-100</td>
<td>EC-1A, EC-1B</td>
<td>150 ***</td>
</tr>
</tbody>
</table>

* Pick-up set at 100% of trip device rating.

** Characteristics having XX suffixes should have 147% correction factored into current. Correction factors for YY characteristics are 160% on left and right poles and 187% on center poles.

*** Correction factors of 93 and 107% for left and right poles respective must be factored into test currents.

FIG-1

AMPERE RATING OF TRIP DEVICES
FIELD SERVICE OFFICE CODE KEY
I Mechanical & Nuclear Service
| Electrical & Electronic Service
I Marine Service
I Transportation

FOR YOUR LASTING SATISFACTION, ... with the performance and availability of your General Electric equipment, GE provides this nationwide ... service, maintenance... and marine users. Qualified field engineers provide installation, start-up, employee training, engineering maintenance and other services, throughout the productive life of the equipment. For full information, call your nearest service or engineering office.

GE GENERAL ELECTRIC SERVICE OFFICES

ALABAMA
- Birmingham 35205 2151 Highland Ave
- Mobile 36606 1111 S. Beltline Highway

ARKANSAS
- Anchorage 98001 115 Whitney Rd
- Little Rock 72219 120 Main St.

CALIFORNIA
- Oakdale 95361 323 N. Vignes St.
- San Diego 92105 1250 Amigo Rd.

COLORADO
- Denver 80206 201 University Blvd.

CONNECTICUT
- Meriden 06450 1 Prestige Dr.

FLORIDA
- Jacksonville 32203 4040 Woodcock Dr.
- Miami 33136 400 W. Flagler St.
- Tampa 33606 2150 S. 30 Ave.

GEORGIA
- Atlanta 30309 1890 Peachtree Rd., NW.
- Savannah 31405 5020 Phalan St.

HAWAII
- Honolulu 96813 440 Coral St.

ILLINOIS
- Chicago 60604 840 S. Canal St.

INDIANA
- Evansville 47715 2799 Washington Ave.
- Fort Wayne 46805 300 S. Calhoun St.
- Indianapolis 46207 3750 N. Meridian St.

IOWA
- Davenport 52805 P.O. Box 850, 1019 State St., Bettendorf

KENTUCKY
- Louisville 40218 2300 Meadow Dr

LOUISIANA
- Baton Rouge 70806 8312 Florida Blvd.
- New Orleans 70115 4747 Eacking Blvd.
- Shreveport 71104 2660 Century Blvd.
- Monroe 71201 1058 North St.

MARYLAND
- Baltimore 21201 11 W. Charles St.

MASSACHUSETTS
- Westfield 01081 1 Washington St.

MICHIGAN
- Detroit 48203 700 Antoine St.
- Jackson 49201 1310 W. Franklin St.
- Saginaw 48637 1008 Second National Bank Bldg

MINNESOTA
- Duluth 55802 300 W. Superior St.
- Minneapolis 55416 3500 Hennepin Ave.

MISSOURI
- Kansas City 64106 911 Main St.
- St Louis 63101 1015 Locust St.

NEBRASKA
- Omaha 68124 409 S. 17th St.

NEW JERSEY
- Millburn 07041 25 E. Willow St.

NEW YORK
- New York 10255 15 Computer Drive, West
- Buffalo 14205 225 Delaware Ave.
- New York 10022 25 East 42nd St.
- Syracuse 13208 3532 James St.

NORTH CAROLINA
- Charlotte 28207 141 Providence Rd.

OHIO
- Cincinnati 45208 2431 Victory Pkwy
- Cleveland 44118 1000 Lakewood Ave.
- Columbus 43219 1130 Morse Rd.
- Toledo 43605 3125 Douglas Rd.

OKLAHOMA
- Oklahoma City 73106 2005 Classen Blvd.

OREGON
- Eugene 97401 1170 Pearl St.

PENNSYLVANIA
- Allentown 18102 1444 Hamilton St.
- Philadelphia 19102 3 Penn Center Plaza.
- Pittsburgh 15232 300 6th Ave Bldg.

SOUTH CAROLINA
- Columbia 29204 2700 Midtown Dr.

TENNESSEE
- Chattanooga 37404 5600 Bldg., Exeter Center
- Memphis 38130 5395 Airways Blvd.

TEXAS
- Amarillo 79101 2305 Polk St.
- Beaumont 77704 1295 Calder Ave.
- Corpus Christi 78401 306 N. Chaparral St.
- Dallas 75222 801Hennmann Freeway
- El Paso 99545 215 N. Stanton
- Fort Worth 76102 1600A W. Seventh St.
- Houston 77027 4139 Richmond Ave.
- San Antonio 78204 434 S. Main St.

UTAH
- Salt Lake City 84111 451 S. Third East St.

VIRGINIA
- Newport News 23601 511 Main St.
- Richmond 23220 1505 Willow Dr.
- Roanoke 24015 201 Colonial Ave.

WASHINGTON
- Seattle 98108 12th Ave.

WEST VIRGINIA
- Charleston 25320 308 MacCorkle Ave.

WISCONSIN
- Appleton 54911 3003 West College Dr.
- Milwaukee 53207 615 E. Michigan St.

GENERAL ELECTRIC SERVICE SHOPS

WHEN YOU NEED SERVICE

These GE Service Shops will repair, recondition, and rebuild your electric appliance. The facilities are available day and night, seven days a week, for work on the shops or on your premises. Latest factory methods and genuine GE renewal parts are used to maintain performance of your equipment. For full information about these services, contact your nearest service shop or sales office.

ALABAMA
- Birmingham 35211 1500 Pine Ave., S.W.
- Mobile 36602 711 Lakeshore Dr.

ARIZONA
- Phoenix 85010 451 W. Colter St.
- Phoenix 85019 3860 W. Clarendon Blvd.
- Tucson 85713 9082 S. Palm Verde Ave.

CALIFORNIA
- Los Angeles 90031 5800 Stanford Ave.
- Los Angeles 90273 5000 S. LaPlaine St.
- Los Angeles 90001 228 W. Florence Ave.
- Sacramento 95814 714 North 17th St.
- San Francisco 94108 980 Mason St.

COLORADO
- Denver 80205 3555 Larimer St.

CONNECTICUT
- (Battleground) Plattsville 06147
- (Pittsfield) Pittsfield 01201

FLORIDA
- Tampa 33603 2012 W. Beaver St.
- Miami 33102 1002 East 20th St.
- Tampa 33601 510 S. Grant Bld.

GEORGIA
- Atlanta 30307 3905 Peachtree Industrial Blvd.
- Atlanta 30331 2378 John Hone Dr.

ILLINOIS
- Chicago 60638 6465 S. Nicholson Ave.

INDIANA
- Evansville 47711 401 N. Congress Ave.
- Fort Wayne 46803 1731 E. Dallal Ave.
- Hammond 46320 1155 156th P.
- Indianapolis 46222 1760 Vermont St.

IOWA
- Davenport 52805 3126 State St.

KENTUCKY
- Louisville 40229 2900 Crittenden Drive