STATIC OUTPUT AND TRIPPING UNIT

TYPE SLAT53A
CONTENTS

DESCRIPTION ... 3
APPLICATION ... 3
RATINGS ... 3
BURDENS .. 4
FUNCTIONS .. 4
A. SCR TRIP CIRCUIT ... 4
B. RI-1Ø-SINGLE POLE RECLOSE INITIATE CIRCUIT 4
C. RI-3Ø-THREE POLE RECLOSE INITIATE CIRCUIT 4
D. BFI-BREAKER FAILURE INITIATE CIRCUITS 4
E. CONTACT CONVERTERS .. 4
CC4 .. 4
CC5 .. 4
TARGETS ... 5
LOGIC CIRCUITS .. 5
CALCULATION OF SETTINGS .. 9
TL12 (25-200/25-200) ... 9
TL3 (.2 - 4 SEC/O) ... 5
CONSTRUCTION ... 5
RECEIVING, HANDLING AND STORAGE 6
TEST INSTRUCTIONS .. 6
CAUTION .. 6
A. GENERAL ... 6
B. OPERATIONAL CHECKS .. 6
C. TEST CARD ADAPTER ... 6
D. TIMER ADJUSTMENTS AND TESTS 7
TABLE I ... 7
E. TRIP CIRCUIT TESTS ... 7
F. OVERALL EQUIPMENT TESTS 7
MAINTENANCE ... 7
A. PERIODIC TESTS .. 7
B. TROUBLE SHOOTING ... 7
C. SPARE PARTS ... 8
DESCRIPTION

The Type SLAT53A relay is a static output and tripping unit. The Type SLAT53A is not intended to be used by itself, but rather as a part of a complement of equipment that forms a protective relaying scheme. For a complete description of the overall scheme in which this relay is employed, refer to the overall logic diagram and its associated logic description that is supplied with each terminal of equipment.

The Type SLAT53A relay is packaged in a four rack unit (1 R.U. = 1 3/4") enclosed metal case suitable for mounting on a 19 inch rack. The outline and mounting dimensions are shown in Figure 1. The internal connections for the SLAT53A relay are shown in Figure 2. The component and card locations are shown in Figure 3.

APPLICATION

The Type SLAT53A relay was originally designed to operate in conjunction with Type SLYP, Type SLCN, Type SLA and Type SSA relays in a single pole tripping scheme. The following is a listing of the various output functions together with a general description of their intended use.

SCR

Six silicon controlled rectifier trip circuits, two per phase, are provided to permit tripping of the associated circuit breaker.

RI-10

These reclose initiation outputs are provided to initiate automatic reclosing after a single pole trip.

RI-30

These reclose initiation outputs are provided to initiate automatic reclosing after a three pole trip.

BFI

Breaker failure initiation outputs, two per phase, are provided for breaker failure protection.

RX

Received channel outputs are provided.

If any of these functions are not required, the outputs may be used for whatever purposes their characteristics are suited.

RATINGS

The Type SLAT53A relay is designed for use in an environment where the air temperature outside the relay case is between -20°C and +65°C.

The Type SLAT53A relay requires a +15 VDC power source which can be obtained from a Type SSA power supply.

The SCR tripping circuits are rated for 48/125 or 250 VDC. Each has a 1.0 ampere series target. The tripping circuits are designed to carry 30 amperes for one second.

The contacts of the telephone type relays that are used for RI-10 and RI-30 will make and carry 3 amperes continuously. They will make and carry 30 amperes for tripping duty. The contacts will interrupt 180 VA resistive (60 VA inductive).

These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the General Electric Company.
The contacts of the reed relays used for BFI-A, BFI-B, BFI-C, RX1 and RX2 will make and carry 3 amperes continuously or short time. The contacts will interrupt 100VA resistive (35 VA inductive).

Refer to the unit nameplate for the ratings of a particular relay.

BURDENS

The SLAT53A relay presents a maximum burden to the Type SSA power supply of:

120 ma from the +15 VDC supply
20 ma from the -15 VDC supply

In addition, each target lamp draws 80 ma from the -15 VDC supply.

Each contact converter, when energized, will draw approximately 10 ma from the station battery, regardless of tap setting.

FUNCTIONS

A. SCR TRIP CIRCUIT

Electrically separate, isolated SCR trip circuits are provided to trip two breakers. Each circuit is capable of carrying 30 amperes for one second.

The internal connections for the SCR trip and isolator subassemblies are shown in Figure 4. The isolator card, by means of a DC to DC converter, provides a signal path but maintains metallic isolation. This feature makes it possible to isolate the relay power supply from the trip circuit power supply.

B. RI-1Ø - SINGLE POLE RECLOSE INITIATE CIRCUIT

Two electrically separate normally open contacts are provided. These contacts close within 17 ms from the time the associated coil is energized by the logic. The contacts open within 170 ms from the time the coil is deenergized. The RI-1Ø function uses a telephone type relay with contact ratings stated under RATINGS.

C. RI-3Ø - THREE POLE RECLOSE INITIATE CIRCUIT

Two electrically separate normally open contacts are provided. These contacts close within 17 ms from the time the associated coil is energized by the logic. The contacts open within 170 ms from the time the coil is deenergized. The RI-3Ø function uses a telephone type relay with contact ratings stated under RATINGS.

D. BFI - BREAKER FAILURE INITIATE CIRCUITS

Two electrically separate normally open contacts are provided for each phase. These contacts close within 2 ms of the time that the associated coil is energized by the logic. The contacts open within 2 ms from the time the coil is deenergized. The BFI functions use reed relays with contact ratings stated under RATINGS.

E. CONTACT CONVERTERS

The purpose of this function is to convert a contact operation into a signal that is compatible with the logic circuit of the Type SLAT53A relay. These contact converters are labeled CC4 and CC5.

A link is provided on each card to select operation from a 48, 125, or 250 VDC station battery.

CC4

Contact converter 4 is energized by a pole disagreement circuit.

CC5

Contact converter 5 is energized by an external contact and causes the relay to trip 3 pole for any fault.
TARGETS

Two electromechanical target coils are included, one in series with each SRC. These targets operate on one ampere of trip current when the associated SCR passes current. The trip circuit resistance in the relay is 0.40 ohm.

Six target lamps are included in the SLAT53A. These are designated as indicated on the internal connection diagram of Figure 2.

LOGIC CIRCUITS

The functions of the Type SLAT53A relay involve basic logic (AND, OR, AND NOT) where the presence or absence of signals, rather than their magnitude, controls the operation. Signals are measured with respect to a reference bus accessible at TP1. In general a signal below 1 VDC represents an OFF or LOGIC ZERO condition, an ON or LOGIC ONE state is represented by a signal of approximately ±15 VDC.

The symbols used on the internal connection diagram (Fig. 2) are explained by the legend shown in Figure 5.

CALCULATION OF SETTINGS

This section covers those timers in the SLAT53A which require field adjustment.

TL12 (25-200/25-200)

This timer is associated with the pole disagreement circuit. The TL12 timer is intended to provide a means of coordinating the 52a - 92/b contact opening and closing with the breaker main pole position. The pickup delay must be sufficient to cover the time between the closure of the 52/b contact and the opening of the main breaker contacts (or arcing contacts, if present) plus the reset time of the trip functions plus a 5 ms margin. The reset delay of the TL12 timer must be sufficient to cover the time spread between the 52/b opening and main breaker pole reclosing plus margin.

TL3 (.2 - 4 SEC/O)

To prevent prolonged operation with one pole open, CC4 energizes the TL13 timer. The output from TL13 provides a three pole trip initiation to open all of the other breaker poles. The pickup delay setting must exceed the maximum time needed to fault clearing and reclosing.

CONSTRUCTION

The SLAT53A relay is packaged in an enclosed metal case with hinged front cover and removable top cover. The outline and mounting dimensions of the case and the physical location of the components are shown in Figures 1 and 3 respectively.

The SLAT53B relay contains printed circuit cards identified by a code number such as: A104, T114, L102 where A designated an auxiliary function, T designated a time delay function, and L designated a logical function. The printed circuit cards plug in from the front of the unit. The sockets are marked with letter designations or "addresses" (D, E, F, etc.) which appear on the guide strips in front of each socket, on the component location drawing, on the unit internal connection diagram, and on the printed circuit card. The test points (TP1, TP2, etc.) shown on the internal connection diagram are connected to instrument jacks on a test card in position T or AT with TP1 at the top of the AT card. TP1 and TP11 are tied to reference; TP10 and TP20 are tied to ±15 VDC through a 1.5K resistor. This resistor limits the current when TP10 or TP20 is used to supply a logic signal to a card.

The SLAT53A relay receives its inputs from the associated Type SLA relay. These units are interconnected by ten conductor shielded cables. The sockets for these cables are located on the rear panel of the unit. The SLAT53A output functions are connected to 12 point terminal strips, which are also located on the rear of the unit.

A window is provided in the hinged cover of the relay to allow target lamps and the mechanical targets to be seen. Push buttons are also provided to reset the targets and lamps without opening the cover.
RECEIVING, HANDLING AND STORAGE

These relays will normally be supplied as a part of a static relay equipment, mounted in a rack or cabinet with other static relays and test equipment. Immediately upon receipt of a static relay equipment, it should be unpackaged and examined for any damage sustained in transit. If injury or damage resulting from rough handling is evident, file a damage claim at once with the transportation company and promptly notify the nearest General Electric Sales Office.

Reasonable care should be exercised in unpacking the equipment. If the equipment is not to be installed immediately, it should be stored indoors in a location that is free from moisture, dust, metallic chips, and severe atmospheric contaminants.

Just prior to final installation the shipping support bolt should be removed from each side of all relay units, to facilitate possible future unit removal for maintenance. These shipping support bolts are approximately 8 inches back from the relay front panel. Static relay equipment, when supplied in swing rack cabinets, should be securely anchored to the floor or to the shipping pallet to prevent the equipment from tipping over when the swing rack is opened.

TEST INSTRUCTIONS

If the SLAT53A relay that is to be tested is installed in an equipment which has already been connected to the power system, disconnect the outputs to the system.

CAUTION

THE LOGIC SYSTEM SIDE OF THE DC POWER SUPPLY USED WITH MOD III STATIC RELAY EQUIPMENT IS ISOLATED FROM GROUND. IT IS A DESIGN CHARACTERISTIC OF MOST ELECTRONIC INSTRUMENTS THAT ONE OF THE SIGNAL INPUT TERMINALS IS CONNECTED TO INSTRUMENT CHASSIS. IF THE INSTRUMENT USED TO TEST THE RELAY EQUIPMENT IS ISOLATED FROM GROUND, ITS CHASSIS MAY HAVE AN ELECTRICAL POTENTIAL WITH RESPECT TO GROUND. THE USE OF A TEST INSTRUMENT WITH A GROUNDED CHASSIS WILL NOT AFFECT THE TESTING OF THE EQUIPMENT. A SECOND GROUND CONNECTION TO THE EQUIPMENT, SUCH AS A TEST LEAD INADVERTENTLY DROPPING AGAINST THE RELAY CASE, MAY CAUSE DAMAGE TO THE LOGIC CIRCUITRY. NO EXTERNAL TEST EQUIPMENT SHOULD BE LEFT CONNECTED TO THE STATIC RELAYS WHEN THEY ARE IN PROTECTIVE SERVICE, SINCE TEST EQUIPMENT GROUNDING REDUCES THE EFFECTIVENESS OF THE ISOLATION PROVIDED.

A. GENERAL

The SLAT53A relay is supplied from the factory either mounted in a static relay equipment as a separate unit associated with measuring relays, a type SSA power supply, and some form of channel equipment. All relay units for a given terminal of static relaying equipment are tested together at the factory, and each unit will have the same summary number stamped on its nameplate.

Timers should be set for the operating on reset times indicated on the associated overall logic diagram. Where a time range is indicated on the overall logic diagram, the timer should be set for the value recommended for that function in the descriptive writeup accompanying the overall logic diagram. Where a setting depends upon conditions encountered on a specific application, this is so stated and the factors influencing the choice of setting are described. The procedure for checking and setting the timers is described in a later section.

B. OPERATIONAL CHECKS

Operation of the SLAT53A unit can be checked by observing the signals at the twenty test points (TP1 to TP20) in the SLAT53A by observing the operation of the associated channel equipment, or by observing the output functions. The test points are located on two test cards in positions T and AT, and are numbered 1 to 20 from top to bottom. TP1 is the reference bus for the logic circuit, TP10 is at +15 VDC. The remaining points are located at various strategic points throughout the logic as shown on the internal connection diagram (Figure 2). Test point voltages can be monitored with a portable high impedance voltmeter, the voltmeter on the test panel of the associated equipment, or an oscilloscope.

C. TEST CARD ADAPTER

The test card adapter provides a convenient means of gaining access to any pin of a particular card. Detailed information on the use of the test card adapter is included in the card instruction book GEK-34158.
D. TIMER ADJUSTMENTS AND TESTS

When the time delay cards are to be adjusted or checked, an oscilloscope that can display two traces simultaneously and that has a calibrated horizontal sweep should be used.

In order to test the timer cards it is necessary to remove the card which supplied the input to the timer (see Table I) and to place the timer card in a card adapter. The card adapter allows access to the input and output of the timer if they are not brought out on test points. The timer test circuit is shown in Figure 6. Opening the N.C. contact causes the output to step up to +15 VDC after the pickup delay of the timer. To increase the pickup time, turn the upper potentiometer to the timer card clockwise; to decrease the time turn it counter-clockwise. Closing the contact causes the timer output to dropout after the reset time delay setting of the card. If the timer card is provided with a variable reset delay, it can be adjusted by the lower potentiometer on the timer card (CW increases reset time).

<table>
<thead>
<tr>
<th>TIME UNDER TEST</th>
<th>POSITION</th>
<th>REMOVE CARD IN POSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL11</td>
<td>K</td>
<td>PG</td>
</tr>
<tr>
<td>TL12</td>
<td>AG</td>
<td>AE</td>
</tr>
<tr>
<td>TL13</td>
<td>G</td>
<td>AG</td>
</tr>
</tbody>
</table>

E. TRIP CIRCUIT TESTS

The SCR trip circuits and series mechanical targets may be checked by connecting an auxiliary lockout relay, such as the Type HEA relay, in series with the SCR circuit. A typical circuit is shown in Figure 7. The HEA relay should have the same D.C. rating as the SCR trip circuit of the SLAT53A. If an auxiliary lockout relay is not available, it can be replaced by a resistive load which limits the trip circuit current to 3 amperes.

Prior to final installation, a check of the overall trip circuit should be made with the SCR outputs connected to trip the circuit breakers.

F. OVERALL EQUIPMENT TESTS

After the SLAT53A relay and the associated static relay units have been individually calibrated and tested for the desired settings, a series of overall operating circuit checks is advisable.

The elementary overall logic, and logic description for the specific job will be useful for determining the overall operation of the scheme.

Overall equipment test can be performed by applying AC current and voltages to the measuring units as specified in the instruction book for the measuring units and checking that proper outputs are obtained when the measuring units operate.

MAINTENANCE

A. PERIODIC TESTS

It should be sufficient to check the outputs produced at test points in the SLAT53A where periodic calibration tests are made on the associated measuring units, for example, the phase and ground relays in line relaying scheme. No separate periodic tests on the SLAT53A itself should be required.

B. TROUBLE SHOOTING

In any trouble shooting of equipment, it should first be established which unit is functioning incorrectly. The overall logic diagram supplied with the equipment shows the combined logic of the complete equipment and the various test points in each unit. By signal tracing, using the overall logic diagram and the various test points, it should be possible to quickly isolate the trouble.
A test adapter card is supplied with each static relay equipment to supplement the prewired test points on the test cards. Use of the adapter card is described in the card instruction book GEK-34158.

A dual-trace oscilloscope is a valuable aid to detailed trouble shooting, since it can be used to determine phase shift, operate and reset times as well as input and output levels. A portable dual-trace oscilloscope with a calibrated sweep and trigger facility is recommended.

C. SPARE PARTS

To minimize possible outage time, it is recommended that a complete maintenance program should include the stocking of at least one spare card of each type. It is possible to replace damaged or defective components on the printed circuit cards, but great care should be taken in soldering so as not to damage or bridge-over the printed circuit busses, or overheat the semi-conductor components. The repaired area should be recovered with a suitable high-dielectric plastic coating to prevent possible breakdowns across the printed buses due to moisture and dust. The wiring diagrams for the cards in the SLATSIC relay are included in the card book GEK-34158.
FIG. 2 (0149C7361-2) INTERNAL CONNECTIONS FOR THE TYPE SLAT53A
FIG. 3 (0227A2181-0) COMPONENT AND CARD LOCATION DIAGRAM FOR THE TYPE SLAT53A
FIG. 5 (0227A2047-0) INTERNAL CONNECTION DIAGRAM LEGEND
* THE 15VDC SIGNAL AT PIN 10 HAS A CURRENT LIMITING RESISTOR MOUNTED ON THE TEST CARD.

FIG. 6 (0246A7987-0) LOGIC TIMER TEST CIRCUIT
FIG. 7
TYPICAL SCR TEST CIRCUIT FOR TYPE SLA RELAYS
GENERAL ELECTRIC INSTALLATION AND SERVICE ENGINEERING OFFICES

FOR YOUR LASTING SATISFACTION . . . with the performance and availability of your General Electric equipment, GE provides this nationwide network of field service offices, serving utility, industrial, transportation and marine users. Qualified field engineers, with complete stock of spare parts, are ready to meet your requirements. Start-up, employee training, engineering maintenance and other services, throughout the productive life of the equipment. For full information, call your nearest Installation & Service

ALABAMA
↓ North Birmingham 35215, 1500 Mims Ave., S.W.
↑ Mobile 36609, 1111 S. Belkline Highway

ALASKA
↑ Anchorage 99601, 115 Whitney Rd.

ARIZONA
↑ Phoenix 85013, 3600 N. Central Ave.
↑ Tucson 85716, 151 S. Tucson Blvd.

ARKANSAS
↑ Little Rock 72219, 120 Main St.

CALIFORNIA
↑ Los Angeles 90004, 212 N. Vignes St.
↑ San Jose 95110, 625 N. San Antonio Rd.
↑ Sacramento 95818, 4107 J St.
↑ San Diego 92135, 2512 First Ave.
↑ San Francisco 94118, 55 Golden Gate Ave.
↑ Vernon 90058, 3035 E. 46th St.

COLORADO
↑ Denver 80221, 201 University Blvd.

CONNECTICUT
↑ Meriden 06450, 1 Prestige Dr.

FLORIDA
↑ Jacksonville 32203, 4090 Woodcock Dr.
↑ Miami 33134, 4100 W. Flagler St.
↑ Tampa 83008, 2105 S. Lois Ave.

GEORGIA
↑ Atlanta 30309, 1860 Peachtree St., NW
↑ Savannah 31405, 5002 Paulsen St.

HAWAII
↑ Honolulu 96813, 440 Coral St.

ILLINOIS
↑ Chicago 60605, 4840 S. Calumet Ave.

INDIANA
↑ Evansville 47705, 2709 Washington Ave.
↑ Fort Wayne 46807, 3000 E. Calumet Ave.
↑ Indianapolis 46207, 3750 W. Meridian St.

IOWA
↑ Des Moines 50305, 1039 S. 18th St., Des Moines

KENTUCKY
↑ Louisville 40218, 2300 Meade Dr.

GENERAL ELECTRIC SERVICE SHOPS

WHEN YOU NEED SERVICE . . . These GE Service Shops will repair, recondition, and rebuild your electric apparatus. The facilities are available day and night, seven days a week, for work in the shops or on your premises. Latest factory methods and genuine GE renewal parts are used to maintain performance of your equipment. For full information about these services, contact your nearest service shop or sales office.

ALABAMA
↑ Birmingham 35211, 1500 Mims Ave., S.W.
↑ Mobile 36609, 121 Lakeside Dr.

ARIZONA
↑ Phoenix 85013, 4415 W. Colter St.
↑ Tucson 85712, 949 S. Pima Rd.

CALIFORNIA
↑ Los Angeles 90036, 9900 Stanford Ave. (Los Angeles) Ambrose 2305
↑ San Francisco 94111, 2990 E. 19th St.
↑ Sacramento 95828, 235 W. Florence St.
↑ San Diego 92114, 99 North 17th St.
↑ San Francisco 94109, 1650 48th St.

COLORADO
↑ Denver 80206, 5533 Larimer St.

CONNECTICUT
↑ (Southington) Plantsville 06497

FLORIDA
↑ Jacksonville 32203, 2020 W. Beaver St.
↑ Miami 33130, 1059 E. 26th St.
↑ Tampa 83001, 19th & Grant Sta.

GEORGIA
↑ Atlanta 30324, Bldg. 47
↑ Atlanta 30324, Bldg. 47

ILLINOIS
↑ Chicago 60608, 6045 S. Poonamalee Ave.

INDIANA
↑ Evansville 47711, 401 N. Congress Ave.
↑ Ft. Wayne 46803, 1721 East Ave.
↑ Hammond 46320, 1128 16th Place
↑ Indianapolis 46222, 1740 W. Vermont St.

IOWA
↑ Des Moines 50305, 5328 E. 1st St.

KENTUCKY
↑ Louisville 40209, 3900 Crittenden Drive

LOUISIANA
↑ Baton Rouge 70805, 3513 Florida Blvd.
↑ New Orleans 70112, 4710 Earmark St.
↑ Shreveport 71104, 2820 Centenary Blvd.
↑ Monroe 71201, 1820 North 26th St.

MARYLAND
↑ Baltimore 21210, 1 N. Charles St.

MASSACHUSETTS
↑ Wellesley 02181, 1 Washington St.

MICHIGAN
↑ Detroit 48202, 700 Antiochette St.
↑ Jackson 49201, 216 W. Franklin St.
↑ Saginaw 48601, 1008 Second National Bank Bldg.

MINNESOTA
↑ Duluth 55802, 300 W. Superior St.
↑ Minneapolis 55416, 1500 Lilac Drive S.

MISSOURI
↑ Kansas City 64110, 911 Main St.
↑ St. Louis 63101, 1015 Locust St.

MONTANA
↑ Butte 59701, 103 N. Wyoming St.

NEBRASKA
↑ Omaha 68102, 409 S. 19th St.

NEW JERSEY
↑ Millburn 7041, 25 E. Willow St.

NEW YORK
↑ Buffalo 14222, 4200 Main St.
↑ Buffalo 14222, 4200 Main St.
↑ Buffalo 14222, 4200 Main St.

OHIO
↑ Cincinnati 45206, 2821 Victory Pkwy.
↑ Cleveland 44106, 1025 Lakeside Ave.
↑ Columbus 43215, 711 North High St.
↑ Toledo 43606, 3125 Douglas Rd.
↑ Youngstown 44501, 278 Inland Ave.

OKLAHOMA
↑ Oklahoma City 73106, 2000 Classen Blvd.
↑ Tulsa 74445, 2000 S. 10th Ave.

OREGON
↑ Portland 97210, 2923 NW 29th Ave.

PENNSYLVANIA
↑ Allentown 18102, 1644 Hamilton St.
↑ Philadelphia 19102, 3 Penn Center Plaza

SOUTHERN OHIO
↑ Columbus 43204, 2700 Middleburg Dr.
↑ Cincinnati 45207, 95 East Vine St.

TENNESSEE
↑ Chattanooga 37411, 5800 Bldg. Eastgate Center
↑ Memphis 38120, 3385 Airways Blvd.

TEXAS
↑ Amarillo 79101, 303 Polk St.
↑ Beaumont 77704, 1145 Calvert Ave.
↑ Corpus Christi 78401, 205 N. Chaparral St.
↑ Dallas 75222, 801 Stemmons Freeway
↑ El Paso 79905, 215 N. Santa Fe
↑ Fort Worth 76102, 806 W. Seventh St.
↑ Houston 77017, 4219 Richmond Ave.
↑ San Antonio 78004, 434 S. Main St.

UTAH
↑ Salt Lake City 84111, 431 E. 3rd St.

VIRGINIA
↑ Newport News 23601, 311 Main St.
↑ Richmond 23230, 1006 Willow Lane Dr.
↑ Roanoke 24012, 201 Colonial Ave.

WASHINGTON
↑ Seattle 98188, 112 Andover Park East, Tukwila
↑ Spokane 99202, E. 5005 Trent Ave.

WEST VIRGINIA
↑ Charleston 25302, 306 MacCorkle Ave., SE

WISCONSIN
↑ Appleton 54911, 3003 West College Dr.
↑ Milwaukee 33002, 615 E. Michigan St.

WEB PAGE: http://www.ge.com/services/locations.html

* Electrical/Mechanical Service Shop * Instrumentation Shop * Special Manufacturing Shop

2-75

GENERAL ELECTRIC COMPANY, PHILADELPHIA, PA.