INSTRUCTIONS

Switchgear

DIRECTIONAL-VOLTAGE DIFFERENTIAL RELAYS

Types
RCV11A and RCV11B

GENERAL ELECTRIC
DIRECTIONAL-VOLTAGE DIFFERENTIAL RELAYS
TYPES RCV11A AND RCV11B

INTRODUCTION

APPLICATION

The Type RCV relays covered by these instructions are instantaneous voltage differential relays and are used to protect three-wire (d-c) systems against unbalanced voltages. On this application, it is customary to use an auxiliary relay in conjunction with the Type RCV relay, as shown in Fig. 5, to prevent tripping the breaker during momentary disturbances. These relays are also used as voltage directional relays to prevent a machine from being connected to the bus unless its polarity is correct and its voltage is slightly higher than the bus voltage. The relay is regularly used with a resistor in series with its field coil on circuits of 125 to 750 volts, d-c. When provided with current coils, the Type RCV relay can be used as a current-balance relay, either as a protective device or as a regulating relay to hold equal or proportional loads on two d-c generators.

RATINGS

The contacts will interrupt one ampere at 220 volts a-c, or 0.1 ampere at 275 volts d-c, but should not be used to open 600 volts d-c circuits.

BURDENS

The field coil draws about 0.2 ampere at rated voltage. The armature coil circuits without resistors each draw about 4 watts at rated voltage. The armature coil circuits with resistors each draw about 0.21 ampere at rated voltage.

RECEIVING, HANDLING AND STORAGE

These relays, when not included as a part of a control panel will be shipped in cartons designed to protect them against damage. Immediately upon receipt of a relay, examine it for any damage sustained in transit. If injury or damage resulting from rough handling is evident, file a damage claim at once with the transportation company and promptly notify the nearest General Electric Apparatus Sales Office.

Reasonable care should be exercised in unpacking the relay in order that none of the parts are injured or the adjustments disturbed.

If the relays are not to be installed immediately, they should be stored in their original cartons in a place that is free from moisture, dust and metallic chips. Foreign matter collected on the outside of the case may find its way inside when the cover is removed and cause trouble in the operation of the relay.

DESCRIPTION

The Type RCV relay consists of a field coil, two armature coils (each consisting of two parts), a framework forming the magnetic structure, an armature, two sets of contacts and calibrating devices, and an enclosing case. The armature that operates the contacts is surrounded by the armature coils and is pivoted at its center between an upper and lower bearing so that it can rotate freely between the pole pieces of the magnetic structure. With the relay de-energized, the calibrating springs keep both sets of contacts in their normal position; open in the case of the Type RCV11A relay and closed in the case of the Type RCV11B relay.

CASE

The case is suitable for either surface or semiflush panel mounting and an assortment of hardware is provided for either mounting. The cover attaches to the case and also carries the reset mechanism when one is required. Each cover screw has provision for a sealing wire.

The case has studs or screw connections at both ends or at the bottom only for the external connections. The electrical connections between the relay units and the case studs are made through spring backed contact fingers mounted in stationary molded inner and outer blocks between which nests a removable connecting plug which completes the circuits. The outer blocks, attached to the case, have the studs for the external connections, and the inner blocks have the terminals for the internal connections.

The relay mechanism is mounted in a steel framework called the cradle and is a complete unit with all leads being terminated at the inner block. This cradle is held firmly in the case with a latch at the top and the bottom and by a guide pin at the back of the case. The cases and cradles are so constructed that the relay cannot be inserted in

These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser’s purposes, the matter should be referred to the General Electric Company.
the case upside down. The connecting plug, besides making the electrical connections between the respective blocks of the cradle and case, also locks the latch in place. The cover, which is fastened to the case by thumbscrews, holds the connecting plug in place.

To draw out the relay unit the cover is first removed, and the plug drawn out. Shorting bars are provided in the case to short the current transformer circuits. The latches are then released, and the relay unit can be easily drawn out. To replace the relay unit, the reverse order is followed.

A separate testing plug can be inserted in place of the connecting plug to test the relay in place on the panel either from its own source of current and voltage, or from other sources. Or, the relay unit can be drawn out and replaced by another which has been tested in the laboratory.

INSTALLATION

LOCATION

The location should be clean and dry, free from dust and excessive vibration, and well lighted to facilitate inspection and testing.

MOUNTING

The relay should be mounted on a vertical surface. The outline and panel drilling dimension are shown in Fig. 6.

After the relay is mounted, the contacts should be operated and released manually a few times to make sure that the moving parts are free and in alignment.

CONNECTIONS

The internal connection diagrams are shown in Figs. 3 and 4. The external connection diagram is shown in Fig. 5.

One of the mounting studs or screws should be permanently grounded by a conductor not less than No. 12 B & S gage copper wire or its equivalent.

ADJUSTMENTS AND INSPECTION

The relays were properly adjusted at the factory and should not be changed unless different operating values are required or a careful check shows that the adjustments must have changed in shipment or handling.

COIL CIRCUITS

If the relay operation appears incorrect make sure that current flows in both coil circuits,
and check the voltages across both coils under operating conditions. If the two coil circuits are connected together at one end, a low reading voltmeter connected across the other ends gives a much more accurate indication of the voltage difference existing across the relay.

Coils rated 10 volts or less are usually operated across the commutating field circuits of machines, and loose or dirty connections in the leads to the relay or in the commutating field circuit itself must be guarded against. If the voltage at the relay terminals at the one hour or two hour overload rating of the machine is much less than the relay rating, the leads to the relay are of too high resistance or the wrong relay has been applied. To determine which, check the commutating field circuit drop at the machine. If the relay does not balance the load properly, shift the connection to the commutating field of the machine taking the least load, so as to include the drop across one less pole (or vice versa). For finer adjustments decrease the length or increase the size of the leads from the machine taking the most load. No possible adjustment of the relay itself can compensate at all loads for a difference in voltage drop applied to the two armature coils at the desired load division.

If the trouble is traced to the relay itself, the following instructions for adjustment should be followed:

Fig. 3 Internal Connections For The Type RCVI11A Relay (Front View)

Fig. 4 Internal Connections For The Type RCVI11B Relay (Front View)

ELECTRICAL NEUTRAL

The position of the eccentric stop determines the de-energized position of the armature. This should be at the electrical neutral of the relay with field energized, and this adjustment should not be disturbed unless a check indicates it to be incorrect. To check this point, de-energize the relay completely and make sure that the armature circuits remain open. Re-energize the field, move the armature to the right, and allow it to reset; then operate the left contact to the left and note whether the armature follows it. Then move the armature to the left, allow it to reset; operate the right contact and note whether the armature follows it. If the armature follows in both directions or in neither direction, the adjustment may be considered correct. If it follows in only one direction, the present "off position" is to that side of electrical neutral; the eccentric stop should be shifted slightly to the other side and the check repeated until the correct position is found. The calibrating plate marks do not apply when this stop has been moved.

PICKUP

To increase the pickup, tighten the spring by moving the calibrating arm toward the outside of the relay and vice versa. If the extreme position of the arm does not give sufficient adjustment, the pickup may be further increased by moving the spring to a higher hole in the contact arm,
The polarity of the stationary magnetic circuit is established by the flow of current in the field coil, which should be energized with terminal polarity as indicated on the internal connection diagrams. This excitation will cause no movement of the armature. When current flows in the armature coils, the armature is magnetized and is then attracted by the pole pieces of the stationary magnetic structure. The two armature circuits are energized from the two potential sources to be balanced.

The field (upper) coil is connected through a series resistor to a source of relatively constant voltage. The armature (lower) coils are energized in opposition from the two sources to be balanced. Referring to Fig. 3, positive on terminals 8 and 6 or 8 and 4 tends to close the 9-10 contacts, but positive on 8 and 5 or 8 and 3 tends to close the 1-2 contacts. With positive on 8, 5 and 4, the 1-2 or 9-10 contacts will tend to close, depending on whether 5-6 or 3-4 is more strongly energized. With normal adjustment, the contacts operate at a voltage difference of seven percent of the rating of one armature circuit, and reset at three percent of this rating. The operating values are adjustable over a small range above and below these values, and may be increased as desired by using armature circuits of higher voltage rating. The relay is instantaneous in all its operations.

OPERATION

MAINTENANCE

PERIODIC INSPECTION

An operation test and mechanical inspection of the relay and its connections should be made at least every six months.

CONTACT CLEANING

For cleaning fine silver contacts, a flexible burnishing tool should be used. This consists of a flexible strip of metal with an etched roughened surface, resembling in effect a superfine file. The polishing action is so delicate that no scratches are left, yet corroded material will be removed rapidly and thoroughly. The flexibility of the tool insures the cleaning of the actual points of contact. Sometimes an ordinary file cannot reach the actual points of contact because of some obstruction from some other part of the relay.

Fine silver contacts should not be cleaned with knives, files, or abrasive paper or cloth. Knives or files may leave scratches which increase arcing and deterioration of the contacts. Abrasive paper or cloth may leave minute particles of insulating abrasive material in the contacts and thus prevent closing.

The burnishing tool described above can be obtained from the factory.
RENEWAL PARTS

It is recommended that sufficient quantities of renewal parts be carried in stock to enable the prompt replacement of any that are worn, broken, or damaged.

When ordering renewal parts, address the nearest Sales Office of the General Electric Company, specifying the quantity required and describing the parts by catalogue numbers as shown in Renewal Parts Bulletin No. GEG-859.

Fig. 6 Outline And Panel Drilling Dimensions For Relay Types RCVIIA And RCVIIB
GENERAL ELECTRIC APPARATUS SALES OFFICES

Abilene, Texas. 442 Cedar St.
Akron 13, Ohio. P.O. Box 5278
Albany 3, N.Y. 665 West Market St.
Albuquerque, N.M. 323 Third St., S.W.
Alexandria, La. 720 Murray Ave.
Allentown, Pa. 1213 Northampton St.
Amarillo, Texas. 1003 Amarillo Blvd.
Amsterdam, N.Y. 306 Main St.
Appleton, Wis. 510 W. College Ave.
Atlanta 2, Ga. 200 Berkeley St. No. 1604 P.O. Box 4569
Athens 1, Ohio. 1840 Peacock Rd. N.W.
Augusta, Me. 152 State St.
Baltimore 1, Md. 111 Park Ave.
Bangor, Maine. 27 North Water St.
Baton Rouge 6, La. 3170 Florida Blvd.
Beaumont, Texas 3055 Fourth St.
Beaverton 1, Ore. P.O. Box 94
Bellingham, Wash. 19 Commerce St.
Birmingham 2, Ala. P.O. Box 2602
Bismarck, N.Dak. 1804 Seventh Ave., N.
Blufffield, Va. P.O. Box 980
704 Bland St., Appalachian Bldg.
Boise, Idaho. 1224 Idaho St.
Boston 1, Mass. 160 Federal St.
Boston 2, N.Y. 625 Delaware Ave.
Bottle, Mont. P.O. Box 836, 103 N. Wyoming St.
Canton 4, Ohio. 1224 Market Ave.
Cedar Rapids, Iowa. 1520 Cedar St.
Charlotte 28, W. Va. P.O. Box 2313
306 Macord Ave., S.E.
Charlotte 1, N.C. P.O. Box 1285
112 S. Tryon St.
Chattanooga 2, Tenn. 802 Georgia Ave.
Chicago 2, III. 2621 Victory Pkwy.
Cleveland 4, Ohio. 4966 Woodland Ave.
Columbia 1, S.C., P.O. Box 1434, 1226 Bull St.
Columbus 15, Ohio. 40 S. Third St.
Corpus Christi, Texas 205 N. Chaparral
Dallas 2, Texas 1801 N. Bonnie View
Davenport-Bettendorf, Iowa. P.O. Box 630
1059 State St.
Dayton 2, Ohio. 11 W. Monument Bldg.
Dayton 19, Ohio, Avia & Def. 2122 W. Third St.
Denver 1, Colo. P.O. Box 2331
650 Seventeenth St.
Des Moines 12, Iowa. 2116 W. Grand Ave.
Detroit 2, Mich. 700 Antoinette
Duluth 2, Minn. 14 W. Superior St.
El Paso, Texas 212 N. Stanton
Erie 1, Pa. 1001 N. Sixth St.
Eugene, Ore. P.O. Box 352, 1170 Pearl St.
Evansville 3, Ind. P.O. Box 157
312 N. W. Second St.
Fairmont, W. Va. P.O. Box 1526
130 Jacobs Blvd.
Fergus Falls, Minn. P.O. Box 94
108 N. Court Ave.
Florida: American Factories, Ltd., P.O. Box 3230
Honolulu 1
Oak Ridge, Tenn. 253 Main St., E.
Oklahoma City 2, Okla. 119 N. Robinson St.
Omaha 2, Neb. 400 S. 11th St.
Pasco, Wash. P.O. Box 971, S. W. Lewis St.
Peoria 2, Ill. 309 Jefferson Bldg.
Philadelphia 2, Pa. 3 Penn Center Plaza
Pittsburgh 22, Pa. P.O. Box 1307
Portland 7, Ore. 818 Olive St.
Reading, Pa. 3 N. 20th St.
Richmond 17, Va. P.O. Box 2188
1700 E. Franklin St.
Riverside, Calif. 337 North St.
Roanoke 5, Va. P.O. Box 166
South Bend 1, Ind. 210 S. First St.
Springfield 3, Mass. 3387 Main St.
Stockton, Calif. P.O. Box 3594
Springfield 3, Ill. 510 W. Fourth St.
Tacoma 1, Wash. P.O. Box 1485
1216 Washington Blvd.
Tampa 1, Fla. P.O. Box 3092, 1206 North A St.
Toledo 4, Ohio. P.O. Box 1526 Madison Ave.
Trenton 8, N. J. P.O. Box 710, 650 N. Sixth Ave.
Tucson 3, Ariz. P.O. Box 710
Utica 2, N. Y. P.O. Box 676
Wenatchee, Wash. P.O. Box 676
Wheeling, W. Va. 40 Fourth St.
Richmond 2, Kan. 2022 S. 21st St.
Williamson, N. C., P.O. Box 748, 115 E. Main St.
Worcester 5, Mass. 288 Grove St.
Youngstown 7, Ohio. 272 E. Indiana Ave.
Canada: Canadian General Electric Company, Ltd., Toronto

GENERAL ELECTRIC SERVICE SHOPS

WHEN YOU NEED SERVICE... These G.E. service shops will repair, recondition, and rebuild your electric apparatus. The facilities are available day and night, seven days a week, for work in the shops or on your premises. Latest factory methods and genuine G.E. renewal parts are used to maintain peak performance of your equipment. For full information about these services, contact your nearest service shop or sales office.

* Denotes Aircraft Service Shops

Albany, N.Y. 1097 Central Ave.
Allentown, Pa. 668 E. Highland St.
Appleton, Wis. Midway Industrial Area.
*Arkansas City, Kan. P.O. Box 256
Bethlehem 30, Md. 920 E. Fort Ave.
Burlington 11, N.J. 318 Urban St.
Charlotte 4, N.C. 1818 North Carolina Blvd.
Chicago 2, III. 3100 Macarthur Blvd.
Charlotte, N.C. 2328 Third Rd.
Chicago 32, Ill. 4360 W. 47th St.
Cincinnati 2, Ohio 1345 H. Templet St.
*Cincinnati 3, Ohio 956 E. Court St.
Cleveland 4, Ohio. 4966 Woodland Ave.
Columbus 3, Ohio 2128 Eakin Rd.
Corpus Christi, Texas 115 Moss Ave.
Dallas 2, Texas 3202 Manor Way
Danbury, Conn. 333 Limerick St.
Detroit 2, Mich. 5950 Third Ave.
Fort Wayne, Ind. 606 W. Superior St.
Hialeah, Fla. 1062 E. 28th St.
Houston 20, Texas 5534 Harvey Wilson Dr.
Indianapolis 22, Ind. 1740 W. Vermont
Johnstown, Pa. 841 Oak St.
Kansas City 20, Mo. 3235 Gardner Ave.
Los Angeles 1, Calif. 6900 Stanford Ave.
Louisville 1, Ky. 2400 Criterian Dr.
Midland, Tex. 3400 Bankhead Hwy.
Milwaukee 3, Wis. 940 W St. Paul Ave.
Minneapolis 12, Minn. 449 N. 4th St.
New York, New York. 2615 N. Robertson St.
Oakland, Calif. 1525 Peralta St.
Oak Ridge, Tenn. 253 Main St., E.
Oklahoma City 2, Okla. 119 N. Robinson St.
Omaha 2, Neb. 400 S. 11th St.
Pasco, Wash. P.O. Box 971, S. W. Lewis St.
Peoria 2, Ill. 309 Jefferson Bldg.
Philadelphia 2, Pa. 3 Penn Center Plaza
Pittsburgh 22, Pa. The Oliver Bldg.
Portland 7, Ore. 818 Olive St.
Providence 3, R.I. Industrial Natl Bank Bldg.
Reading, Pa. 33 North St.
Richmond 17, Va. P.O. Box 2188
San Francisco 3, Calif. 253 Montgomery St.
Savannah, Ga. P.O. Box 676
Seattle 1, Wash. 710 Second Ave.
Seattle 8, Wash. 2251 Eastlake Ave.
Shreveport, La. P.O. Box 529
Sioux City 13, Iowa. 527 Orpheum Electric Bldg.
South Bend 1, Ind. 112 W. Jefferson Blvd.
Spokane 4, Wash. 152 Post St.
Springfield 3, Ill. 330 Columbia St.
Springfield 3, Mass. 1387 Main St.
Stockton, Calif. 2023 Pacific Ave.
Syracuse 3, N.Y. 3533 James St.
Tacoma 1, Wash. P.O. Box 1485
Tampa 1, Fla. P.O. Box 3092, 1206 North A St.
Trenton 8, N. J. 210 E. Hanover St.
Tucson 3, Ariz. P.O. Box 710
Utica 1, N. Y. P.O. Box 4037
Wenatchee, Wash. P.O. Box 676
Wheeling, W. Va. 40 Fourth St.
Wichita 2, Kan. 2922 N. Main
Williamson, N. C., P.O. Box 748, 115 E. Main St.
Worcester 5, Mass. 288 Grove St.
Youngstown 7, Ohio. 272 E. Indiana Ave.
Youngstown 7, Ohio, 722 Indiana Ave.

Supercedes GE-7000C

5-52